
The Seductions of
Scala

1

Dean Wampler
dean.wampler@typesafe.com
@deanwampler
polyglotprogramming.com/talks

November 19, 2013

Friday, November 15, 13

The online version contains more material. You can also find this talk and the code used for
many of the examples at github.com/deanwampler/Presentations/tree/master/
SeductionsOfScala.
Copyright © 2010-2013, Dean Wampler. Some Rights Reserved - All use of the photographs
and image backgrounds are by written permission only. The content is free to reuse, but
attribution is requested.
http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2

<shameless-plug/>

Dean Wampler

Functional
Programming

for Java Developers

Friday, November 15, 13
Available now from oreilly.com, Amazon, etc.

Why do we
need a new
language?

3

Friday, November 15, 13
I picked Scala to learn in 2007 because I wanted to learn a functional language. Scala appealed because it runs on the JVM and interoperates with
Java. In the end, I was seduced by its power and flexibility.

#1
We need
Functional

Programming
…

4

Friday, November 15, 13
First reason, we need the benefits of FP.

… for concurrency.
… for concise code.
… for correctness.

5

Friday, November 15, 13

#2
We need a better

Object Model
…

6

Friday, November 15, 13

… for composability.
… for scalable designs.

7

Friday, November 15, 13
Java’s object model (and to a lesser extent, C#‘s) has significant limitations.

Scala’s Thesis:
Functional Prog.

complements
Object-Oriented

Prog.
Despite surface contradictions...

8

Friday, November 15, 13

We think of objects as mutable and methods as state-modifying, while FP emphasizes immutability, which reduces bugs and often simplifies
code. Objects don’t have to be mutable!

But we need
to keep

our investment
in Java.

9

Friday, November 15, 13
We rarely have the luxury of starting from scratch...

Scala is...

• A JVM language.

• Functional and object oriented.

• Statically typed.

• An improved Java.

10

Friday, November 15, 13

There has also been work on a .NET version of Scala, but it seems to be moving slowly.

Martin Odersky

• Helped design java generics.

• Co-wrote GJ that became
javac (v1.3+).

• Understands CS theory and
industry’s needs.

11

Friday, November 15, 13
Odersky is the creator of Scala. He’s a prof. at EPFL in Switzerland. Many others have contributed to it, mostly his grad. students.
GJ had generics, but they were disabled in javac until v1.5.

Objects
can be

Functions
12

Friday, November 15, 13
Not all objects are functions, but they can be...

13

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

Friday, November 15, 13
A simple wrapper around your favorite logging library (e.g., Log4J).

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

14

makes level a field

class body is the
“primary” constructor

method

Friday, November 15, 13
Note how variables are declared, “name: Type”.

val error = new Logger(ERROR)

15

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

…
error("Network error.")

Friday, November 15, 13
After creating an instance of Logger, in this case for Error logging, we can “pretend” the object is a function!

16

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

…
error("Network error.")

apply is called

Friday, November 15, 13
Adding a parameterized arg. list after an object causes the compiler to invoke the object’s “apply” method.

17

…
error("Network error.")

“function object”

When you put
an argument list
after any object,
apply is called.

Friday, November 15, 13
This is how any object can be a function, if it has an apply method. Note that the signature of the argument list must match the arguments specified. Remember, this is a statically-typed
language!

Functions are
Objects

18

Friday, November 15, 13
While an object can be a function, every “bare” function is actually an object, both because this is part of the “theme” of scala’s unification of OOP and FP, but practically, because the JVM
requires everything to be an object!

First, let’s
discuss

Lists and Maps
19

Friday, November 15, 13

Lists

The same as this “list literal” syntax:

20

val list = List(1, 2, 3, 4, 5)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

List.apply()

Friday, November 15, 13
Why is there no “new”? You can guess what’s going on based on what we’ve already said. There must be some object named “List” with an apply method.
In fact, there is a “singleton” object named List that is a “companion” of the List class. This companion object has an apply method that functions as a factory for creating lists.

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

empty list

21

“cons”

tailhead

Friday, November 15, 13
We build up a literal list with the “::” cons operator to prepend elements, starting with an empty list, the Nil “object”.

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

No, just method calls!

22

Baked into the
Grammar?

Friday, November 15, 13
But this isn’t something backed into the grammar; we’re just making method calls on the List type!

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

23

Method names can contain almost any
character.

Friday, November 15, 13
There are some restrictions, like square brackets [and], which are reserved for other uses.

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

24

Any method ending in “:” binds to the right!

Friday, November 15, 13
“::” binds to the right, so the second form shown is equivalent to the first.

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

25

If a method takes one argument, you can drop
the “.” and the parentheses, “(” and “)”.

