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Abstract

Since 1981, SCSI has been one of

the  most  powerful  and  reliable

peripheral  technologies  used  in  high-

performance  computing  environments.

Five years after its conception, A.N.S.I.

(American National Standards Institute)

approved  the  SCSI  interface  as  an

official  industry  connectivity  standard.

Today,  SCSI  technology  continues  to

grow and is used across the world in the

most  demanding  computing

environments.   While  newer  storage

technologies,  such  as  Fibre  Channel,

continue to outperform and outsell SCSI

storage  systems,  the  demand  for  fast

and reliable  SCSI  products  remains  in

the  marketplace.  [8]   This  paper  is

intended  to  provide  a  fairly  in-depth

exploration  of  SCSI  technologies,  and

the  applications  behind  a  SCSI

infrastructure.

1  Introduction

Pronounced  “skuzzy”,  the  Small

Computer  Systems  Interface  was

created to be a universal and intelligent

peripheral device connectivity standard.

SCSI  devices  include  magnetic  disk

drives,  scanners,  printers,  optical  disk

drives,  and  other  communication

devices.    The SCSI standard, adopted

by ANSI in 1986, defines a strict set of

rules  and guidelines  for  all  SCSI-class

devices.   For  example,  the  SCSI

standard  defines  the  data  transfer

process  over  a  SCSI  bus,  arbitration

policies,  and  even  device  addressing.

However, the true advantage of a SCSI

interface  is  the  flexibility  and  ease  of

which  new devices can be added to  a

SCSI bus.  Without the SCSI standard,

each  new  peripheral  device  would

require  its  own  infrastructure  and

unique device interface.   For example,

each  computer  would  have  to

understand  how  to  manipulate  the

device hardware to read and write data.

Unfortunately,  with  thousands  of

peripheral  devices  on  the  market,  this

makes developing an Operating System

capable  of  understanding  each  unique

device  virtually  impossible.

Furthermore,  the  introduction  of  each

new device would require patches and

updates  to  keep  Operating  Systems

current on the latest standards.

Fortunately, the connectivity logic
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specified by the SCSI standard resides

in  the  device  itself,  not  in  the  host

computer.   To  transfer  data,  the  host

and peripheral device use a simple set of

standard SCSI commands.  Additionally,

new SCSI devices can be attached to an

existing  computer  with  no  hardware

changes or additional parts.  As long as

a  new  device  adheres  to  the  SCSI

standard, it will function correctly when

added to a current SCSI bus.

Not  only  is  SCSI  a  popular

standard because of its  interoperability

with  multiple  devices,  it  also  has  an

incredible  track  record  of  backward

compatibility.   In  fact,  each  new

generation  of  SCSI  products  are

backward compatible  with  all  previous

generations.   Not  only  does  this  keep

the demand for SCSI products constant,

it also allows businesses and companies

who use a SCSI storage infrastructure to

extend the life of their SCSI assets.  In

other  words,  the  introduction  of  each

new SCSI standard does not require the

overhaul  of  existing  SCSI  components.

Newer  components  can  be  easily

integrated into an older environment.

1.1  Important Benefits of SCSI

Most  experts  would  agree  there

are  four  key  benefits  of  the  Small

Computer Systems Interface:

(1)Performance –  The  newest

generation  of  SCSI,  Ultra320  SCSI,

supports an average data throughput

of 305.175 MB/sec per data channel.

The overall  throughput  of  a  storage

solution helps model large, sequential

data  transfers  similar  to  a  remote

backup  system,  a  multimedia  file-

server,  or  any  other  environment

which  must  simultaneously  transfer

large amounts of data.  Additionally,

Ultra320 compatibility  allows a user

to  connect  the  fastest  and  most

reliable  peripheral  devices  to  their

system.

(2)Connectivity –  SCSI  connectivity

support  for  internal  and  external

peripheral  devices  is  unmatched  by

any other basic storage standard.  A

single SCSI PCI or PCI-X adapter can

connect  up  to  fifteen  devices  per

channel to extend the value of a SCSI

investment.

(3)Compatibility –  As  aforementioned,

newer generations  of  SCSI  products

must  adhere  to  the  standards  of

previous  generation  SCSI  devices.

Therefore,  SCSI  allows  older

peripherals to co-exist with the latest

technology without hampering speed

or performance.

(4)Reliability –  Since  its  conception,

SCSI  has  been  one  of  the  most

reliable storage system technologies.
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Unmatched  data  integrity,  low

component  failure rates,  and overall

product  quality  has  made  SCSI  an

obvious  choice  for  quality  conscious

Information Technology professionals.

1.2  SCSI With PCI-X Technologies

As  the  demand  for  fast  and

reliable  storage  architectures  grew  in

the technology industry, it became clear

that  conventional  PCI standards would

not  enable multiple devices to perform

at their highest levels.  The bottlenecks

of  a  standard  PCI  1.0  bus,  became  a

large limitation of current Gigabit, SCSI,

and  InfiniBand  technologies.   In  an

effort  to  dramatically  increase  the

bandwidth supported by an average PCI

bus, the technology industry developed

a next-generation PCI standard, known

as PCI-X.  In early 2003, PCI-X 2.0 was

released and quickly implemented as an

industry standard for higher-end servers

and workstations.

The  new  PCI-X  standard  is

capable of supporting signaling speeds

of up to 533 mega transfers per second.

Additionally,  PCI-X  2.0  is  capable  of

reaching bandwidths  more than thirty-

two times greater than first generation

PCI  technologies.   Furthermore,  PCI-X

2.0 is built upon “the same architecture,

protocols,  signals,  and  connectors  at

traditional PCI.” [9]

The  release  of  PCI-X  allowed

storage  systems  to  transfer  data  at

unprecedented rates, which led the way

for the eventual release of a faster SCSI

standard.   Not  surprisingly,  soon after

PCI-X  became  an  industry  standard,

Ultra320 SCSI was introduced as one of

the  first  technologies  to  benefit  from

increased system bus speeds.  Together

PCI-X  and  Ultra320  SCSI  provide  the

bandwidth  necessary  for  today's

applications.  Currently,  new PCI-X 3.0

technologies  are  under  development,

which  may  lead  to  the  release  of

Ultra640 SCSI.

1.3  Current SCSI Technologies

To better understand the overall

history  and  development  of  the  SCSI

standard, it's important to visualize how

SCSI has changed since its conception.

