Typesafe

- —— - - —— —
e R R —_-

v
=

PRI
| ——

- - e T s S
~ L . . n

— s e TSR 0

Scala
Dean Wampler

dean.wampler@typesafe.com
(@deanwampler

polyglotprogramming.com/talks

Navember 1992013
SOME RIGHTS RESERVED

Friday, November 15, 13

The online version contains more material. You can also find this talk and the code used for

many of the examples at github.com/deanwampler/Presentations/tree/master/
SeductionsOfScala.

Copyright © 2010-2013, Dean Wampler. Some Rights Reserved - All use of the photographs

and image backgrounds are by written permission only. The content is free to reuse, but
attribution is requested.

http://creativecommons.orqg/licenses/by-nc-sa/2.0/legalcode

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Data Warebouse and Query Language for Hadoop

|
Scalability = Functional Programming + Objects

Programming

Functional
Programming

for Java Developers

Edward Capriolo,
Dean Wampler &

O’REILLY” Dean Wamplei < D'REILLY" Jason Rutherglen

O'REILLY" Dean Wampler & Alex Payne

Friday, November 15, 13
Available now from oreilly.com, Amazon, etc.

e
< O R
- — ; T e

— — S C
N ‘-\(3;.
e ~_ N
— - N—
aY o N AN B
‘ - . > . -
TN (____"\\\r —

- - Siisign.
S ‘ < e
1 C—

Friday, November 15, 13

| picked Scala to learn in 2007 because | wanted to learn a functional language. Scala appealed because it runs on the JVM and interoperates with
Java. In the end, | was seduced by its power and flexibility.

F |

VWe need

Functional
Programming

... for concurrency.
... for concise code.
... for correctness.

H2
We need a better
Object Model

... for composability.
... for scalable designs.

Scala’s Thesis:
Functional Prog.
complements
Object-Oriented
Prog.

Despite surface contradictions...

8

We think of objects as mutable and methods as state-modifying, while FP emphasizes immutability, which reduces bugs and often simplifies
code. Objects don’t have to be mutable!

But we need
to keep
our investment
in Java.

Scala is...

* A JVM language.
* Functional and object oriented.
* Statically typed.

* An improved |ava.

There has also been work on a .NET version of Scala, but it seems to be moving slowly.

Martin Odersky

* Helped design java generics.

* Co-wrote GJ that became
javac (vI.3+).

* Understands CS theory and
industry’s needs.

Odersky is the creator of Scala. He’s a prof. at EPFL in Switzerland. Many others have contributed to it, mostly his grad. students.
GJ) had generics, but they were disabled in javac until v1.5.

Friday, November 15, 13
Not all objects are functions, but they can be...

Logger(Llevel:Level) {

apply(message: String) = {
// pass to Log4ld...
Log4J.log(level, message)

makes level a field

Logger(Llevel:Level) {

apply(message: String) = {
// pass to Log4ld...
Log4J. log(level, messa?e)

method

class body is the
“primary” constructor

Logger(Llevel:Level) {

apply(message: String) = {
// pass to Log4l]...
Log4].log(level, message)

}
}

error = Logger()

error("Network error.")

Logger(Llevel:Level) {

apply|/(message: String) = {
// pass to Log4l]...
Log4J.log(level, message)

}
}

apply is called

l

error("Network error.")

|6

“function object”

error("Network error.")

VWhen you put
an argument list
after any object,
apply is called.

Friday, November 15, 13

While an object can be a function, every “bare” function is actually an object, both because this is part of the “theme” of scala’s unification of OOP and FP, but practically, because the JVM
requires everything to be an object!

|

l'
’

-
=
—
_—
=

[
|

4L

N

N =
__3 _W

Friday, November 15, 13

Lists

List.apply()
list = List(L, 2, 3, 4, 5)

The same as this “list literal” syntax:

list

20

Friday, November 15, 13

Why is there no “new”? You can guess what’s going on based on what we'’ve already said. There must be some object named “List” with an apply method.
In fact, there is a “singleton” object named List that is a “companion” of the List class. This companion object has an apply method that functions as a factory for creating lists.

