
Basics of SCSI: Firmware
Applications and Beyond

Mark S. Kolich

Computer Science Department

Loyola Marymount University,

Los Angeles

Abstract

Since 1981, SCSI has been one of

the most powerful and reliable

peripheral technologies used in high-

performance computing environments.

Five years after its conception, A.N.S.I.

(American National Standards Institute)

approved the SCSI interface as an

official industry connectivity standard.

Today, SCSI technology continues to

grow and is used across the world in the

most demanding computing

environments. While newer storage

technologies, such as Fibre Channel,

continue to outperform and outsell SCSI

storage systems, the demand for fast

and reliable SCSI products remains in

the marketplace. [8] This paper is

intended to provide a fairly in-depth

exploration of SCSI technologies, and

the applications behind a SCSI

infrastructure.

1 Introduction

Pronounced “skuzzy”, the Small

Computer Systems Interface was

created to be a universal and intelligent

peripheral device connectivity standard.

SCSI devices include magnetic disk

drives, scanners, printers, optical disk

drives, and other communication

devices. The SCSI standard, adopted

by ANSI in 1986, defines a strict set of

rules and guidelines for all SCSI-class

devices. For example, the SCSI

standard defines the data transfer

process over a SCSI bus, arbitration

policies, and even device addressing.

However, the true advantage of a SCSI

interface is the flexibility and ease of

which new devices can be added to a

SCSI bus. Without the SCSI standard,

each new peripheral device would

require its own infrastructure and

unique device interface. For example,

each computer would have to

understand how to manipulate the

device hardware to read and write data.

Unfortunately, with thousands of

peripheral devices on the market, this

makes developing an Operating System

capable of understanding each unique

device virtually impossible.

Furthermore, the introduction of each

new device would require patches and

updates to keep Operating Systems

current on the latest standards.

Fortunately, the connectivity logic

Kolich 1 - Basics of SCSI: Firmware Applications and Beyond

specified by the SCSI standard resides

in the device itself, not in the host

computer. To transfer data, the host

and peripheral device use a simple set of

standard SCSI commands. Additionally,

new SCSI devices can be attached to an

existing computer with no hardware

changes or additional parts. As long as

a new device adheres to the SCSI

standard, it will function correctly when

added to a current SCSI bus.

Not only is SCSI a popular

standard because of its interoperability

with multiple devices, it also has an

incredible track record of backward

compatibility. In fact, each new

generation of SCSI products are

backward compatible with all previous

generations. Not only does this keep

the demand for SCSI products constant,

it also allows businesses and companies

who use a SCSI storage infrastructure to

extend the life of their SCSI assets. In

other words, the introduction of each

new SCSI standard does not require the

overhaul of existing SCSI components.

Newer components can be easily

integrated into an older environment.

1.1 Important Benefits of SCSI

Most experts would agree there

are four key benefits of the Small

Computer Systems Interface:

(1)Performance – The newest

generation of SCSI, Ultra320 SCSI,

supports an average data throughput

of 305.175 MB/sec per data channel.

The overall throughput of a storage

solution helps model large, sequential

data transfers similar to a remote

backup system, a multimedia file-

server, or any other environment

which must simultaneously transfer

large amounts of data. Additionally,

Ultra320 compatibility allows a user

to connect the fastest and most

reliable peripheral devices to their

system.

(2)Connectivity – SCSI connectivity

support for internal and external

peripheral devices is unmatched by

any other basic storage standard. A

single SCSI PCI or PCI-X adapter can

connect up to fifteen devices per

channel to extend the value of a SCSI

investment.

(3)Compatibility – As aforementioned,

newer generations of SCSI products

must adhere to the standards of

previous generation SCSI devices.

Therefore, SCSI allows older

peripherals to co-exist with the latest

technology without hampering speed

or performance.

(4)Reliability – Since its conception,

SCSI has been one of the most

reliable storage system technologies.

Kolich 2 - Basics of SCSI: Firmware Applications and Beyond

Unmatched data integrity, low

component failure rates, and overall

product quality has made SCSI an

obvious choice for quality conscious

Information Technology professionals.

1.2 SCSI With PCI-X Technologies

As the demand for fast and

reliable storage architectures grew in

the technology industry, it became clear

that conventional PCI standards would

not enable multiple devices to perform

at their highest levels. The bottlenecks

of a standard PCI 1.0 bus, became a

large limitation of current Gigabit, SCSI,

and InfiniBand technologies. In an

effort to dramatically increase the

bandwidth supported by an average PCI

bus, the technology industry developed

a next-generation PCI standard, known

as PCI-X. In early 2003, PCI-X 2.0 was

released and quickly implemented as an

industry standard for higher-end servers

and workstations.

The new PCI-X standard is

capable of supporting signaling speeds

of up to 533 mega transfers per second.

Additionally, PCI-X 2.0 is capable of

reaching bandwidths more than thirty-

two times greater than first generation

PCI technologies. Furthermore, PCI-X

2.0 is built upon “the same architecture,

protocols, signals, and connectors at

traditional PCI.” [9]

The release of PCI-X allowed

storage systems to transfer data at

unprecedented rates, which led the way

for the eventual release of a faster SCSI

standard. Not surprisingly, soon after

PCI-X became an industry standard,

Ultra320 SCSI was introduced as one of

the first technologies to benefit from

increased system bus speeds. Together

PCI-X and Ultra320 SCSI provide the

bandwidth necessary for today's

applications. Currently, new PCI-X 3.0

technologies are under development,

which may lead to the release of

Ultra640 SCSI.

1.3 Current SCSI Technologies

To better understand the overall

history and development of the SCSI

standard, it's important to visualize how

SCSI has changed since its conception.

The original SCSI bus, known as SCSI-2,

supported a throughput of only 10

MB/sec and was typically used for

various slower peripheral devices. The

latest generation of SCSI, Ultra320

SCSI, supports throughputs of up to 320

MB/sec and is most often used in high-

end hard disks. Table 1.3.1 provides a

brief snapshot into the history of the

SCSI interface.