The original SCSI bus, known as SCSI-2,

supported  a  throughput  of  only  10

MB/sec  and  was  typically  used  for

various slower peripheral devices.  The

latest  generation  of  SCSI,  Ultra320

SCSI, supports throughputs of up to 320

MB/sec and is most often used in high-

end hard disks.  Table 1.3.1 provides a

brief  snapshot  into  the  history  of  the

SCSI interface.
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Type/Bus Approx. Speed Mainly Used For

SCSI-2

(8-bit Narrow)

10 MB/sec Scanners, ZIP-Drives, CD-
ROMs

UltraSCSI

(8-bit Narrow)

20 MB/sec CD-Recorders, Tape
Drives, DVD Drives

Ultra Wide
SCSI

(16-bit Wide)

40 MB/sec Lower end Hard Disks

Ultra2 SCSI

(16-bit Wide)

80 MB/sec Mid range Hard Disks

Ultra160 SCSI

(16-bit Wide)

160 MB/sec High end Hard Disks and
Tape Drives

Ultra320 SCSI

(16-bit Wide)

320 MB/sec State-of-the-art Hard
Disks, RAID backup
applications

Table 1.3.1.  Snapshot of SCSI history.

The  latest  SCSI  technology,

known as Ultra320, takes advantage of

several  new  features  to  increase

reliability  and  overall  SCSI  bus

performance.   Ultra320  employs  a

packet  protocol  which  allows  SCSI  to

better  control  data  flow  over  the  bus

and  increase  system  speed.   Quick

Arbitration Select,  otherwise known as

QAS,  “increases  bus  utilization  by

streamlining  release  and  re-use  of  the

bus by various peripherals.” [2]  Finally,

Cyclic Redundancy Check, or CRC, helps

“improve  data  integrity  by  detecting

data  integrity  errors”  [2]  for  all  SCSI

phases.

For the remainder of this paper, we will

use “SCSI”, to refer directly to Ultra320

SCSI unless otherwise noted.

1.4  Paper Organization

The remainder of this  paper will

introduce  several  important  concepts

behind  SCSI,  SCSI  applications,  and

SCSI firmware.  Section 2 describes, in

detail, the basics of a SCSI bus.  Section

3 discusses the recent advances of SCSI

in  the  technology  industry.   Section  4

analyzes  several  applications  of  SCSI,

and discusses the results of a Ultra320

SCSI  performance evaluation.   Finally,

Section  5  briefly  discusses  SCSI

controller firmware and the benefits of

thin drivers.
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2  Bus Basics

The  fundamental  concepts  and

arbitration  policies  of  a  SCSI  bus  are

fairly  straightforward  once  one

understands  the  basic  logical  flow  of

events on the bus.

It's important to note that on any

SCSI  bus,  there  are  two  types  of

devices:  SCSI initiators which make an

I/O request, and targets which respond

to an I/O request.  For example, at the

highest  conceptual  level,  an  operating

system will  use a PCI SCSI adapter to

initiate an I/O process which is directed

at a specific target on the SCSI bus.  In

this case the SCSI target,  a hard disk,

responds to the request to initialize the

I/O  command.   Now  acting  as  the

controller,  or “master” of  the bus,  the

disk  issues  a  request  to  the  initiator

requesting  an  I/O  command.   To

complete  the  process,  the  initiator

responds by sending a command code,

known as a Command Descriptor Block,

or  CDB.   However,  unlike  other  data

transfer standards,  SCSI devices inter-

operate  as  “slaves”  and  “masters”

during  a  single  arbitration  cycle.   In

other words, each device can act as an

initiator or target when necessary.

2.1  Device Addressing

As  with  any  data  transfer

mechanism, SCSI provides an easy and

convenient  way  to  address  devices  on

the SCSI bus by assigning each device a

unique ID.   A  SCSI  device ID  is  used

during  the  arbitration  and  selection

process to  properly  identify  the  target

and  initiator  of  a  given  SCSI  I/O

operation.   In  fact,  the  number  of

devices on a single SCSI bus is a direct

limitation of the need for a unique SCSI

ID for each device.  For example, when

Narrow-SCSI  was  introduced,  the

standard only called for eight data lines,

hence, limiting the number of devices on

a Narrow-SCSI bus to only eight.  The

latest  SCSI technology, Ultra320 SCSI,

operates with sixteen data-lines and can

support a maximum of sixteen devices.

However,  it's  important  to  remember

that a SCSI adapter is also considered a

device  on  the  bus,  and  is  always

assigned  a  SCSI  ID.   Therefore,  SCSI

storage  systems  are  limited  to  fifteen

peripherals,  not  including  the  PCI

adapter itself.

Not  only  is  the  SCSI  device  ID

important  for  identification,  they  are

also  critical  for  determining  device

priority.   Most  often,  SCSI  initiators

(adapters)  are  assigned  device  ID  7,

while  other  devices  are  assigned  the

remaining  device  IDs.   Device ID 7  is

usually  considered the device with  the
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highest  priority  over  the  SCSI  bus,

allowing  it  to  gain  control  of  the  bus

most often.  SCSI experts will typically

recommend  assigning  higher  priority

SCSI device IDs to slower devices.  For

example, SCSI tape drives need higher

priority  device  IDs  to  prevent  high

performance devices from over-utilizing

the bus.

2.2  SCSI Bus Control

The  first  stage  of  a  SCSI  data

transfer is  known as arbitration. In its

purest form, arbitration is the process of

selecting  a  single  device  from  a

collection  of  devices  that  require

concurrent  use  of  the  SCSI  bus.

Because all  physical wires of the SCSI

bus are shared with multiple devices, a

systematic process must be in place to

control  the  flow  of  electrical  signals

connecting the bus and its peripherals.

The  full  process  by  which  a  device

“obtains  permission”  from  all  other

devices  to  transfer  data  or

communication  with  the  controller  is

known  as  the  arbitration  phase.

Within  the  arbitration  phase,  a  device

patiently waits for the SCSI bus to enter

a “free phase”, or idle phase.  When the

bus  becomes  idle,  no  further  data

transfers are taking place which allows a

device  to  “raise  a  flag”  alerting  all

members of the bus it has a request to

gain control.