“cons” empty list
list = |
. . @ . N1l

head tail

21

Friday, November 15, 13
We build up a literal list with the “::” cons operator to prepend elements, starting with an empty list, the Nil “object”.

Baked into the

Grammar?
list =
: = : = Nl-l.

No, just method calls!

list = NiLl.::(2).::(4) . (
). (). ()

22

list =

list = Nil.::(5).::(4).::(
). (2) . (1)

Method names can contain almost any
character.

23

list =

list = Nil.::(5).::(4).::(
). (2) . (1)

Any method ending in “:” binds to the right!

24

list =

list = Nil.::(5).::(4).::(
). (2) . (1)

If a method takes one argument, you can drop
the “.” and the parentheses, “(” and “)".

25

Infix Operator Notation

"hello" + "world"

is actually just

"hello".+("world")

26

Friday, November 15, 13

Note the “infix operator notation”; x.m(y) ==> x m y. It’s not just a special case backed into the language grammar (like Java’s special case for string addition). Rather, it’s a general feature of
the language you can use for your classes.

Note:

Int, Double, etc.
are true objects, but
Scala compiles them

to primitives.

27

Friday, November 15, 13

If you know Java, you might wonder if these integer lists were actually List<Integer>, the boxed type. No. At the syntax level, Scala only has object (reference) types, but it compiles these
special cases to primitives automatically.

This means that
generics just work.

L = List.empty[Int]

An empty list of Ints.

Java: ... List<Int>

Friday, November 15, 13

You don’t have to explicitly box primitives; the co ill optimize these objects to primitives (with some issues involving collections

o] ; compiler wi
Note the syntax for parameterizing the type of List, [...] instead of <...>.

METOR

map = Map(
"name” -> "Dean”,
Ilagell _>)

Friday, November 15, 13
Maps also have a literal syntax, which should look familiar to you Ruby programmers ;) Is this a special case in the language grammar?

(Why is there no “new” again? There is a companion object named “Map”, like the one for List, with an apply method that functions as a factory.)

“baked” into the
language grammar?

No! Just method calls...

30

Friday, November 15, 13
Scala provides mechanisms to define convenient “operators” as methods, without special exceptions baked into the grammer (e.g., strings and “+” in Java).

METOR

<~— What we like

to write:

What Map.apply()
actually wants:

map = Map(
"name” -> "Dean”,
Ilagell _>)

map = Map(g

Tuple2("name", "Dean"),
(

Tuple2("age",))

31

METOR

<~— What we like

to write:

What Map.apply()
actually wants:

map = Map(
"name” -> "Dean”,
Ilagell _>)

map = Map(g
("name"”, "Dean"),
(Ilagell’))

32

More succinct
syntax for Tuples

We need to get from this,

"name"” -> "Dean”

to this,

Tuple2("name", "Dean")

Friday, November 15, 13
We've got two problems:

There is no String.-> method!

33

1. People want to pretend that String has a -> method.

2. Map really wants tuple arguments...

Implicit Conversions

ArrowAssoc|T1](

[T2] (t2:T2) =
uple2(tl, t2)

34

Friday, November 15, 13
String doesn’t have ->, but ArrowAssoc does! Also, it’s -> returns a Tuple2. So we need to somehow convert our strings used as keys, i.e., on the left-hand side of the ->, to ArrowAssoc
object, then call -> with the value on the right-hand side of the -> in the Map literals, and then we’ll get the Tuple2 objects we need for the Map factory method.

The trick is to declare the class as “implicit”. The compiler will look for any implicits in scope and then call them to convert the object without a desired method (a string and -> in our case) to
an object with that method (ArrowAssoc). Then the call to -> can proceed, which returns the tuple we need!

Back to Maps

map = Map(
"name” -> "Dean”,
||age|| -S>)

An ArrowAssoc is created for each left-
hand string, then -> called.

map = Map(
Tuple2("name"”, "Dean"),
Tuple2("age",))

35

Similar internal DSLs
have been defined
for other types,
and in 3rd-party
libraries.