Kolich 3 - Basics of SCSI: Firmware Applications and Beyond

Type/Bus Approx. Speed Mainly Used For

SCSI-2

(8-bit Narrow)

10 MB/sec Scanners, ZIP-Drives, CD-
ROMs

UltraSCSI

(8-bit Narrow)

20 MB/sec CD-Recorders, Tape
Drives, DVD Drives

Ultra Wide
SCSI

(16-bit Wide)

40 MB/sec Lower end Hard Disks

Ultra2 SCSI

(16-bit Wide)

80 MB/sec Mid range Hard Disks

Ultra160 SCSI

(16-bit Wide)

160 MB/sec High end Hard Disks and
Tape Drives

Ultra320 SCSI

(16-bit Wide)

320 MB/sec State-of-the-art Hard
Disks, RAID backup
applications

Table 1.3.1. Snapshot of SCSI history.

The latest SCSI technology,

known as Ultra320, takes advantage of

several new features to increase

reliability and overall SCSI bus

performance. Ultra320 employs a

packet protocol which allows SCSI to

better control data flow over the bus

and increase system speed. Quick

Arbitration Select, otherwise known as

QAS, “increases bus utilization by

streamlining release and re-use of the

bus by various peripherals.” [2] Finally,

Cyclic Redundancy Check, or CRC, helps

“improve data integrity by detecting

data integrity errors” [2] for all SCSI

phases.

For the remainder of this paper, we will

use “SCSI”, to refer directly to Ultra320

SCSI unless otherwise noted.

1.4 Paper Organization

The remainder of this paper will

introduce several important concepts

behind SCSI, SCSI applications, and

SCSI firmware. Section 2 describes, in

detail, the basics of a SCSI bus. Section

3 discusses the recent advances of SCSI

in the technology industry. Section 4

analyzes several applications of SCSI,

and discusses the results of a Ultra320

SCSI performance evaluation. Finally,

Section 5 briefly discusses SCSI

controller firmware and the benefits of

thin drivers.

Kolich 4 - Basics of SCSI: Firmware Applications and Beyond

2 Bus Basics

The fundamental concepts and

arbitration policies of a SCSI bus are

fairly straightforward once one

understands the basic logical flow of

events on the bus.

It's important to note that on any

SCSI bus, there are two types of

devices: SCSI initiators which make an

I/O request, and targets which respond

to an I/O request. For example, at the

highest conceptual level, an operating

system will use a PCI SCSI adapter to

initiate an I/O process which is directed

at a specific target on the SCSI bus. In

this case the SCSI target, a hard disk,

responds to the request to initialize the

I/O command. Now acting as the

controller, or “master” of the bus, the

disk issues a request to the initiator

requesting an I/O command. To

complete the process, the initiator

responds by sending a command code,

known as a Command Descriptor Block,

or CDB. However, unlike other data

transfer standards, SCSI devices inter-

operate as “slaves” and “masters”

during a single arbitration cycle. In

other words, each device can act as an

initiator or target when necessary.

2.1 Device Addressing

As with any data transfer

mechanism, SCSI provides an easy and

convenient way to address devices on

the SCSI bus by assigning each device a

unique ID. A SCSI device ID is used

during the arbitration and selection

process to properly identify the target

and initiator of a given SCSI I/O

operation. In fact, the number of

devices on a single SCSI bus is a direct

limitation of the need for a unique SCSI

ID for each device. For example, when

Narrow-SCSI was introduced, the

standard only called for eight data lines,

hence, limiting the number of devices on

a Narrow-SCSI bus to only eight. The

latest SCSI technology, Ultra320 SCSI,

operates with sixteen data-lines and can

support a maximum of sixteen devices.

However, it's important to remember

that a SCSI adapter is also considered a

device on the bus, and is always

assigned a SCSI ID. Therefore, SCSI

storage systems are limited to fifteen

peripherals, not including the PCI

adapter itself.

Not only is the SCSI device ID

important for identification, they are

also critical for determining device

priority. Most often, SCSI initiators

(adapters) are assigned device ID 7,

while other devices are assigned the

remaining device IDs. Device ID 7 is

usually considered the device with the

Kolich 5 - Basics of SCSI: Firmware Applications and Beyond

highest priority over the SCSI bus,

allowing it to gain control of the bus

most often. SCSI experts will typically

recommend assigning higher priority

SCSI device IDs to slower devices. For

example, SCSI tape drives need higher

priority device IDs to prevent high

performance devices from over-utilizing

the bus.

2.2 SCSI Bus Control

The first stage of a SCSI data

transfer is known as arbitration. In its

purest form, arbitration is the process of

selecting a single device from a

collection of devices that require

concurrent use of the SCSI bus.

Because all physical wires of the SCSI

bus are shared with multiple devices, a

systematic process must be in place to

control the flow of electrical signals

connecting the bus and its peripherals.

The full process by which a device

“obtains permission” from all other

devices to transfer data or

communication with the controller is

known as the arbitration phase.

Within the arbitration phase, a device

patiently waits for the SCSI bus to enter

a “free phase”, or idle phase. When the

bus becomes idle, no further data

transfers are taking place which allows a

device to “raise a flag” alerting all

members of the bus it has a request to

gain control.

Interestingly, the SCSI arbitration

phase is analogous to a well-ordered

discussion group. A moderator, in this

case, the SCSI controller, is in charge of

moderating the discussion to ensure that

only one member of the panel speaks at

any given time. If a member of the

discussion wishes to speak, he or she

must raise their hand. Similarly, the

firmware of a SCSI controller acts as the

bus moderator by ensuring that only one

device uses the bus at any given

moment, and that each device obeys the

fundamental arbitration policies of the

SCSI standard. Obviously, if more than

one person attempts to speak in the

discussion group at the same time,

communication becomes incoherent for

all discussion attendees. On a SCSI bus,

multiple devices attempting concurrent

information transfers will cause data

corruption which often leads to massive

system failures and headaches for SCSI

engineers.