Interestingly, the SCSI arbitration

phase  is  analogous  to  a  well-ordered

discussion group.  A moderator, in this

case, the SCSI controller, is in charge of

moderating the discussion to ensure that

only one member of the panel speaks at

any  given  time.   If  a  member  of  the

discussion  wishes  to  speak,  he  or  she

must  raise  their  hand.   Similarly,  the

firmware of a SCSI controller acts as the

bus moderator by ensuring that only one

device  uses  the  bus  at  any  given

moment, and that each device obeys the

fundamental  arbitration  policies  of  the

SCSI standard.  Obviously, if more than

one  person  attempts  to  speak  in  the

discussion  group  at  the  same  time,

communication becomes incoherent  for

all discussion attendees.  On a SCSI bus,

multiple devices attempting concurrent

information  transfers  will  cause  data

corruption which often leads to massive

system failures and headaches for SCSI

engineers.

Once  a  device  has  successfully

“won”  control  of  the  bus  from  the

controller,  it  must  signal  a  device  it

wishes  to  communicate  with  in  the

selection phase.   The selection phase

connects  two  devices  on  the  bus,  and

initiates a data transfer.  In relation to

our  discussion  group  example,  the

selection  phase  is  equivalent  to  a

moderator selecting the next person to

speak to the group.  Again, this process
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is  very  important  and  all  participants

must agree to wait their turn to prevent

confusion.

Once  all  data  transfers  have

completed,  the  bus  returns  to  an  idle

state and waits for the next arbitration

request.  This arbitration and selection

cycle  continues  indefinitely  as  data

requests enter the SCSI controller from

the Operating System.

2.3  Information Transfer

As  previously  mentioned  in

Section  2.2  of  this  paper,  the

information  transfer  process

initializes  immediately  following  the

selection phase.  Behind the scenes of

the SCSI sub-system, several key steps

are needed to successfully complete and

coordinate  the  information  transfer

process.

For  example,  the  information

phase  itself  is  divided  into  several

smaller phases which work together to

transfer data:  the Msg-Out phase, the

Command phase, the Data-In/Out phase,

the Status phase, and the Msg-In Phase.

Each phase is critically important to the

successful transfer of data over a SCSI

bus.

(1)Msg-Out Phase – An initiator sends

a Command Descriptor Block (CDB) to

a target to initiate a data-transfer.  If

the  target  successfully  responds the

information transfer process moves to

the  second  phase,  the  Command

phase.

(2)Command  Phase –  Within  the

command phase, the initiator sends a

Command Descriptor Block (CDB) to

the target  describing the  address of

data to be read or written.  “The first

byte of the CDB is the Operation Code

(OP  code).   It  is  followed  by  the

Logical  Unit  Number  (LUN)  in  the

upper three bits of the second byte,

and by the block address (LBA) and

transfer length fields (Read and Write

commands) or other parameters.  The

last byte of each CDB is the Control

byte.   This  byte  contains  two

important  bits,  the LINK and FLAG;

these bits are used for controlling the

linked commands mechanism.” [1]

(3)Data-In/Data-Out Phase – The Data-

In/Data-Out  phase  is  used when the

CDB cannot  be  transferred  using  a

single  bus  cycle.   In  this  case,  the

initiator  automatically  partitions  the

command block over two bus cycles

which is  sent  directly  to  the target.

Upon successfully receiving the CDB,

the target  will  begin to  process the

specified SCSI command.
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(4)Status Phase –  After  the command

has executed, the target returns the

status  to  the  initiator  alerting  it  of

execution  success,  or  execution

failure.   If  the  target  returns  an

execution  failure  or  problem report,

the initiator will re-issue the request.

Unfortunately, a corrupt hard disk or

improperly  configured SCSI bus can

result in an “endless loop” of failures

and retries.   This  often locks up an

entire bus as the initiator continues to

repeatedly re-send the request in an

infinite  timeout  sequence.

Fortunately,  newer  SCSI  systems

configured  with  RAID  support  will

recognize  this  data  failure  timeout

sequence  and  initialize  a  fail  over

recovery  process  to  resume  normal

operation.

(5)Msg-In  Phase –  The  message  in-

phase completes the SCSI information

transfer  process,  and  requires  that

the target send a final status report to

the  initiator.   If  the  command  was

executed  successfully,  the  initiator

can  make  additional  data  requests

when the SCSI bus returns to a free

state.

2.4  Bus Termination

In a nutshell,  bus termination is

the  process  of  terminating  electrical

signals which may reflect off the ends of

physical cabling and travel back to the

source,  colliding with  other  signals  on

their  way.   To  better  understand  the

need  for  termination  on  a  SCSI  bus,

imagine  you  and  a  friend  are  holding

taut,  a piece of rope approximately six

feet  long.   If  you were to  “pluck” the

taut string at one end, a wave will travel

from  the  source,  reflect  off  the  other

end, and return.  The wave will continue

to travel back and forth across the string

as it slowly decreases in amplitude and

eventually disappears.

Not surprisingly, electrical signals

travel  across  wires  much  like  a  wave

travels  across  a  taut  rope.   When  an

electrical signal is generated on a bus, it

will continue to oscillate within the wire

until it is terminated, or naturally loses

energy and disappears due to resistance

in the cabling.  Obviously, reflection on

a SCSI bus will cause multiple signals to

collide, creating unwanted abnormalities

and  potentially  devastating  data

corruptions.

To  prevent  the  reflection  of

electrical  signals  at  the  end  of  bus

cabling,  SCSI  engineers  designed  the

“SCSI  terminator.”   A  terminator  is  a

small  device physically  attached to the

end of the bus cable, which makes the
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cabling appear to the devices as if it has

an infinite  length.   Essentially,  signals

will  travel along the bus to all  devices

and then disappear into the terminator.

It is interesting to note that other

bus  technologies,  such  as  PCI,  expect

and  even  require  signal  reflection  to

help enhance the strength of data on the

bus.  A PCI bus is often designed such

that  data  signals  traveling  over  the

wiring systematically merge to produce

constructive  interference,  hence,

naturally  improving  signal  strength.

Therefore, terminators are almost never

used on a PCI bus.

2.5  LUN's (Logical Unit Numbers)

Around  1980  when  engineers  in

Silicon Valley began designing the SCSI

interface,  future  expectations  for

microcomputers were very limited.   In

fact,  SCSI  engineers  designed  the

interface and standard around only two

devices:  massive tape drives connected

to  large  mainframe  systems.   The

concept  that  SCSI  could  be  used  in

smaller,  localized microcomputers  with

multiple  devices  was  unheard  of.

Therefore,  engineers  were  not

concerned about synchronizing the bus

arbitration process between more than

two devices.