Friday, November 15, 13

Classic Operations on
Container Types

fold/
reduce

Friday, November 15, 13
Collections like List and Map are containers. So are specialized containers like Option (Scala) or Maybe (Haskell) and other “monads”.

list = "a" :: "b" :: Nil

Llist map {
S s.toUpperCase
}

"AY s "B o Nil

39

Friday, November 15, 13

Let’s map a list of strings with lower-case letters to a corresponding list of uppercase strings.

map called on list
(dropping the)

argument to map: can

!

list map ({) < s
S s.toUpperCase
N~

0|

se “{..}7or “(...)"

T “function literal”

function

function body

argument list

Friday, November 15, 13
Note that the function literal is just the “s => s.toUpperCase”. The {...} are used like parentheses around the argument to map, so we get a block-like syntax.

40

Typed Arguments

Llist map {

S s.toUpperCase
} N\
inferred type
Llist map {

(s:String) s.toUpperCase

} N
Explicit type

4]

But wait! There’s more!

Llist map {
S s.toUpperCase
}

Placeholder

Llist map (.toUpperCase)

42

Friday, November 15, 13

We have this “dummy” variable “s”. Can we just eliminate that boilerplate?
| used an informal convention here; if it all fits on one line, just use () instead of {}. In fact, you can use () across lines instead of {}. (There are two special cases where using () vs. {} matters:
1) using case classes, the literal syntax for a special kind of function called a PartialFunction - {} are required, and 2) for comprehensions, - as we’ll see.)

Watch this...

List map (s println(s))

Llist map (println)

// or
Llist map println

“Point-free” style

43

So far,
we have used
type inference

a lot...

How the Sausage Is Made

/ Parameterized type

List[A] {

Declaration of map

map[B] (f: A B): List[B]

T T

} The function map’s return type
argument

45

e’s the declaration of List’'s map method (lots of details omitted...). Scala uses [...] for parameterized types, so you can use “<* and “>” for method names!

ration [y !
Note that explicitly show the return type from map (List[B]). In our previous examples, we inferred the return type. However, Scala requires types to be specified on all method arguments!

How the Sausage Is Made

: “contravariant’,
like an abstract class

l “covariant” typing
4
Functionl|[-A,+R] {

apply)(a:A): R

} No method body,
therefore it is abstract

46
Friday, November 15, 13

We look at the actual implementation of Function1 (or any FunctionN). Note that the scaladocs have links to the actual source listings.
(We’re omitting some details...) The trait declares an abstract method “apply” (i.e., it doesn’t also define the method.)

Traits are a special kind of abstract class/interface definition, that promote “mixin composition”. (We won’t have time to discuss...)

What the Compiler Does

(s:String) s.toUpperCase

What you write.

Functionl[String,String] {
apply(s:String) = {
s.toUpperCase

} \ What the compiler
) No return generates
needed An anonymous class

47

ncrete definition of apply provided by your function

Functions are Objects

list = "a"
Llist map {

"b" :: Nil

S s.toUpperCase

}
// => IIAII : : IIBII

48

Function “object”

N1l

] "‘;Jl 'p:&).(.\i '

Big Data DSLs

49

Friday, November 15, 13
FP is going mainstream because it is the best way to write robust data-centric software, such as for “Big Data” systems like Hadoop. Here’s an example...

Scalding: Scala DSL
for Cascading

* [P idioms are a better fit for
data than objects.

e https://github.com/twitter/scalding

e http://blog.echen.me/2012/02/09/
movie-recommendations-and-more-

via-mapreduce-and-scalding/

50

Friday, November 15, 13

Cascading is a Java toolkit for Hadoop that provides higher-level abstractions like pipes and filters composed into workflows. Using Scala makes it much easier to write concise, focused
code.

Scalding is one of many Scala options. See also Scrunch, a Scala DSL for the Java Crunch library, and Spark, a different framework that can work with the Hadoop Distributed File System
(HDFS).

https://github.com/twitter/scalding
https://github.com/twitter/scalding
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/

Let’s look at
the classic
Word Count

algorithm.