Friday, November 15, 13
Infix operator notation.

"hello" + "world"

is actually just

26

Infix Operator Notation

"hello".+("world")

Friday, November 15, 13
Note the “infix operator notation”; x.m(y) ==> x m y. It’s not just a special case backed into the language grammar (like Java’s special case for string addition). Rather, it’s a general feature of
the language you can use for your classes.

Note:
 Int, Double, etc.

are true objects, but
Scala compiles them

to primitives.
27

Friday, November 15, 13
If you know Java, you might wonder if these integer lists were actually List<Integer>, the boxed type. No. At the syntax level, Scala only has object (reference) types, but it compiles these
special cases to primitives automatically.

28

val l = List.empty[Int]

An empty list of Ints.

This means that
generics just work.

Java: ... List<Int>

Friday, November 15, 13
You don’t have to explicitly box primitives; the compiler will optimize these objects to primitives (with some issues involving collections...)
Note the syntax for parameterizing the type of List, [...] instead of <...>.

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

Friday, November 15, 13
Maps also have a literal syntax, which should look familiar to you Ruby programmers ;) Is this a special case in the language grammar?

(Why is there no “new” again? There is a companion object named “Map”, like the one for List, with an apply method that functions as a factory.)

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

No! Just method calls...
30

“baked” into the
language grammar?

Friday, November 15, 13
Scala provides mechanisms to define convenient “operators” as methods, without special exceptions baked into the grammer (e.g., strings and “+” in Java).

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

31

val map = Map(
 Tuple2("name", "Dean"),
 Tuple2("age", 39))

What we like
to write:

What Map.apply()
actually wants:

Friday, November 15, 13

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

32

val map = Map(
 ("name", "Dean"),
 ("age", 39)) More succinct

syntax for Tuples

What we like
to write:

What Map.apply()
actually wants:

Friday, November 15, 13
We won’t discuss implicit conversions here, due to time....

"name" -> "Dean"

33

We need to get from this,

to this,

Tuple2("name", "Dean")

There is no String.-> method!

Friday, November 15, 13
We’ve got two problems:
1. People want to pretend that String has a -> method.
2. Map really wants tuple arguments...

Implicit Conversions

34

implicit class ArrowAssoc[T1](
 t:T1) {
 def -> [T2](t2:T2) =
 new Tuple2(t1, t2)
}

Friday, November 15, 13
String doesn’t have ->, but ArrowAssoc does! Also, it’s -> returns a Tuple2. So we need to somehow convert our strings used as keys, i.e., on the left-hand side of the ->, to ArrowAssoc
object, then call -> with the value on the right-hand side of the -> in the Map literals, and then we’ll get the Tuple2 objects we need for the Map factory method.

The trick is to declare the class as “implicit”. The compiler will look for any implicits in scope and then call them to convert the object without a desired method (a string and -> in our case) to
an object with that method (ArrowAssoc). Then the call to -> can proceed, which returns the tuple we need!

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Back to Maps

35

val map = Map(
 Tuple2("name", "Dean"),
 Tuple2("age", 39))

An ArrowAssoc is created for each left-
hand string, then -> called.

Friday, November 15, 13
We won’t discuss implicit conversions here, due to time....

Similar internal DSLs
have been defined
for other types,
and in 3rd-party

libraries.
36

Friday, November 15, 13
This demonstrates a powerful feature of Scala for constructing embedded/internal DSLs.

Back to
Functions

as
Objects37

Friday, November 15, 13

Classic Operations on
Container Types

38

List, Map, ... map

fold/
reduce

filter

Friday, November 15, 13
Collections like List and Map are containers. So are specialized containers like Option (Scala) or Maybe (Haskell) and other “monads”.

39

list map {
 s => s.toUpperCase
}

// => "A" :: "B" :: Nil

val list = "a" :: "b" :: Nil

Friday, November 15, 13
Let’s map a list of strings with lower-case letters to a corresponding list of uppercase strings.

40

list map {
 s => s.toUpperCase
}

map called on list
(dropping the “.”)

function
argument list

function body

argument to map: can
use “{...}” or “(...)”

“function literal”

Friday, November 15, 13
Note that the function literal is just the “s => s.toUpperCase”. The {…} are used like parentheses around the argument to map, so we get a block-like syntax.

41

list map {
 s => s.toUpperCase
}

list map {
 (s:String) => s.toUpperCase
}

Typed Arguments

Explicit type

inferred type

Friday, November 15, 13
We’ve used type inference, but here’s how we could be more explicit about the argument list to the function literal. (You’ll find some contexts where you have to specify these types.)

42

list map {
 s => s.toUpperCase
}

list map (_.toUpperCase)

But wait! There’s more!