However, many tape drives, even

though  considered  one  device,  had

multiple logical  units.  In other words,

tape drives  often  contained more than

one set of tape reels, which required the

engineers  to  design  a  unique  way  of

identifying  a  device,  and  a  reel  set.

Hence,  the  Logical  Unit  Number  was

born.

Today, LUN's are used to identify

logical sub-sections on a wide variety of

devices.   For  example,  visualize  the

following equipment setup:

(1)Hard Disks –  Two hard disks each

with three logical volumes.

(2)Tape Drive  –  One  tape  drive,  with

four sets of reels.

(3)CD-ROM  Jukebox  –  One  CD

duplication box with five CD-Writers.

(4)SCSI  Adapter  –  One  SCSI  PCI-X

adapter connected to  all  devices via

one bus.

First, let's assume the host system needs

to  read data  from LUN 2 on the  tape

drive.  The SCSI adapter will issue the

request,  at  which  time  the  tape  drive

must automatically load the logical unit

representing LUN 2.   Additionally,  the

adapter might issue a request to the CD

Jukebox to write a block of data to LUN

3,  which  may represent  disc  3  in  the

device.  Once the device wins control of

the  SCSI  bus,  the  command is  issued
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using  the  CDB  which  begins  the

execution process.

2.6  Single Connector Attachment

Single  Connector  Attachment,

otherwise  known  as  S.C.A.,  is  a  very

popular technology used in a variety of

high-end  disk  arrays.   Often  called

J.B.O.D.'s  (Just-A-Bunch-Of-Disks),  disk

arrays allow multiple SCSI hard disks to

be seamlessly connected to a SCSI bus

using a special  disk enclosure.  Figure

2.6.1 shows a sample disk array, the HP

MSA30  SB  JBOD.   “The  Single

Connector  Attachment  (SCA)  moves

wiring of the SCSI  bus directly  to  the

backplane,  and allows  plugging  of  the

drives into a single socket.” [1]  In other

words,  a  SCA  enclosure  provides  the

sockets  for  which  multiple  hard  disks

can  be  inserted.   Once  inserted,  the

J.B.O.D.  recognizes  each  disk  as

individual  devices,  and  automatically

assigns it a unique SCSI device ID using

the S.C.A.M. protocol.

SCA  and  SCSI  disk  array

technology is most often used in high-

end storage environments, or where any

application  requires  large  amounts  of

reliable storage.  On average, each high-

end disk array will hold anywhere from

13 to 14 hard disks in a standard rack-

mount  enclosure.   Using  R.A.I.D.

(Redundant Array of Independent Disks)

technology with high-end large capacity

hard  disks,  storage  capacities  in

enterprise  disk  arrays  can  exceed  2

Terra bytes!  “A storage device that uses

several  magnetic  or  optical  disks

working  in  tandem  can  increase

bandwidth  output  and  provide

redundant  backup.”  [1]   Furthermore,

the  latest  version  of  S.C.A.  adds “hot-

swappable”  functionality  to  most  disk

arrays.  Hot swappable, or hot plugging

technology,  allows  disk  devices  to  be

physically  added  to  the  SCSI  bus

without  powering off,  or rebooting the

connected system.  Similar to standard

Plug-And-Play  (PnP)  functionality,  the

disk  will  be  recognized  and

automatically  installed  for  use  upon

insertion.

Clearly, hot-swappable technology

is a very important  feature for mission

critical computer systems.  In the event

of  a  hardware failure,  IT  professionals

can  replace  a  damaged  device  within

seconds without having to shutdown or

reboot a critical system.

Figure 2.6.1.  HP MSA30 Disk Array.
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3  Recent Advances

For the past twenty three years,

SCSI and PCI engineers have worked to

improve  SCSI  performance,  reliability,

and storage capacities for thousands of

devices and applications.  Since SCSI's

conception,  great  strides  have  been

made,  improving  every  aspect  of  the

SCSI  family.   The  latest  generation  of

SCSI  products,  however,  adds features

and  performance  improvements  unlike

anything SCSI has seen before, making

Ultra320 SCSI one of the world's safest

and reliable storage standards.

3.1  Ultra320 SCSI Engineering

The  new  technology  behind

Ultra320  SCSI  introduced a  variety  of

complex  electrical  engineering  related

problems.   Thankfully,  most  of  these

issues  were  successfully  resolved  as

SCSI  engineers  continue  to  seek  new

discoveries  in  engineering.   Here  is  a

brief  snapshot  of  Ultra320  SCSI

engineering successes:

(1)Cable  Lengths  –  “The  faster

Ultra320 SCSI  speed require[d] new

signaling  technologies  in  order  to

maintain the high reliability required

by  server  designs.   Ultra320  SCSI

signals on the SCSI bus are twice the

frequency  of  Ultra160  SCSI  signals

but the cable requirements have not

changed.  Point to point connections

can  be  25  meters  in  length  and

multiple  load  systems  can  be  12

meters in length.” [3]  SCSI engineers

were forced to  better  control  signal

strengths  on  the  bus  with  a  faster

data  frequency  and  long  cable

lengths.

(2)Data  Integrity  –  “Doubling  the

maximum signal switching frequency

in  Ultra320  SCSI  has  pushed  the

SCSI bus into a frequency range that

has greater attenuation in  SCSI  bus

cables  and  has  also  required  the

signal  slew  rate  to  increase.   The

doubling  of  signal  frequency  has

resulted in smaller amplitude signals

and more reflections (undesired high

frequency noise) on the SCSI bus.” [3]

Unfortunately, noise on the SCSI bus

can lead to  massive data  corruption

problems  and  improper  negotiation

between  devices.   Using  advanced

termination devices on the SCSI bus,

SCSI engineers dramatically reduced

signal slew.
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3.2  Ultra320 Max Throughput

When  referring  to  a  SCSI

adapter/controller,  max  channel

throughput is often used as a metric to

define  the  overall  data  power  of  a

specific  adapter.   However,  to  better

understand  the  concepts  behind  SCSI

throughput, it's important to understand

the  definition  of  a  SCSI  channel.

Essentially,  a  channel  is  nothing  more

than  a  SCSI  bus  on  an  adapter.

Typically, most high-end Ultra320 SCSI

controllers offer at least  2 channels (2

external connectors on the back of the

PCI-X controller, one for each channel).

A controller's channel count is important

because  it  helps  define  how  many

devices can be attached to the adapter,

and therefore,  how much  data  can  be

simultaneously “pumped” through it.