WordCount(args : Args)
Job(args) {
TextLine(args("input"))

. read
.flatMap('line -> 'word) {
line: String =>
line.toLowerCase.split("\\s")
}.groupBy('word) {
group => group.size
}.write(Tsv(args(“output™)))

}

Scalding

52

WordCount(args Args)
Job(args) {
Teﬁ;;ne(args(1npuﬁ workflow “job”
.flatMap('line -> 'word) {
line: String =>
Lline.toLowerCase.split("\\s")
}.groupBy('word) {
group => group.size
}.write(Tsv(args(“output™)))

}

53

WordCount(args : Args)
Job(args
TextLine(args("input"))
. read
T 2l L
line. toLowerCasd Shen oy the =input
}.groupBy ('word) s argument.
group => group.size
}.write(Tsv(args(“output™)))

54

WordCount(args : Args)
Job(args) {
TextLine(args("input™))
. read
.flatMap('line -> 'word) {

line: String =>
line.toLowerCase.split("\\s")

.grou WO I C -
?‘O | p_z ouD . - Tokenize lines into
g P 9 P - lower-case words.

}.write(Tsv(argst—<cocpoc 777

}

55

WordCount(args : Args)
Job(args) {
TextLine(args("input™))
. read
.flatMap('line -> 'word) {
line: String =>
Line.toLowerCase.split("\\s"

}.groupBy('word) {
group => group.size
write(lsv(argst oo

Group by word and
}
count each group size.

56

WordCount(args : Args)
Job(args) {
TextLine(args("input"))

. read

.flatMap('line -> 'word) {

line: String =>

line.toLowerCase.split("\\s")

}.groupBy('word) {

}.wrlte(Tsv(argé("output")))

Write to tab-delim. output.

57

For more on
Scalding see my talk:

Scalding for Hadoop

http://polyglotprogramming.com/papers/ScaldingForHadoop.pdf
http://polyglotprogramming.com/papers/ScaldingForHadoop.pdf

“Functional
Hotness

59

Friday, November 15, 13
FP is also going mainstream because it is the best way to write robust concurrent software. Here’s an example...

voiding Nulls

Option|+T]
{..}

Some[+T](value: T)
Option[T] {..}

None
Option[Nothing] {..}

60

Friday, November 15, 13

I am omitting MANY details. You can’t instantiate Option, which is an abstraction for a container/collection with 0 or 1 item. If you have one, it is in a Some, which must be a class, since it has
an instance field, the item. However, None, used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type
system, Nothing is a subclass of all other types, so it substitutes for instances of all other types. This combined with a property called covariant subtyping means that you could write “val x:
Option[String] = None” and it would type correctly, as None (and Option[Nothing]) is a subtype of Option[String]. Note that Options[+T] is only covariant in T because of the “+” in front of the

T.

Also, Option is an algebraic data type, and now you know the scala idiom for defining one.

// Java style (schematic)

Map[K, V]
get(key: K): V)= {
value || ;
)
// Scala style
Map|[K, V
get(key: K): Option[V]] = {
Some(value) || None;
13

Which is the better API?

61

In Use:

m =
Map("one" -> 1, "two" -> 2)

= m.get("four"):]{

Some(l)
None 0 // default

}

Use pattern matching to extract the value (or not)

62

Friday, November 15, 13

Here’s idiomatic scala for how to use Options. Our map if of type Map[String,Int]. We match on the Optio [V] returned by map.get. If Some(i), we use the integer value . If there is no value for
the key, we use 0 as the default. Note: Option has a short-hand method for this idiom: m.getOrElse(“four”, 0).

Option Details:

Option[+T]
{..}

All children must be defined
in the same file

63

Friday, November 15, 13

I am omitting MANY details. You can’t instantiate Option, which is an abstraction for a container/collection with 0 or 1 item. If you have one, it is in a Some, which must be a class, since it has
an instance field, the item. However, None, used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type
system, Nothing is a subclass of all other types, so it substitutes for instances of all other types. This combined with a proper called covariant subtyping means that you could write “val x:

Option[String = None” it would type correctly, as None (and Option[Nothing]) is a subtype of Option[String].

Case Classes

[:::j Some[+T] (value: T)

. keyword creates a
companion object with a
factory apply method, and
pattern matching support.

64

Case Classes

[:::j Some[+T] (value: T)

. keyword toString,
equals, and hashCode
methods to the class.

65

Case Classes

[:::j Some[+T] (value: T)

. keyword makes the
value argument a field

without the val keyword we
had before.