Once a device has successfully

“won” control of the bus from the

controller, it must signal a device it

wishes to communicate with in the

selection phase. The selection phase

connects two devices on the bus, and

initiates a data transfer. In relation to

our discussion group example, the

selection phase is equivalent to a

moderator selecting the next person to

speak to the group. Again, this process

Kolich 6 - Basics of SCSI: Firmware Applications and Beyond

is very important and all participants

must agree to wait their turn to prevent

confusion.

Once all data transfers have

completed, the bus returns to an idle

state and waits for the next arbitration

request. This arbitration and selection

cycle continues indefinitely as data

requests enter the SCSI controller from

the Operating System.

2.3 Information Transfer

As previously mentioned in

Section 2.2 of this paper, the

information transfer process

initializes immediately following the

selection phase. Behind the scenes of

the SCSI sub-system, several key steps

are needed to successfully complete and

coordinate the information transfer

process.

For example, the information

phase itself is divided into several

smaller phases which work together to

transfer data: the Msg-Out phase, the

Command phase, the Data-In/Out phase,

the Status phase, and the Msg-In Phase.

Each phase is critically important to the

successful transfer of data over a SCSI

bus.

(1)Msg-Out Phase – An initiator sends

a Command Descriptor Block (CDB) to

a target to initiate a data-transfer. If

the target successfully responds the

information transfer process moves to

the second phase, the Command

phase.

(2)Command Phase – Within the

command phase, the initiator sends a

Command Descriptor Block (CDB) to

the target describing the address of

data to be read or written. “The first

byte of the CDB is the Operation Code

(OP code). It is followed by the

Logical Unit Number (LUN) in the

upper three bits of the second byte,

and by the block address (LBA) and

transfer length fields (Read and Write

commands) or other parameters. The

last byte of each CDB is the Control

byte. This byte contains two

important bits, the LINK and FLAG;

these bits are used for controlling the

linked commands mechanism.” [1]

(3)Data-In/Data-Out Phase – The Data-

In/Data-Out phase is used when the

CDB cannot be transferred using a

single bus cycle. In this case, the

initiator automatically partitions the

command block over two bus cycles

which is sent directly to the target.

Upon successfully receiving the CDB,

the target will begin to process the

specified SCSI command.

Kolich 7 - Basics of SCSI: Firmware Applications and Beyond

(4)Status Phase – After the command

has executed, the target returns the

status to the initiator alerting it of

execution success, or execution

failure. If the target returns an

execution failure or problem report,

the initiator will re-issue the request.

Unfortunately, a corrupt hard disk or

improperly configured SCSI bus can

result in an “endless loop” of failures

and retries. This often locks up an

entire bus as the initiator continues to

repeatedly re-send the request in an

infinite timeout sequence.

Fortunately, newer SCSI systems

configured with RAID support will

recognize this data failure timeout

sequence and initialize a fail over

recovery process to resume normal

operation.

(5)Msg-In Phase – The message in-

phase completes the SCSI information

transfer process, and requires that

the target send a final status report to

the initiator. If the command was

executed successfully, the initiator

can make additional data requests

when the SCSI bus returns to a free

state.

2.4 Bus Termination

In a nutshell, bus termination is

the process of terminating electrical

signals which may reflect off the ends of

physical cabling and travel back to the

source, colliding with other signals on

their way. To better understand the

need for termination on a SCSI bus,

imagine you and a friend are holding

taut, a piece of rope approximately six

feet long. If you were to “pluck” the

taut string at one end, a wave will travel

from the source, reflect off the other

end, and return. The wave will continue

to travel back and forth across the string

as it slowly decreases in amplitude and

eventually disappears.

Not surprisingly, electrical signals

travel across wires much like a wave

travels across a taut rope. When an

electrical signal is generated on a bus, it

will continue to oscillate within the wire

until it is terminated, or naturally loses

energy and disappears due to resistance

in the cabling. Obviously, reflection on

a SCSI bus will cause multiple signals to

collide, creating unwanted abnormalities

and potentially devastating data

corruptions.

To prevent the reflection of

electrical signals at the end of bus

cabling, SCSI engineers designed the

“SCSI terminator.” A terminator is a

small device physically attached to the

end of the bus cable, which makes the

Kolich 8 - Basics of SCSI: Firmware Applications and Beyond

cabling appear to the devices as if it has

an infinite length. Essentially, signals

will travel along the bus to all devices

and then disappear into the terminator.

It is interesting to note that other

bus technologies, such as PCI, expect

and even require signal reflection to

help enhance the strength of data on the

bus. A PCI bus is often designed such

that data signals traveling over the

wiring systematically merge to produce

constructive interference, hence,

naturally improving signal strength.

Therefore, terminators are almost never

used on a PCI bus.

2.5 LUN's (Logical Unit Numbers)

Around 1980 when engineers in

Silicon Valley began designing the SCSI

interface, future expectations for

microcomputers were very limited. In

fact, SCSI engineers designed the

interface and standard around only two

devices: massive tape drives connected

to large mainframe systems. The

concept that SCSI could be used in

smaller, localized microcomputers with

multiple devices was unheard of.

Therefore, engineers were not

concerned about synchronizing the bus

arbitration process between more than

two devices.

However, many tape drives, even

though considered one device, had

multiple logical units. In other words,

tape drives often contained more than

one set of tape reels, which required the

engineers to design a unique way of

identifying a device, and a reel set.

Hence, the Logical Unit Number was

born.

Today, LUN's are used to identify

logical sub-sections on a wide variety of

devices. For example, visualize the

following equipment setup:

(1)Hard Disks – Two hard disks each

with three logical volumes.

(2)Tape Drive – One tape drive, with

four sets of reels.