Generally speaking, most average

IT  professionals  and  “techies”  assume

that  Ultra320 SCSI  will  support  up to

320 MB/sec on each SCSI data channel.

This theoretical maximum of 320 MB/sec

is often thought to be the upper limit of

the latest SCSI adapters.  Unfortunately,

the SCSI naming convention is grossly

misleading.   In  fact,  current  “industry

standards  define  the  Ultra320  SCSI

Theoretical  Maximum  throughput  in

terms of “Mega-Transfers.” [5]  A Mega-

Transfer,  or  one  million  transfers,  is

used  to  accurately  measure  the

throughput  rate  of  all  Ultra320  SCSI

adapters.   Not  surprisingly,  “a  U320

SCSI  Mega-Transfer  is  equivalent  to

one-million transfers, or in this case, it's

equivalent to 3.20  × 108 bytes/second.”

[5]    Properly  converting   3.20  × 108

bytes/second  to  mega-bytes/second

yields  approximately  305.175  MB/sec.

In  other  words,  contrary  to  popular

perception, Ultra320 SCSI's theoretical

maximum  throughput  per  channel  is

305.175 MB/sec.

It's  important  to  remember,

however, that the theoretical maximum

throughput  is  defined  in  terms  of

channels.  Therefore, fully utilizing two

SCSI  channels  on  an  Ultra320  SCSI

adapter  will  generate  approximately

610.35 MB/sec of max throughput.

Similar  to  Ultra320  SCSI,  the

maximum  throughput  of  previous

generation  SCSI  controllers  is  often

misunderstood  as  well.   For  example,

the  max  theoretical  throughput  of  an

Ultra160  SCSI  channel  is  not  160

MB/sec.  It  is  also defined in terms of

Mega-Transfers.  Therefore, an Ultra160

SCSI  adapter  is  capable  of  generating

1.60 × 108 Mega-Transfers, resulting in

approximately  152.587  MB/sec  of

theoretical throughput.  Rarely however,

are  theoretical  maximums  achieved  in

the field by any SCSI controller.

“As  new  computer  systems

increase in capability,  new applications

evolve to take advantage of the available

power  and  features.   For  example,
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desktop  publishing,  scientific

visualization,  video  and  audio  editing,

digital  broadcasting  and  other  data-

hungry  applications  continue  to  push

the I/O bandwidth and require a more

advanced interface to handle increased

data transfer.” [3]

3.3  Q.A.S.

Quick  Arbitration  and  Selection,

otherwise  known  as  Q.A.S.  was

introduced with Ultra320 SCSI in early

2003.   On  a  standard SCSI  bus,  each

data  communication  cycle  between

devices  is  the  same:   a  device  which

needs  to  communicate  or  use  the  bus

must wait for the bus to free itself, and

then start  the  arbitration process with

the  controller.   Unfortunately,  this

standard bus negotiation  method often

causes  large  delays,  and  dramatically

lowers bus utilization.

Fortunately,  Q.A.S.  now  allows

devices to negotiate for the bus during a

current data transfer!  In other words,

while processing data over the bus, the

controller  identifies  the  device  which

will own the bus immediately following

the  data-transfer.   “This  reduces  the

overhead of control release on the SCSI

bus  from  one  device  to  another...and

reduces  command  overhead  and

maximizes  bus  utilization.”  [3]

Essentially, Q.A.S. allows the bus to be

used primarily for data transfers, instead

of  negotiation.   Less  negotiation

between devices directly means a faster

data transfer rate.

3.4  Packetized SCSI

Ultra320 SCSI supports  a newer

protocol  which  allows  data  to  be

streamed  over  the  bus  using  data

packets.   “Packetized devices decrease

command  overhead  by  transferring

commands,  data,  and  status  using  DT

(dual transition) data phases instead of

slower  asynchronous  phases.  This

improves  performance  by  maximizing

bus utilization and minimizing command

overhead.  Furthermore,  [the]  packet

protocol  also  enables  multiple

commands to be transferred in a single

connection.”  [3] 

3.5  Ultra640 SCSI?

As  Ultra320  SCSI  continues  to

establish  itself  a  premiere  storage

solution,  the  storage  needs  of  IT

professionals  continues  to  grow  at  an

unprecedented rate.  Newer applications

and databases will push the upper limits

of  current  storage  technologies,

requiring engineers to create faster and

more reliable data storage mechanisms.

As  a  result,  the  success  of  Ultra320
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SCSI has prompted many leaders in the

technology industry to investigate newer

and faster data storage standards.  An

obvious  choice,  Ultra640  SCSI,  is

currently under investigation in some of

Silicon  Valley's  top  technology

companies.   Amazingly,  Ultra640 SCSI

promises an exceptional max theoretical

throughput  exceeding  600  MB/sec  per

data  channel!   Unfortunately,  current

research shows that Ultra640 will never

be implemented due to the instability of

electrical signals over standard copper-

wiring  at  such  high  frequencies.

Therefore,  many  companies  are

investigating  new  storage  standards

such as Fibre Channel, which uses fiber

optic  cabling  to  connect  multiple  high

speed disk drives.   Unlike SCSI,  Fibre

Channel  can  transfer  upwards  of  5

GB/sec per data channel using standard

fiber optic technology.

4  Applications

Besides being  an  obvious choice

for  high-end  servers  and  workstations,

SCSI  is  often  complemented  with  a

variety of technologies used to improve

performance  and  data  integrity  on  a

SCSI storage solution.  Section 4 of this

paper  is  intended  to  provide  a  brief

exploration  into  the  applications  of

Ultra320 SCSI.

4.1  R.A.I.D.

Perhaps  one  of  the  most

important  applications  of  any  storage

system  is  its  data  backup  and  auto-

failover capabilities.  As aforementioned,

R.A.I.D.,  or  Redundant  Array  of

Independent Disks, has proven to be an

obvious  complement  to  Ultra320  SCSI

storage systems.  In fact, most modern

RAID controllers use the highly reliable

Ultra320  SCSI  standard  as  their

foundation  for  implementing  services

such as data mirroring and disk striping.

“RAID subsystems are commonly used as

the  cost-effective  foundation  of  a

business-critical  storage  strategy.   By

employing the advanced fault tolerance

of  RAID  technology,  companies  can

effectively  implement  networked

business  systems  that  require  large

amounts of storage space for data and

applications  that  must  be available  for

their businesses to continue operating.”