66

Some<T>
T value;

Some(T value){
.value value;

}
T get() { .value; }
equals(Object other) {
}
hashCode() {
}
String toString() {
. Boilerplate

67

Friday, November 15, 13

Typical Java boilerplate for a simple “struct-like” class.
Deliberately too small to read...

Or This:

Some[+T](value: T)

68

Option[Nothing] {..}

A singleton. Only one instance will exist.

69

Friday, November 15, 13

The scala runtime controls (lazy) instantiation of the single instance. Since the user can't instantiate the instance, objects can’t have constructor argument lists, but they are allowed to define
fields inside the class body (i.e., primary - and only - constructor body).

Nothing

None

Option[Nothing]] {..}

Special child type of all other
types. Used for this special
case where no actual
instances required.

70

Friday, November 15, 13

None is used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type system, Nothing is a subclass of all other
types, so it substitutes for instances of all other types. This combined with a proper called covariant subtyping means that you could write “val x: Option[String = None” it would type correctly,
as None (and Option[Nothing]) is a subtype of Option[String].

Scala’s
Model: Iraits

Composable Units of Behavior

71

Friday, November 15, 13
Fixes limitations of Java’s object model.

VWe would like to

compose objects
from mixins.

Java:What to Do!

Server

(extends) Logger { .. }

“Server is a Logger’?

Server

(nplEnents) Logger { ..)

Logger isn’t an interface!

73

Java’s object model

e Good
* Promotes abstractions.

 Bad

* No composition through
reusable mixins.

74

Traits

Like interfaces with
implementations or...

Traits

... like
abstract classes +
multiple inneritance
(if you prefer).

Logger as a Mixin:

Logger {
level: Level // abstract

Log(message: String) = {
Log4J.log(level, message)

}
}

Traits don’t have
constructors, but you
can still define fields.

Logger as a Mixin:

Logger {
level: Level

) mixed in Logging

server /
Server(..) Logger {

Llevel . abstract
} member defined
server. log("Internet down!!")

78

Friday, November 15, 13
Idh e declared a type, say “class ServerWithLogge () ends Server(...) with Logge { }b if you only need o

Note t
is defin d a body for this object, much the same way you define nonymous inner class and defin abstract

members.

Like Java 8 Interfaces!?

v’ Default methods
e Can define method bodies.

X Fields

* |8 fields remain static final,
not instance fields.

I

Concurrency

80

Friday, November 15, 13
FP is going mainstream because it is the best way to write robust concurrent software. Here’s an example...

NOTE: The full source for this example is at https://github.com/deanwampler/Presentations/tree/master/SeductionsOfScala/code-examples/actor.

VWhen you
share mutable
state...

Hic sunt dracones
(Here be dragons)

BRIAN GOETZ

WITH TiIM PEIERLS, JOSHUA BLOCH,
JOSEPH BOWBEER, DAVID HOLMES,
AND DOUG LEA

8l

Friday, November 15, 13
It’s very hard to do multithreaded programming robustly. We need higher levels of abstraction, like Actors.

A
vy

Actor Model

* Message passing between
autonomous actors.

* No shared (mutable) state.

82

Actor Model

* First developed in the 70’s by
Hewitt, Agha, Hoare, etc.

* Made “famous’ by Erlang.

83

Akka

* Scala’s Actor library.

* Supports supervision for
resilience.

* Supports distribution and
clustering.

e akka.io

84

The Distributed Programming framework for Scala, which also support Java!

http://akka.io/
http://akka.io/

Akka

* Also has a complete Java API.

e akka.io

85

http://akka.io/
http://akka.io/

2 Actors:

Friday, November 15, 13
Our example. An actor for drawing geometric shapes and another actor that drives it.

shapes

Point (
X: Double, y: Double)

Shape {
draw()

) abstract draw method

Hierarchy of geometric shapes

87

Copyright © 2009-2013, Dean Wampler, All Rights Reserved
Friday, November 15, 13

“Case” classes for 2-dim. points and a hierarchy of shapes. Note the abstract draw method in Shape. The “case” keyword makes the arguments “vals” by default, adds factory, equals, etc.
methods. Great for “structural” objects.

(Case classes automatically get generated equals, hashCode, toString, so-called “apply” factory methods - so you don’t need “new” - and so-called “unapply” methods used for pattern
matching.)