(3)CD-ROM Jukebox – One CD

duplication box with five CD-Writers.

(4)SCSI Adapter – One SCSI PCI-X

adapter connected to all devices via

one bus.

First, let's assume the host system needs

to read data from LUN 2 on the tape

drive. The SCSI adapter will issue the

request, at which time the tape drive

must automatically load the logical unit

representing LUN 2. Additionally, the

adapter might issue a request to the CD

Jukebox to write a block of data to LUN

3, which may represent disc 3 in the

device. Once the device wins control of

the SCSI bus, the command is issued

Kolich 9 - Basics of SCSI: Firmware Applications and Beyond

using the CDB which begins the

execution process.

2.6 Single Connector Attachment

Single Connector Attachment,

otherwise known as S.C.A., is a very

popular technology used in a variety of

high-end disk arrays. Often called

J.B.O.D.'s (Just-A-Bunch-Of-Disks), disk

arrays allow multiple SCSI hard disks to

be seamlessly connected to a SCSI bus

using a special disk enclosure. Figure

2.6.1 shows a sample disk array, the HP

MSA30 SB JBOD. “The Single

Connector Attachment (SCA) moves

wiring of the SCSI bus directly to the

backplane, and allows plugging of the

drives into a single socket.” [1] In other

words, a SCA enclosure provides the

sockets for which multiple hard disks

can be inserted. Once inserted, the

J.B.O.D. recognizes each disk as

individual devices, and automatically

assigns it a unique SCSI device ID using

the S.C.A.M. protocol.

SCA and SCSI disk array

technology is most often used in high-

end storage environments, or where any

application requires large amounts of

reliable storage. On average, each high-

end disk array will hold anywhere from

13 to 14 hard disks in a standard rack-

mount enclosure. Using R.A.I.D.

(Redundant Array of Independent Disks)

technology with high-end large capacity

hard disks, storage capacities in

enterprise disk arrays can exceed 2

Terra bytes! “A storage device that uses

several magnetic or optical disks

working in tandem can increase

bandwidth output and provide

redundant backup.” [1] Furthermore,

the latest version of S.C.A. adds “hot-

swappable” functionality to most disk

arrays. Hot swappable, or hot plugging

technology, allows disk devices to be

physically added to the SCSI bus

without powering off, or rebooting the

connected system. Similar to standard

Plug-And-Play (PnP) functionality, the

disk will be recognized and

automatically installed for use upon

insertion.

Clearly, hot-swappable technology

is a very important feature for mission

critical computer systems. In the event

of a hardware failure, IT professionals

can replace a damaged device within

seconds without having to shutdown or

reboot a critical system.

Figure 2.6.1. HP MSA30 Disk Array.

Kolich 10 - Basics of SCSI: Firmware Applications and Beyond

3 Recent Advances

For the past twenty three years,

SCSI and PCI engineers have worked to

improve SCSI performance, reliability,

and storage capacities for thousands of

devices and applications. Since SCSI's

conception, great strides have been

made, improving every aspect of the

SCSI family. The latest generation of

SCSI products, however, adds features

and performance improvements unlike

anything SCSI has seen before, making

Ultra320 SCSI one of the world's safest

and reliable storage standards.

3.1 Ultra320 SCSI Engineering

The new technology behind

Ultra320 SCSI introduced a variety of

complex electrical engineering related

problems. Thankfully, most of these

issues were successfully resolved as

SCSI engineers continue to seek new

discoveries in engineering. Here is a

brief snapshot of Ultra320 SCSI

engineering successes:

(1)Cable Lengths – “The faster

Ultra320 SCSI speed require[d] new

signaling technologies in order to

maintain the high reliability required

by server designs. Ultra320 SCSI

signals on the SCSI bus are twice the

frequency of Ultra160 SCSI signals

but the cable requirements have not

changed. Point to point connections

can be 25 meters in length and

multiple load systems can be 12

meters in length.” [3] SCSI engineers

were forced to better control signal

strengths on the bus with a faster

data frequency and long cable

lengths.

(2)Data Integrity – “Doubling the

maximum signal switching frequency

in Ultra320 SCSI has pushed the

SCSI bus into a frequency range that

has greater attenuation in SCSI bus

cables and has also required the

signal slew rate to increase. The

doubling of signal frequency has

resulted in smaller amplitude signals

and more reflections (undesired high

frequency noise) on the SCSI bus.” [3]

Unfortunately, noise on the SCSI bus

can lead to massive data corruption

problems and improper negotiation

between devices. Using advanced

termination devices on the SCSI bus,

SCSI engineers dramatically reduced

signal slew.

Kolich 11 - Basics of SCSI: Firmware Applications and Beyond

3.2 Ultra320 Max Throughput

When referring to a SCSI

adapter/controller, max channel

throughput is often used as a metric to

define the overall data power of a

specific adapter. However, to better

understand the concepts behind SCSI

throughput, it's important to understand

the definition of a SCSI channel.

Essentially, a channel is nothing more

than a SCSI bus on an adapter.

Typically, most high-end Ultra320 SCSI

controllers offer at least 2 channels (2

external connectors on the back of the

PCI-X controller, one for each channel).

A controller's channel count is important

because it helps define how many

devices can be attached to the adapter,

and therefore, how much data can be

simultaneously “pumped” through it.

Generally speaking, most average

IT professionals and “techies” assume

that Ultra320 SCSI will support up to

320 MB/sec on each SCSI data channel.

This theoretical maximum of 320 MB/sec

is often thought to be the upper limit of

the latest SCSI adapters. Unfortunately,

the SCSI naming convention is grossly

misleading. In fact, current “industry

standards define the Ultra320 SCSI

Theoretical Maximum throughput in

terms of “Mega-Transfers.” [5] A Mega-

Transfer, or one million transfers, is

used to accurately measure the

throughput rate of all Ultra320 SCSI

adapters. Not surprisingly, “a U320

SCSI Mega-Transfer is equivalent to

one-million transfers, or in this case, it's

equivalent to 3.20 × 108 bytes/second.”