[4]  

For example RAID, combined with

the  power  of  Ultra320  SCSI,  can

implement  data  mirroring  across

multiple  hard disks to  improve system

reliability.   To  better  understand  the

concept  of  data  mirroring,  imagine  a

workstation  or  a  high-end  server  with

only  one  installed  SCSI  hard  disk.

Unfortunately,  if  this  hard  disk

unexpectedly  fails,  the  entire  system

becomes  completely  inoperable.
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However,  RAID  data  mirroring  with

Ultra320 SCSI allows the same data to

be simultaneously accessed on multiple

hard disks.  In essence, this technology

creates  multiple  copies  of  the  primary

disk which is stored on each unique back

up  hard  disk.   If  a  primary  hard  disk

failed,  the  RAID  subsystem  will

automatically  failover to  a backup disk

and  immediately  resume  operation.

RAID  data  mirroring  combined  with

Ultra320  SCSI  technology  helps  IT

professionals maintain virtually 100% up

times for their most critical data servers.

Another  popular benefit  of  RAID

often found in the technology industry is

a  technique  known  as  disk  striping.

“With RAID technology,  data  is  striped

across an array of physical drives.  This

data-distribution  scheme  complements

the way the operating system requests

data.  The collection of stripe units, from

the first  drive of  the array to  the  last

drive of the array, is called a stripe.  The

granularity  at  which data  is  stored on

one drive of the array before subsequent

data is stored on the next drive of the

array is called the stripe-unit size.” [4]

In  other  words,  data  striping

systematically  combines  two  or  more

hard  disks  into  a  single  logical  RAID

volume,  on  which  I/O  requests  are

equally  distributed.   For  example,

visualize  a disk array containing three

SCSI hard disks connected to the same

SCSI  bus.   A  properly  configured disk

striping  RAID  controller  will

systematically and equally partition each

I/O request amongst the three disks.  In

this  case,  if  the  controller  issues  a

request to write a block of data to the

RAID  volume,  each  disk  will  only  be

responsible for handling one-third of the

data.  On the other hand, if a single hard

disk instead of a RAID volume received

the  I/O  request,  it  would  be  wholly

responsible for 100% of the I/O process.

By equally splitting data amongst each

disk in the RAID volume, bus and system

performance is increased tremendously.

Unfortunately,  disk  striping

presents virtually no failover or backup

capabilities.  For example, if one disk in

the  logical  RAID  volume  fails  and

becomes  inoperable,  the  entire  RAID

volume  is  corrupt.   However,  newer

levels of RAID technology have added a

parity disk to logical RAID volumes.  The

parity  disk is  a separate physical  hard

disk  which  records  the  parity  of  each

block written to  the RAID volume.  In

the event that a disk in the volume fails,

the  RAID system can  be  automatically

rebuild itself using the parity disk as a

way to determine “which bits were lost

on the corrupted disk.”

As SCSI and RAID evolved, most

RAID adapters  can  now be  configured

using a variety of “RAID levels.”  A RAID

level  determines  how  the  controller

manages  data  mirroring,  and  disk

striping.   It's  important  to  note,  that
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many popular forms of RAID often used

in  mission  critical  enterprise  data

centers, are an advanced combination of

a variety of RAID technologies.  

The  following  list  highlights  the

most  popular  RAID  levels  used  in

mission  critical  computing

environments:

(1)Level  0  –  Striped  Disk  Array

Without  Fault  Tolerance  – “RAID

[Level] 0 uses a technique called data

striping  to  distribute  data  evenly

across  the  physical  drives  in  such

manner  as  to  maximize  I/O

performance.   Striping  divides  the

logical into data blocks called stripes,

which  are  then  distributed  over  the

physical  disk  drives.   The  layout  is

such that a sequential read of data on

the  logical  drive  results  in  parallel

reads to each of the physical drives.

This results in improved performance,

because multiple drives are operating

simultaneously...RAID [Level] 0 offers

substantial speed enhancement, but it

provides no data redundancy or fault

tolerance.” [4]

(2)Level 1 – Mirroring and Duplexing

– “RAID [Level] 1 provides 100% data

redundancy  and  requires  only  two

physical disk drives.  RAID 1 employs

the  concept  of  data  mirroring.

Mirroring creates a single logical disk

drive from two physical  disk  drives.

With RAID 1, the first half of a stripe

is the original data; the second half of

a  stripe  is  a  mirror (a  copy)  of  the

data...All  data  written  to  the

combined logical  drive  is  written  to

both physical disk drives.” [4]

(3)Level 1E – Enhanced Mirroring –

“RAID  1E  combines  mirroring  with

data striping.  This RAID level stripes

data and copies of the data across all

of the drives in the array.  The first

set  of  stripes are the  data,  and the

second set  of  stripes are mirrors  of

the first data stripe contained within

the  next  logical  drive...RAID  1E

requires  a  minimum of  three  drives

and,  depending  upon  the  level  of

firmware  and  the  stripe-unit  size,

supports  of  maximum  of  8  or  16

drives.” [4]

(4)Level 4 – Dedicated Parity Drive –

“A commonly used implementation of

RAID,  Level  4  provides  block-level

striping (Level 0) with a parity disk. If

a  data  disk  fails,  the  parity  data  is

used to create a replacement disk. A

disadvantage  to  Level  4  is  that  the

parity  disk  can  create  write

bottlenecks.” [4]

(5)Level 5 – Data Striping and Block

Interleave  – “RAID 5  employs  data

striping  and  block  interleaving  in  a

technique designed to  provide fault-
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tolerant  data  storage  that  does  not

require duplicate disk drives...RAID 5

spreads both the data and the parity

information across the disks one block

at  a  time.   This  enables  maximum

read  performance  when  accessing

large  files  and  improves  array

performance  in  a  transaction

processing environment.  Redundancy

is  also  provided  via  parity

information,  which  is  striped  across

the drives to remove the bottleneck of

storing all  of the parity data on one

drive.” [4]

(6)Level 6 – Independent Data Disks

With  Double  Parity  –  “Provides

block-level  striping  with  parity  data

distributed across all disks.” [4]

4.2  Other Applications

Generally  speaking,  the  SCSI

standard encompasses a wide range of

technologies and applications which aim

to improve the speed and reliability  of

large  storage  systems.   In  fact,  the

underlying  structure  of  newer  storage

systems  such  as  Fibre  Channel  were

derived  from  the  development  and

expansion of existing SCSI technologies.