NOTE: The full source for this example is at https://github.com/deanwampler/Presentations/tree/master/SeductionsOfScala/code-examples/actor.

Circle(
center:Point, radius:Double)
Shape {

draw()) = .. concrete draw

h methods

Rectangle(
LL:Point, h:Double, w:Double)
Shape {

88 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

i November 15, 13

Case classes for 2-dim. points and a hierarchy of shapes. Note the abstract draw method in Shape.
F

- S.
or our example, the draw methods will just do “printin(“drawing: “+this.toString)”.

Use the Akka
Shapes Actor library

akka.actor.Actor

Actor

Drawer Actor {
receive = {

receive and handle
each message

Actor for drawing shapes

89 Copyright © 2009-2013, Dean Wampler, All Rights Reserved
Friday, November 15, 13

An actor that waits for messages containing shapes to draw. Imagine this is the window manager on your computer. It loops indefinitely, blocking until a new message is received...

Note: This example uses the Akka Frameworks Actor library (see http://akka.io), which has now replaced Scala’s original actors library. So, some of the basic actor classes are part of Scala’s
library, but we’ll use the full Akka distibution.

. receive
receive = { method

s :Shape
print("-> "); s.draw()
sender ! ("Shape drawn.")

"ex1it"
println("-> exiting...")
sender ! ("good bye!")

X // default
println("-> Error: " + X)
sender ! ("Unknown: " + X)

20 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

receive = {

case s:Shape =>
;THTawi% _
pe drawrSSSaiemn

print("-> ");
sender ! ("Sha

1 - 1 -—eeee
exit matching

println("-> exiting)
sender | "goog/byéfj;T
— // default

println("-> Error: " X)
sender ! ("Unknown: " + X)

91 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

deN vember 15, 13

Each pat d nd the f t match “wins”. The messages we expec a Shape object, the “exit” string or anything else. Hence, the last “case” is a “default” that catches anything,
we we treat as a expected e

receive = { draw shape
s:Shape & send reply

print("-> "); s.draw()
sender ! ("Shape drawn.")

println("-> exiting...")
sender ! ("good bye!")

X // deTau
println("-> Error: " + X)
sender ! ("Unknown: " + X)

done

}

sender ! sends a reply

unrecognized message

92 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

shapes
akka.actor.Actor
Drawer Actor {
receive = {
s :Shape
print("-> "); s.draw()
sender ! ("Shape drawn.")
"ex1t"
println("-> exiting...")
sender ! ("good bye!")
X // default
println("-> Error: " + Xx)
sender ! ("Unknown: " + Xx)

Altogether

93 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

Friday, November 15, 13
Even compressed on a presentation slide, there isn’t a lot of code!

shapes.
akka.actor.
com.typesafe.config.

Driver {
main(args:Array[String])={
sys = ActorSystem(..)
driver=sys.actorOf[Driver]
drawer=sys.actorOf[Drawer]
driver ! Start(drawer)

}
) Apbplication driver

%4 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

Friday, November 15, 13
Here’s the driver actor. It is declared as an “object” not a class, making it a singleton

When we start, we send the “go!” message to the Driver actor that is defined on t
The “I” is the message send method (stolen from Erlang).

shapes.
akka.actor.
com.typesafe.config.

Driver { Singleton for main

main(args:Array[String])={
sys = ActorSystem(...
driver=sys.actorOf[Driver]
drawer=sys.actorOf[Drawer]
ariver ! arctliarawer Instantiate
actors

) Send a message to
} start the actors

95 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

Friday, November 15, 13

Here’s the driver actor. It is declared as an “object” not a class, making it a singleton
When we start, we send the “go!” message to the Driver actor that is defined on the next slide. This starts the asynchronou
The “I” is the message send method (stolen from Erlang).

) Companion class

Driver Actor {
drawer: Option[Drawer] =
None

receive = {

%6 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

Friday, November 15, 13

Here’s the driver actor “companion class” for the object on the previous slide that held main.
Normally, you would not do such synchronous call and response coding, if avoidable, as it defeats the purpose of using actors for concurrency.

receive = {

Start(d) — Sde:’.\t/:ry
drawer = Some(d)
d ! Circle(Po1int(..),..)
d ! Rectangle(..)
d |
d ! "exit" T iﬁZ@Z
"good bye!"

println("<- cl 1ng up..")

context.system. shutdown ()
other

println("<- " + other)

97 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

Circle(Point(..),..)
Rectangle(..)