[5] Properly converting 3.20 × 108

bytes/second to mega-bytes/second

yields approximately 305.175 MB/sec.

In other words, contrary to popular

perception, Ultra320 SCSI's theoretical

maximum throughput per channel is

305.175 MB/sec.

It's important to remember,

however, that the theoretical maximum

throughput is defined in terms of

channels. Therefore, fully utilizing two

SCSI channels on an Ultra320 SCSI

adapter will generate approximately

610.35 MB/sec of max throughput.

Similar to Ultra320 SCSI, the

maximum throughput of previous

generation SCSI controllers is often

misunderstood as well. For example,

the max theoretical throughput of an

Ultra160 SCSI channel is not 160

MB/sec. It is also defined in terms of

Mega-Transfers. Therefore, an Ultra160

SCSI adapter is capable of generating

1.60 × 108 Mega-Transfers, resulting in

approximately 152.587 MB/sec of

theoretical throughput. Rarely however,

are theoretical maximums achieved in

the field by any SCSI controller.

“As new computer systems

increase in capability, new applications

evolve to take advantage of the available

power and features. For example,

Kolich 12 - Basics of SCSI: Firmware Applications and Beyond

desktop publishing, scientific

visualization, video and audio editing,

digital broadcasting and other data-

hungry applications continue to push

the I/O bandwidth and require a more

advanced interface to handle increased

data transfer.” [3]

3.3 Q.A.S.

Quick Arbitration and Selection,

otherwise known as Q.A.S. was

introduced with Ultra320 SCSI in early

2003. On a standard SCSI bus, each

data communication cycle between

devices is the same: a device which

needs to communicate or use the bus

must wait for the bus to free itself, and

then start the arbitration process with

the controller. Unfortunately, this

standard bus negotiation method often

causes large delays, and dramatically

lowers bus utilization.

Fortunately, Q.A.S. now allows

devices to negotiate for the bus during a

current data transfer! In other words,

while processing data over the bus, the

controller identifies the device which

will own the bus immediately following

the data-transfer. “This reduces the

overhead of control release on the SCSI

bus from one device to another...and

reduces command overhead and

maximizes bus utilization.” [3]

Essentially, Q.A.S. allows the bus to be

used primarily for data transfers, instead

of negotiation. Less negotiation

between devices directly means a faster

data transfer rate.

3.4 Packetized SCSI

Ultra320 SCSI supports a newer

protocol which allows data to be

streamed over the bus using data

packets. “Packetized devices decrease

command overhead by transferring

commands, data, and status using DT

(dual transition) data phases instead of

slower asynchronous phases. This

improves performance by maximizing

bus utilization and minimizing command

overhead. Furthermore, [the] packet

protocol also enables multiple

commands to be transferred in a single

connection.” [3]

3.5 Ultra640 SCSI?

As Ultra320 SCSI continues to

establish itself a premiere storage

solution, the storage needs of IT

professionals continues to grow at an

unprecedented rate. Newer applications

and databases will push the upper limits

of current storage technologies,

requiring engineers to create faster and

more reliable data storage mechanisms.

As a result, the success of Ultra320

Kolich 13 - Basics of SCSI: Firmware Applications and Beyond

SCSI has prompted many leaders in the

technology industry to investigate newer

and faster data storage standards. An

obvious choice, Ultra640 SCSI, is

currently under investigation in some of

Silicon Valley's top technology

companies. Amazingly, Ultra640 SCSI

promises an exceptional max theoretical

throughput exceeding 600 MB/sec per

data channel! Unfortunately, current

research shows that Ultra640 will never

be implemented due to the instability of

electrical signals over standard copper-

wiring at such high frequencies.

Therefore, many companies are

investigating new storage standards

such as Fibre Channel, which uses fiber

optic cabling to connect multiple high

speed disk drives. Unlike SCSI, Fibre

Channel can transfer upwards of 5

GB/sec per data channel using standard

fiber optic technology.

4 Applications

Besides being an obvious choice

for high-end servers and workstations,

SCSI is often complemented with a

variety of technologies used to improve

performance and data integrity on a

SCSI storage solution. Section 4 of this

paper is intended to provide a brief

exploration into the applications of

Ultra320 SCSI.

4.1 R.A.I.D.

Perhaps one of the most

important applications of any storage

system is its data backup and auto-

failover capabilities. As aforementioned,

R.A.I.D., or Redundant Array of

Independent Disks, has proven to be an

obvious complement to Ultra320 SCSI

storage systems. In fact, most modern

RAID controllers use the highly reliable

Ultra320 SCSI standard as their

foundation for implementing services

such as data mirroring and disk striping.

“RAID subsystems are commonly used as

the cost-effective foundation of a

business-critical storage strategy. By

employing the advanced fault tolerance

of RAID technology, companies can

effectively implement networked

business systems that require large

amounts of storage space for data and

applications that must be available for

their businesses to continue operating.”

[4]

For example RAID, combined with

the power of Ultra320 SCSI, can

implement data mirroring across

multiple hard disks to improve system

reliability. To better understand the

concept of data mirroring, imagine a

workstation or a high-end server with

only one installed SCSI hard disk.

Unfortunately, if this hard disk

unexpectedly fails, the entire system

becomes completely inoperable.

Kolich 14 - Basics of SCSI: Firmware Applications and Beyond

However, RAID data mirroring with

Ultra320 SCSI allows the same data to

be simultaneously accessed on multiple

hard disks. In essence, this technology

creates multiple copies of the primary

disk which is stored on each unique back

up hard disk. If a primary hard disk

failed, the RAID subsystem will

automatically failover to a backup disk

and immediately resume operation.

RAID data mirroring combined with

Ultra320 SCSI technology helps IT

professionals maintain virtually 100% up

times for their most critical data servers.