In other words, the development of SCSI

has prompted the technology industry to

invest  in  research  and development  of

promising new ideas and concepts.  As

storage  technology  and  its  industry

continues  to  mature,  a  wide  range  of

new  applications  are  sure  to  emerge.

Rest assured however, that even though

different  technology  continues  to

develop,  the  standard foundation  upon

which  they  are  built  will  remain  the

same.

5  Operating System Interfaces

Deep within the internals of every

operating system, is a set of instructions

and  configuration  details  which  helps

the O.S. (OS) communicate with various

internal  and  peripheral  devices.   This

software,  known as  a  driver,  provides

the  framework  interface  between  a

computer and its installed devices.  For

example,  imagine  a  computer  user

purchased a new ink jet printer for their

home  office.   Once  the  printer  is

successfully connected to the computer,

the operating system recognizes the new

device and prompts the user to insert a

CD containing  the  printer  drivers.   In

this case, the drivers contained on the

CD  are  essentially  small  pieces  of

software  which  integrate  into  the

operating system instructing  it  how to

properly communicate with the printer.

Once the drivers have been successfully

installed, the user can then spool print

jobs to the printer.  Similar to standard
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printer drivers,  SCSI controller  drivers

operate in exactly the same way.  In this

case,  the  SCSI  driver  within  the

operating system provides an interface

on  which  the  OS  can  issue  I/O

commands  to  the  SCSI  controller.

Rather than access the device directly,

the  operating  system  loads  the

necessary driver and calls  functions in

the driver software to carry out actions

on  the  device.  The  driver  functions

themselves  contain  the  device-specific

code needed to carry out actions on the

device.

Most modern enterprise operating

systems  such  as  Linux,  HP-UX  11.23,

and Microsoft  Server  2003,  implement

several  layers  of  abstraction  between

applications,  the  operating  system

kernel,  and  peripheral  devices.   The

abstraction layers, outlined in Table 5.1,

increase  device  and  operating  system

performance  and  reliability  while

decreasing system overhead.

Level Layer Overview

4 Application An operating system
manages applications and
other system resources
assigned to the needs of
those applications.

3 Operating System When an application issues
a service request to a
device, the operating system
issues a command or set of
commands to the device
driver.

2 Device Driver The device driver accepts
the instruction from the
operating system and issues
the raw command to the
physical device.

1 Physical Device The resident firmware on
the physical device receives
and processes the command.

Table 5.1.  Snapshot of various interface layers within

modern operating systems.

Once  a  device  driver  receives  a

request  from  the  operating  system  to

carry out a given task, the message is

then passed to the physical hardware on

the device.  At this point, the intelligent

firmware on the device parses, analyzes,

and executes the request.   As it  turns

out, firmware is not only one of the most

critical  aspects  of  low-level  hardware

and software design, it's  also the most

intelligent.   Firmware  in  SCSI

technologies  is  discussed  further  in

Section 5.2 of this paper.
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5.1  Thin Drivers

When the fundamental concept of

a driver was first introduced in modern

computing,  a  significant  software

engineering  effort  was  made  to  place

intelligence  within  the  driver  software

itself.  Electrical and software engineers

assumed this strategy would help keep

the physical components on the device

simple,  fast,  and  elegant.   Not

surprisingly, this method quickly proved

ineffective  and  severely  impacted

critical  system  performance.

Unfortunately,  as  the  complexity  and

strict  performance  requirements  of

storage  devices  grew,  the  need  for

extremely  fast  and  incredibly  efficient

drivers became obvious.  As it turns out,

integrating device intelligence into the

driver  software  created  a  significant

performance issue within the operating

system.

Unlike  firmware,  which  is

executed  on  a  separate  resident

processor mounted in the device itself,

intelligent  device  drivers  are  executed

through the operating system using the

main  system  CPU.   As  storage  data

transfer  speeds  increased  to  record

highs,  undue strain  was placed on the

systems CPU.  In this case, the system

CPU  was  responsible  for  parsing  and

analyzing  an  I/O  command.   This  not

only created a significant bottleneck in

the  I/O  subsystem,  it  also  used  a

majority  of  system resources  allocated

for  other  applications  running  on  the

host system.  Obviously, any intense I/O

operations  would  indirectly  slow  other

applications running on the system, and

adversely  impact  other  important

business and user applications.

To  address  this  bottleneck  and

reduce the strain on system resources,

software and hardware engineers began

implementing  thin drivers for  various

high-performance  I/O  devices.   A  thin

driver  eliminates  the  performance

bottleneck  by  moving  the  processing

intelligence  away  from  the  software

driver within the operating system, and

into the physical device itself!  In other

words,  the  driver  resident  within  the

operating system is nothing more than a

very  simple  interface,  or  API,  which

applications can use to access a device.

The  request  processing  intelligence

originally placed in the operating system

driver, is now tightly integrated into the

firmware on the device.  As one would

expect,  the  firmware within  a physical

device  is  executing  using  its  own  on-

board processor which increases device

performance and frees the main system

CPU for other important applications.

As previously mentioned, modern

high-performance  SCSI  I/O  controllers

now  contain  an  on-board  processor

dedicated to  handling the I/O requests

from  the  operating  system.   By

implementing thin drivers around high-
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performance  SCSI  firmware,  engineers

continued to push the limit of the SCSI

interface,  which eventually  lead to the

discovery and development of Ultra320

SCSI controllers and devices.

5.2  Firmware

Most  computer  scientists  and

hardware  engineers  would  argue  that

device  firmware  is  one  of  the  most

important aspects of a physical device,

or controlled system.  Firmware resides

in  virtually  every  household  appliance,

electronic  device,  automobile,  and

computer  across  the  world.   For

example,  firmware  within  a  household

heating  and cooling  system is  a  strict

controlled  system  dedicated  to

managing  the  temperature  inside  of  a

house.   The  on-board  firmware  within

the  electronics  of  the  heating  and

cooling system controls everything from

the  thermostat  to  the  large  electronic

relays  inside  of  the  actual  air

conditioning  unit.   Also,  most  modern

vehicles  contain  a  sophisticated  set  of

firmware  and  microprocessors  which

control everything from fuel and oxygen

mixtures in the engine, to the vehicles

ABS (Anti Lock Breaking System).

In the case of a SCSI controller,

SCSI firmware is specifically designed to

manage  data  flow  and  arbitration

policies on the bus.  The SCSI controller

firmware  also  receives  and  processes

requests from the operating system over

the PCI bus!