O O O O

"ex1t"

-> drawing: Circle(Point(0.0,0.0),1.0)
-> drawilng: Rectangle(P01nt(0 0,0.0),
2.0,5.0)

-> Error: 3.14159

-> exiting... “<-” and “->” messages
<- Shape drawn.

<- Shape drawn. may be interleaved.
<- Unknown: 3.14159

<- cleaning up...

98 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

Friday, November 15, 13
Note that the -> messages will always be in the same order and the <- will always be in the same order, but the two groups may be interleaved!!

// Drawlng.receilve
receive = { «—
s :Shape

S.d raw() D — Object—

self.reply(".") oriented-style
pbolymorphism

Functional-style
battern matching

“Switch” statements are
not (necessarily) evil

99 Copyright © 2009-2013, Dean Wampler, All Rights Reserved

Friday, November 15, 13
The power of combining the best features of FP (pattern matching and “destructuring”) and OOP (polymorphic behavior).

100

Friday, November 15, 13

Scala is...

101

Friday, November 15, 13

a better Java,

object-oriented
and

functional,

succinct,
elegant,
and
powerful.

Typesafe

Questions!

Dean Wampler

dean(@deanwampler.com
(@deanwampler

polyglotprogramming.com/talks

November 19,2013 ©
SOME RIGHTS RESERVED

105
Friday, November 15, 13

The online version contains more material. You can also find this talk and the code used for

many of the examples at github.com/deanwampler/Presentations/tree/master/
SeductionsOfScala.

Copyright © 2010-2013, Dean Wampler. Some Rights Reserved - All use of the photographs

and image backgrounds are by written permission only. The content is free to reuse, but
attribution is requested.

http://creativecommons.orqg/licenses/by-nc-sa/2.0/legalcode

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Friday, November 15, 13

Extra Slides

106

Friday, November 15, 13

. - J o 4 ff __‘_’_-—)
‘—/— K

—— ’ —
e ’
— Ry & - :
~—— T —
Sy T il . () -
_> Ve
-~ | c
P, \ - -
| & = . .—‘Q
<\\(_.
£ i —a
a - A | —
‘ | p— I e
R C
- —— <

g -~
Naall
- >
<>
. e T ——

Example

Queue[T] {
get(): T
put(t: T)

A pure abstraction (in this case...)

108

Log put

QueuelLogging[T]
Queue[T] {
put (
t: T) = {
printiln("put("+t+")")
put(t)

109

Friday, November 15, 13

(We’re ignoring “get”...) “Super” is not yet bound, because the “super.put(t)” so far could only call the abstract method in Logging, which is not allowed. Therefore, “super” will be bound
“later”, as we’ll so. So, this method is STILL abstract and it’s going to override a concrete “put

real soon now”.

Log put

QueuelLogging[T]
Queue[T] {

(abstract override)def put(
t: 1) = {
println("put("+t+")")

put(t)

}}@\

What is super bound to??

Friday, Nov mber15,13

(We'r g ing “get)Sp ot yet bou db
“ater”, || s this hd STILL abst

StandardQueue[T]
Queue[T] {
.. .ArrayBuffer
ab =
ArrayBuffer|[T]
put(t: T) = ab += t
get() = ab.remove ()

Concrete (boring) implementation

Sq = StandardQueue[Int]
QueuelLogging[Int]

sq.put (10) // #1
println(sq.get()) // #2
// => put(10) (on #1)
// => 10 (on #2)

Example use

112

Mixin composition;

/ no class required

Sq = StandardQueue[Int]
QueuelLogging[Int]

sq.put(10) // #1
println(sq.get()) // #2
// => put(10) (on #1)
// => 10 (on #2)

Example use

113

Iraits are a powerful
composition
mechanism!

Friday, November 15, 13

For “Comprehensions™

L = List(
Some("a"), None, Some("b"),
None, Some("c"))

(Some(s) 1) S
// List(a, b, c)“\\

Pattern match; only

take elements of | that
No if statement are Somes.