Another popular benefit of RAID

often found in the technology industry is

a technique known as disk striping.

“With RAID technology, data is striped

across an array of physical drives. This

data-distribution scheme complements

the way the operating system requests

data. The collection of stripe units, from

the first drive of the array to the last

drive of the array, is called a stripe. The

granularity at which data is stored on

one drive of the array before subsequent

data is stored on the next drive of the

array is called the stripe-unit size.” [4]

In other words, data striping

systematically combines two or more

hard disks into a single logical RAID

volume, on which I/O requests are

equally distributed. For example,

visualize a disk array containing three

SCSI hard disks connected to the same

SCSI bus. A properly configured disk

striping RAID controller will

systematically and equally partition each

I/O request amongst the three disks. In

this case, if the controller issues a

request to write a block of data to the

RAID volume, each disk will only be

responsible for handling one-third of the

data. On the other hand, if a single hard

disk instead of a RAID volume received

the I/O request, it would be wholly

responsible for 100% of the I/O process.

By equally splitting data amongst each

disk in the RAID volume, bus and system

performance is increased tremendously.

Unfortunately, disk striping

presents virtually no failover or backup

capabilities. For example, if one disk in

the logical RAID volume fails and

becomes inoperable, the entire RAID

volume is corrupt. However, newer

levels of RAID technology have added a

parity disk to logical RAID volumes. The

parity disk is a separate physical hard

disk which records the parity of each

block written to the RAID volume. In

the event that a disk in the volume fails,

the RAID system can be automatically

rebuild itself using the parity disk as a

way to determine “which bits were lost

on the corrupted disk.”

As SCSI and RAID evolved, most

RAID adapters can now be configured

using a variety of “RAID levels.” A RAID

level determines how the controller

manages data mirroring, and disk

striping. It's important to note, that

Kolich 15 - Basics of SCSI: Firmware Applications and Beyond

many popular forms of RAID often used

in mission critical enterprise data

centers, are an advanced combination of

a variety of RAID technologies.

The following list highlights the

most popular RAID levels used in

mission critical computing

environments:

(1)Level 0 – Striped Disk Array

Without Fault Tolerance – “RAID

[Level] 0 uses a technique called data

striping to distribute data evenly

across the physical drives in such

manner as to maximize I/O

performance. Striping divides the

logical into data blocks called stripes,

which are then distributed over the

physical disk drives. The layout is

such that a sequential read of data on

the logical drive results in parallel

reads to each of the physical drives.

This results in improved performance,

because multiple drives are operating

simultaneously...RAID [Level] 0 offers

substantial speed enhancement, but it

provides no data redundancy or fault

tolerance.” [4]

(2)Level 1 – Mirroring and Duplexing

– “RAID [Level] 1 provides 100% data

redundancy and requires only two

physical disk drives. RAID 1 employs

the concept of data mirroring.

Mirroring creates a single logical disk

drive from two physical disk drives.

With RAID 1, the first half of a stripe

is the original data; the second half of

a stripe is a mirror (a copy) of the

data...All data written to the

combined logical drive is written to

both physical disk drives.” [4]

(3)Level 1E – Enhanced Mirroring –

“RAID 1E combines mirroring with

data striping. This RAID level stripes

data and copies of the data across all

of the drives in the array. The first

set of stripes are the data, and the

second set of stripes are mirrors of

the first data stripe contained within

the next logical drive...RAID 1E

requires a minimum of three drives

and, depending upon the level of

firmware and the stripe-unit size,

supports of maximum of 8 or 16

drives.” [4]

(4)Level 4 – Dedicated Parity Drive –

“A commonly used implementation of

RAID, Level 4 provides block-level

striping (Level 0) with a parity disk. If

a data disk fails, the parity data is

used to create a replacement disk. A

disadvantage to Level 4 is that the

parity disk can create write

bottlenecks.” [4]

(5)Level 5 – Data Striping and Block

Interleave – “RAID 5 employs data

striping and block interleaving in a

technique designed to provide fault-

Kolich 16 - Basics of SCSI: Firmware Applications and Beyond

tolerant data storage that does not

require duplicate disk drives...RAID 5

spreads both the data and the parity

information across the disks one block

at a time. This enables maximum

read performance when accessing

large files and improves array

performance in a transaction

processing environment. Redundancy

is also provided via parity

information, which is striped across

the drives to remove the bottleneck of

storing all of the parity data on one

drive.” [4]

(6)Level 6 – Independent Data Disks

With Double Parity – “Provides

block-level striping with parity data

distributed across all disks.” [4]

4.2 Other Applications

Generally speaking, the SCSI

standard encompasses a wide range of

technologies and applications which aim

to improve the speed and reliability of

large storage systems. In fact, the

underlying structure of newer storage

systems such as Fibre Channel were

derived from the development and

expansion of existing SCSI technologies.

In other words, the development of SCSI

has prompted the technology industry to

invest in research and development of

promising new ideas and concepts. As

storage technology and its industry

continues to mature, a wide range of

new applications are sure to emerge.

Rest assured however, that even though

different technology continues to

develop, the standard foundation upon

which they are built will remain the

same.

5 Operating System Interfaces

Deep within the internals of every

operating system, is a set of instructions

and configuration details which helps

the O.S. (OS) communicate with various

internal and peripheral devices. This

software, known as a driver, provides

the framework interface between a

computer and its installed devices. For

example, imagine a computer user

purchased a new ink jet printer for their

home office. Once the printer is

successfully connected to the computer,

the operating system recognizes the new

device and prompts the user to insert a

CD containing the printer drivers. In

this case, the drivers contained on the

CD are essentially small pieces of

software which integrate into the

operating system instructing it how to

properly communicate with the printer.