Essentially,  firmware itself  is  a

specifically  designed piece of software,

an advanced state machine, which runs

on  a  localized  microprocessor  and  is

designed  for  one  generalized

application.   Otherwise  known  as

embedded system firmware, firmware

is essential to the success of a physical

electronic  device  or  large  scale

application.   The  most  common  and

most  important  characteristics  of  an

embedded firmware system include:

(1)Complex  Algorithms –  “The

operations  performed  by  the

[firmware] may be very sophisticated.

For  example,  the  [firmware]  that

controls  an  automobile  engine  must

perform  complicated  filtering

functions to optimize the performance

of the car while minimizing pollution

and fuel utilization.” [10]

(2)User  Interface –  “Firmware  is

frequently  used  to  control  complex

user  interfaces  that  may  include

multiple  menus  and  many  options.

The  moving  maps  in  Global

Positioning  System (GPS)  navigation

are  good  examples  of  sophisticated

user interfaces.” [10]

(3)Critical  Real  Time Applications  –
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“Many embedded computing systems

have to perform in real time – if the

data isn't ready by a certain deadline,

the  system breaks.   In  some cases,

failure to  meet  a deadline is  unsafe

and can even endanger lives.  In other

cases,  missing  a  deadline  doesn't

create  safety  problems  but  does

create  unhappy  customers...”  [10]

For  example,  SCSI  firmware  must

accurately  control  data  flow  and

device arbitration  to  ensure that  no

data is lost  over the SCSI bus.  The

firmware  on  a  SCSI  controller  is  a

perfect  example  of  a  real-time

embedded system.

(4)Multirate Compatibility – “Not only

must  operations  be  completed  by

deadlines,  but  many  embedded

computing systems have several real-

time activities going on at the same

time.  They  may  simultaneously

control  some operations  that  run  at

slow  rates,  and  others  that  run  at

high rates.” [10]  SCSI firmware, for

example, must control a wide variety

of multirate devices.  A tape-drive, for

example,  is  typically  one  of  the

slowest  devices on a SCSI bus.   On

the other hand, an Ultra320 SCSI 15K

RPM hard  disk  is  often  the  fastest.

Firmware manages and controls each

device,  regardless  of  power  and

processing speed.

5.3  Firmware Design Challenges

As  devices  continue  to  shatter

storage  performance  records,  the

demand  for  high-performance

controllers  powered  by  fast  storage

firmware  continues  to  to  grow.   As  a

result,  engineers  continue  to  face  a

multitude  of  challenges  in  firmware

design:

(1)Complex  Testing  –  “Exercising  an

embedded  system is  generally  more

difficult  than  typing  in  some  data.

[Engineers]  may have  to  run  a  real

machine  in  order  to  generate  the

proper  data.   The  timing  of  data  is

often  important,  meaning  that

[engineers]  cannot  separate  the

testing of an embedded system from

the machine in which it is embedded.”

[10]

(2)Limited  Observability  and

Controllability –  “Embedded

computing  systems  usually  do  not

come  with  keyboards  and  screens.

This  makes  it  more  difficult  to  see

what  is  going  on  and  to  affect  the

system's operation.  [Engineers] may

be  forced  to  watch  the  values  of

electrical  signals  on  the

microprocessor  bus,  for  example,  to

know  what  is  going  on  inside  the

system.   Moreover,  in  real-time

applications  [engineers]  may  not  be
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able to easily stop the system to see

what is going on inside.” [10]

(3)Restricted  Development

Environments  –  “The  development

environments  for  embedded systems

are  often  much  more  limited  than

those  available  for  PCs  and

workstations.   [Engineers]  generally

compile code on one type of machine,

such as a PC, and download it  onto

the embedded system.  To debug the

[firmware] code, we must usually rely

on programs that  run on the  PC or

workstation and then look inside the

embedded system.” [10]

Clearly,  firmware  design

engineers must overcome a large variety

of  complex  problems  when  designing

firmware  for  a  given  application.   As

previously mentioned, it is critical to the

success of the system that the firmware

itself is flawless and operates exactly as

expected.   Otherwise,  firmware

developers  are  potentially  placing  the

lives of consumers, and the stability of

the global economy at risk.

5.4  Recent Advances

Throughout  the  firmware

development process, few concepts have

remained  constant  as  technology

continues  to  advance.   Firmware

engineers have begun moving away from

traditional  firmware  development

techniques  and  have  begun  to

implement  real-time  operating

systems for  a  variety  of  applications.

Real-time  operating  system  design,  or

RTOS,  allows devices to  establish  and

maintain  a  self  sustaining  on-board

operating  system  environment.   This

allows the device to manage processes,

by  coordinating  interprocess

communication, process abstraction, and

process  scheduling  to  better  meet  the

needs of a device.

Most  modern  devices  contain  a

microprocessor,  an  I/O  subsystem,

memory,  and  a  power  supply.   The

firmware  installed  on  the  ROM  (Read

Only Memory), of a controller initializes

the  RTOS which  then  runs  within  the

domain of  the  controller.   Providing  a

fully functional RTOS environment for a

device  and  its  firmware,  can  increase

performance  and  increase  the  overall

functionality  and  capabilities  of  a

specific  device  or  application.   For

example,  modern  Ultra320  SCSI

controllers  now  contain  an  on-board

self-sustaining  RTOS  which  moderates

every  aspect  of  the  controllers
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operations.

Within  the  past  few  years,

research  and  development  engineers

have  also  discovered  further

improvements  to  storage  systems  and

device  firmware.   Several  engineers

have proposed adding intelligence and a

small  embedded system to  disk  drives

themselves.  This would help the disks

manage  the  file  system,  and  improve

disk performance.

6  Conclusion

In conclusion, SCSI technology is

clearly  one  of  the  most  versatile  and

powerful  storage  standards  ever

created.   When  combined  with

intelligent  firmware  and  semantically

smart disk systems, SCSI proves to be a

valuable  asset  to  any  large  storage

infrastructure.   RAID,  multimedia

servers,  enterprise  databases,  file-

servers,  and  web-servers  are  only  a

small handful of technologies which use

the powerful SCSI interface.  As storage

technology  continues  to  develop  and

change  on  a  daily  basis,  one  aspect

remains clear: SCSI and SCSI firmware

applications are critical to the continued

success  of  the  extremely  popular  and

profitable storage technology industry.
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