Friday, November 15, 13

We’re using the type system and pattern matching built into case classes to discriminate elements in the list. No conditional statements require
This is just the tip of the iceberg of what “for comprehensions” can do and not only w

Equivalent to this:

L = List(
Some("a"), None, Some("b"),
None, Some("c"))

(0 l: x <- 0) X
// List(a, b, c)“\\

Second clause extracts
from option; Nones
dropped

Friday, November 15, 13

We’re using the type system and pattern matching built into case classes to discriminate elements in the list. No conditional statements require
This is just the tip of the iceberg of what “for comprehensions” can do and not only w

Friday, November 15, 13

| e ——
- -
P . —
|| -
. lb NN B ©
—
T -
<> " < —~
<_ -y
‘\; ~-\\—
—— -
i, O
Pas— E
Q) - -
- >

NYNTE
| €

DSLs Ug First—CIa nction =

K

)

T

e/") A-

\.'

L2

PV il At

Recall Infix Operator
Notation:

"hello" + "world"
"hello".+("world")

also the same as

"hello".+{"world"}

Why is using {...} useful??

119

Make your own

controls
// Print with line numbers.

Loop (File("..")) {
(n, line)

format("%3d: %s\n", n, line)

120

Make your own

controls
// Print with line numbers.

/control? / File to loop through

Loop (File(".."))

(n, line) «—

Arguments passed to...

format("%3d: %s\n", n, line)

what do for each line

121

How do we do this?

Output on itself:

 // Print with line ..

. Loop(new File("..")) {
(n, line) =>

format("%3d: %s\n", ..

oO~NNOUL S WDN -

.}

122

java.lo.

Loop {

Loop(file: File,
f: (Int,String) Unit) =

123

java.io O «——_like * in Java

smgleton class == | object

GETEE Loop |

two parameters

/
file: File

f: (Int,String) Unit]) =
{..} T X

1 : - , like “void”
function taking line # and line

124

Friday, November 15, 13

Singleton “objects” replace Java statics (or Ruby class methods and attributes). As written, “loop” takes two parameters, the file to “humberate” and a the function that takes the line number
and the corresponding line, does something, and returns Unit. User’s specify what to do through “”.

loop (File("..")) {
(n, Lline) => ..

}
Loop {

two parameters

!
loop(file: File[,
f: (Int,String) Unit) =

125

Loop (

}
Loop {

Loop(file:

File("..")) {
(n, Lline) => ..

two parameters lists

|
File) ()

(Int,String) Unit)

126

Why 2 Param. Lists!

// Print with line numbers.
Loop. Loop —

loop (File(".."))
(n, line) T [st param.:

a file
format("%3d: %s\n", n, line)

Import

2nd parameter: a function literal

}

{

}

Loop {

Loop(file: File) (
f: (Int,String) Unit) =

reader

BufferedReader (
FileReader(file))
doLoop(1:Int) = {..}

doLoop (1)

—

128

nested method

Finishing Numberator...

Loop {

doLoop(n: Int):Unit ={
L = reader.readlLine()

(L !=) 1
f(n, L)
doLoop(n+1) fand reader visible
} T from outer scope
} recursive

Finishing Numberator...

129

doLoop is recursive.
There is no mutable
loop counter!

A goal of Functional Programming

}

It is [ail Recursive

doLoop(n:

aoLoop(n+1)

Int):Un1it ={

131

Scala optimizes tail
recursion into loops

Friday, November 15, 13

SR

. e S
| y ™ *\
r—‘t:;— : —
e —
2 -

—
—
— ("—'
-
> = g

Since functions
are objects,
they could have
mutable state.

Counter[A](inc:Int =1)
Functionl[A,A] {
count =
apply(a:A) = {
count += 1nc
a

}
}

f = Counter([String] (2)
11 "a' i "b" :: Nil
12 = 11 map {s f(s)}

- i1 i1 i1 b i1
() «// List("a",)
P-style functions, where functions are usually side-effect free, but you have this option. Note that this is like a normal closure in FP.

. t -L
Friday, November 15, 13
ur functions can have state! Not the usual thin