Once the drivers have been successfully

installed, the user can then spool print

jobs to the printer. Similar to standard

Kolich 17 - Basics of SCSI: Firmware Applications and Beyond

printer drivers, SCSI controller drivers

operate in exactly the same way. In this

case, the SCSI driver within the

operating system provides an interface

on which the OS can issue I/O

commands to the SCSI controller.

Rather than access the device directly,

the operating system loads the

necessary driver and calls functions in

the driver software to carry out actions

on the device. The driver functions

themselves contain the device-specific

code needed to carry out actions on the

device.

Most modern enterprise operating

systems such as Linux, HP-UX 11.23,

and Microsoft Server 2003, implement

several layers of abstraction between

applications, the operating system

kernel, and peripheral devices. The

abstraction layers, outlined in Table 5.1,

increase device and operating system

performance and reliability while

decreasing system overhead.

Level Layer Overview

4 Application An operating system
manages applications and
other system resources
assigned to the needs of
those applications.

3 Operating System When an application issues
a service request to a
device, the operating system
issues a command or set of
commands to the device
driver.

2 Device Driver The device driver accepts
the instruction from the
operating system and issues
the raw command to the
physical device.

1 Physical Device The resident firmware on
the physical device receives
and processes the command.

Table 5.1. Snapshot of various interface layers within

modern operating systems.

Once a device driver receives a

request from the operating system to

carry out a given task, the message is

then passed to the physical hardware on

the device. At this point, the intelligent

firmware on the device parses, analyzes,

and executes the request. As it turns

out, firmware is not only one of the most

critical aspects of low-level hardware

and software design, it's also the most

intelligent. Firmware in SCSI

technologies is discussed further in

Section 5.2 of this paper.

Kolich 18 - Basics of SCSI: Firmware Applications and Beyond

5.1 Thin Drivers

When the fundamental concept of

a driver was first introduced in modern

computing, a significant software

engineering effort was made to place

intelligence within the driver software

itself. Electrical and software engineers

assumed this strategy would help keep

the physical components on the device

simple, fast, and elegant. Not

surprisingly, this method quickly proved

ineffective and severely impacted

critical system performance.

Unfortunately, as the complexity and

strict performance requirements of

storage devices grew, the need for

extremely fast and incredibly efficient

drivers became obvious. As it turns out,

integrating device intelligence into the

driver software created a significant

performance issue within the operating

system.

Unlike firmware, which is

executed on a separate resident

processor mounted in the device itself,

intelligent device drivers are executed

through the operating system using the

main system CPU. As storage data

transfer speeds increased to record

highs, undue strain was placed on the

systems CPU. In this case, the system

CPU was responsible for parsing and

analyzing an I/O command. This not

only created a significant bottleneck in

the I/O subsystem, it also used a

majority of system resources allocated

for other applications running on the

host system. Obviously, any intense I/O

operations would indirectly slow other

applications running on the system, and

adversely impact other important

business and user applications.

To address this bottleneck and

reduce the strain on system resources,

software and hardware engineers began

implementing thin drivers for various

high-performance I/O devices. A thin

driver eliminates the performance

bottleneck by moving the processing

intelligence away from the software

driver within the operating system, and

into the physical device itself! In other

words, the driver resident within the

operating system is nothing more than a

very simple interface, or API, which

applications can use to access a device.

The request processing intelligence

originally placed in the operating system

driver, is now tightly integrated into the

firmware on the device. As one would

expect, the firmware within a physical

device is executing using its own on-

board processor which increases device

performance and frees the main system

CPU for other important applications.

As previously mentioned, modern

high-performance SCSI I/O controllers

now contain an on-board processor

dedicated to handling the I/O requests

from the operating system. By

implementing thin drivers around high-

Kolich 19 - Basics of SCSI: Firmware Applications and Beyond

performance SCSI firmware, engineers

continued to push the limit of the SCSI

interface, which eventually lead to the

discovery and development of Ultra320

SCSI controllers and devices.

5.2 Firmware

Most computer scientists and

hardware engineers would argue that

device firmware is one of the most

important aspects of a physical device,

or controlled system. Firmware resides

in virtually every household appliance,

electronic device, automobile, and

computer across the world. For

example, firmware within a household

heating and cooling system is a strict

controlled system dedicated to

managing the temperature inside of a

house. The on-board firmware within

the electronics of the heating and

cooling system controls everything from

the thermostat to the large electronic

relays inside of the actual air

conditioning unit. Also, most modern

vehicles contain a sophisticated set of

firmware and microprocessors which

control everything from fuel and oxygen

mixtures in the engine, to the vehicles

ABS (Anti Lock Breaking System).

In the case of a SCSI controller,

SCSI firmware is specifically designed to

manage data flow and arbitration

policies on the bus. The SCSI controller

firmware also receives and processes

requests from the operating system over

the PCI bus!

Essentially, firmware itself is a

specifically designed piece of software,

an advanced state machine, which runs

on a localized microprocessor and is

designed for one generalized

application. Otherwise known as

embedded system firmware, firmware

is essential to the success of a physical

electronic device or large scale

application. The most common and

most important characteristics of an

embedded firmware system include:

(1)Complex Algorithms – “The

operations performed by the

[firmware] may be very sophisticated.

For example, the [firmware] that

controls an automobile engine must

perform complicated filtering

functions to optimize the performance

of the car while minimizing pollution

and fuel utilization.” [10]

(2)User Interface – “Firmware is

frequently used to control complex

user interfaces that may include

multiple menus and many options.

The moving maps in Global

Positioning System (GPS) navigation

are good examples of sophisticated

user interfaces.” [10]

(3)Critical Real Time Applications –

Kolich 20 - Basics of SCSI: Firmware Applications and Beyond

“Many embedded computing systems

have to perform in real time – if the

data isn't ready by a certain deadline,

the system breaks. In some cases,

failure to meet a deadline is unsafe

and can even endanger lives. In other

cases, missing a deadline doesn't

create safety problems but does

create unhappy customers...” [10]

For example, SCSI firmware must

accurately control data flow and

device arbitration to ensure that no

data is lost over the SCSI bus. The

firmware on a SCSI controller is a

perfect example of a real-time

embedded system.

(4)Multirate Compatibility – “Not only

must operations be completed by

deadlines, but many embedded

computing systems have several real-

time activities going on at the same

time. They may simultaneously

control some operations that run at

slow rates, and others that run at

high rates.” [10] SCSI firmware, for

example, must control a wide variety

of multirate devices. A tape-drive, for

example, is typically one of the

slowest devices on a SCSI bus. On

the other hand, an Ultra320 SCSI 15K

RPM hard disk is often the fastest.

Firmware manages and controls each

device, regardless of power and

processing speed.

5.3 Firmware Design Challenges

As devices continue to shatter

storage performance records, the

demand for high-performance

controllers powered by fast storage

firmware continues to to grow. As a

result, engineers continue to face a

multitude of challenges in firmware

design:

(1)Complex Testing – “Exercising an

embedded system is generally more

difficult than typing in some data.

[Engineers] may have to run a real

machine in order to generate the

proper data. The timing of data is

often important, meaning that

[engineers] cannot separate the

testing of an embedded system from

the machine in which it is embedded.”

[10]

(2)Limited Observability and

Controllability – “Embedded

computing systems usually do not

come with keyboards and screens.

This makes it more difficult to see

what is going on and to affect the

system's operation. [Engineers] may

be forced to watch the values of

electrical signals on the

microprocessor bus, for example, to

know what is going on inside the

system. Moreover, in real-time

applications [engineers] may not be

Kolich 21 - Basics of SCSI: Firmware Applications and Beyond

able to easily stop the system to see

what is going on inside.” [10]

(3)Restricted Development

Environments – “The development

environments for embedded systems

are often much more limited than

those available for PCs and

workstations. [Engineers] generally

compile code on one type of machine,

such as a PC, and download it onto

the embedded system. To debug the

[firmware] code, we must usually rely

on programs that run on the PC or

workstation and then look inside the

embedded system.” [10]

Clearly, firmware design

engineers must overcome a large variety

of complex problems when designing

firmware for a given application. As

previously mentioned, it is critical to the

success of the system that the firmware

itself is flawless and operates exactly as

expected. Otherwise, firmware

developers are potentially placing the

lives of consumers, and the stability of

the global economy at risk.

5.4 Recent Advances

Throughout the firmware

development process, few concepts have

remained constant as technology

continues to advance. Firmware

engineers have begun moving away from

traditional firmware development

techniques and have begun to

implement real-time operating

systems for a variety of applications.

Real-time operating system design, or

RTOS, allows devices to establish and

maintain a self sustaining on-board

operating system environment. This

allows the device to manage processes,

by coordinating interprocess

communication, process abstraction, and

process scheduling to better meet the

needs of a device.

Most modern devices contain a

microprocessor, an I/O subsystem,

memory, and a power supply. The

firmware installed on the ROM (Read

Only Memory), of a controller initializes

the RTOS which then runs within the

domain of the controller. Providing a

fully functional RTOS environment for a

device and its firmware, can increase

performance and increase the overall

functionality and capabilities of a

specific device or application. For

example, modern Ultra320 SCSI

controllers now contain an on-board

self-sustaining RTOS which moderates

every aspect of the controllers

Kolich 22 - Basics of SCSI: Firmware Applications and Beyond

operations.

Within the past few years,

research and development engineers

have also discovered further

improvements to storage systems and

device firmware. Several engineers

have proposed adding intelligence and a

small embedded system to disk drives

themselves. This would help the disks

manage the file system, and improve

disk performance.

6 Conclusion

In conclusion, SCSI technology is

clearly one of the most versatile and

powerful storage standards ever

created. When combined with

intelligent firmware and semantically

smart disk systems, SCSI proves to be a

valuable asset to any large storage

infrastructure. RAID, multimedia

servers, enterprise databases, file-

servers, and web-servers are only a

small handful of technologies which use

the powerful SCSI interface. As storage

technology continues to develop and

change on a daily basis, one aspect

remains clear: SCSI and SCSI firmware

applications are critical to the continued

success of the extremely popular and

profitable storage technology industry.

Kolich 23 - Basics of SCSI: Firmware Applications and Beyond

References

[1] J. Dedek. Ancot's Basics of SCSI:
Fourth Edition, Menlo Park, CA,
January 2003.

[2] Adaptec Corporation. Let's Talk
about SCSI. Server Storage
Whitepaper, Milpitas, CA
September 2002.

[3] M. Arellano. Ultra320 SCSI: New
Technology – Still SCSI. Written
for the SCSI Trade Associate by
Adaptec Inc., San Francisco, CA,
March 2001.

[4] International Business Machines.
Reliability Through RAID
Technology. In IBM eServer
ServeRAID Technology Whitepaper,
Research Triangle Park, NC,
December 2001.

[5] M. Kolich. HP A7173A PCI-X Dual
Channel Ultra320 SCSI Host Bus
Adapter Performance Whitepaper.
Written for the Hewlett-Packard
Company, Cupertino, CA, August
2004.

[6] G. Ananthateerta. PCI-X Dual Port
2GB/sec Fibre Channel Host Bus
Adapter Performance Whitepaper.
Written for the Hewlett-Packard
Company, Cupertino, CA, May
2004.

[7] Fibre Channel Industry Association.
Fibre Channel Storage Area
Networks, Chicago, IL, August
2001.

[8] J. Hufferd. iSCSI: The Universal
Storage Connection, New York, NY,
November 2002.

[9] D. Anderson, T. Shanley. PCI
System Architecture (4th Edition),
New York, NY, June 1999.

[10] W. Wolf. Computers as
Components: Principles of
Embedded Computing System
Design, San Francisco, CA, 2001.

Kolich 24 - Basics of SCSI: Firmware Applications and Beyond