Placeholder

Friday, November 15, 13
We have this “dummy” variable “s”. Can we just eliminate that boilerplate?
I used an informal convention here; if it all fits on one line, just use () instead of {}. In fact, you can use () across lines instead of {}. (There are two special cases where using () vs. {} matters:
1) using case classes, the literal syntax for a special kind of function called a PartialFunction - {} are required, and 2) for comprehensions, - as we’ll see.)

43

list map (s => println(s))

list map (println)
// or
list map println

“Point-free” style

Watch this...

Friday, November 15, 13
Scala doesn’t consistently support point-free style like some languages, but there are cases like this where it’s handy; if you have a function that takes a single argument, you can simply
pass the function as a value with no reference to explicit variables at all!

So far,
we have used
type inference

 a lot...

44

Friday, November 15, 13

How the Sausage Is Made

class List[A] {
 …
 def map[B](f: A => B): List[B]
 …
}

45

Declaration of map

The function
argument

Parameterized type

map’s return type

Friday, November 15, 13
Here’s the declaration of List’s map method (lots of details omitted…). Scala uses [...] for parameterized types, so you can use “<“ and “>” for method names!
Note that explicitly show the return type from map (List[B]). In our previous examples, we inferred the return type. However, Scala requires types to be specified on all method arguments!

How the Sausage Is Made

trait Function1[-A,+R] {

 def apply(a:A): R
 …
}

46

No method body,
therefore it is abstract

like an abstract class “contravariant”,
“covariant” typing

Friday, November 15, 13
We look at the actual implementation of Function1 (or any FunctionN). Note that the scaladocs have links to the actual source listings.
(We’re omitting some details…) The trait declares an abstract method “apply” (i.e., it doesn’t also define the method.)
Traits are a special kind of abstract class/interface definition, that promote “mixin composition”. (We won’t have time to discuss…)

(s:String) => s.toUpperCase

47

What you write.

new Function1[String,String] {
 def apply(s:String) = {
 s.toUpperCase
 }
}

What the compiler
generates

An anonymous class

What the Compiler Does

No return
needed

Friday, November 15, 13
You use the function literal syntax and the compiler instantiates an anonymous class using the corresponding FunctionN trait, with a concrete definition of apply provided by your function
literal.

Functions are Objects

48

list map {
 s => s.toUpperCase
}

// => "A" :: "B" :: Nil

val list = "a" :: "b" :: Nil

Function “object”

Friday, November 15, 13
Back to where we started. Note again that we can use “{…}” instead of “(…)” for the argument list (i.e., the single function) to map. Why, to get a nice block-like syntax.

Big Data DSLs

49

Friday, November 15, 13
FP is going mainstream because it is the best way to write robust data-centric software, such as for “Big Data” systems like Hadoop. Here’s an example...

Scalding: Scala DSL
for Cascading

• FP idioms are a better fit for
data than objects.

• https://github.com/twitter/scalding

• http://blog.echen.me/2012/02/09/
movie-recommendations-and-more-
via-mapreduce-and-scalding/

50

Friday, November 15, 13
Cascading is a Java toolkit for Hadoop that provides higher-level abstractions like pipes and filters composed into workflows. Using Scala makes it much easier to write concise, focused
code.
Scalding is one of many Scala options. See also Scrunch, a Scala DSL for the Java Crunch library, and Spark, a different framework that can work with the Hadoop Distributed File System
(HDFS).

https://github.com/twitter/scalding
https://github.com/twitter/scalding
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/
http://blog.echen.me/2012/02/09/movie-recommendations-and-more-via-mapreduce-and-scalding/

Let’s look at
the classic
Word Count
algorithm.

51

Friday, November 15, 13

class WordCount(args : Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.toLowerCase.split("\\s")
 }.groupBy('word) {
 group => group.size
 }.write(Tsv(args("output")))
}

52
Scalding

Friday, November 15, 13
Homework: Find the Hadoop Java API equivalent implementation.

class WordCount(args : Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.toLowerCase.split("\\s")
 }.groupBy('word) {
 group => group.size
 }.write(Tsv(args("output")))
}

53

A workflow “job”.

Friday, November 15, 13

class WordCount(args : Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.toLowerCase.split("\\s")
 }.groupBy('word) {
 group => group.size
 }.write(Tsv(args("output")))
}

54

Read the text file
given by the “--input

…” argument.

Friday, November 15, 13

class WordCount(args : Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.toLowerCase.split("\\s")
 }.groupBy('word) {
 group => group.size
 }.write(Tsv(args("output")))
}

55

Tokenize lines into
lower-case words.

Friday, November 15, 13

class WordCount(args : Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.toLowerCase.split("\\s")
 }.groupBy('word) {
 group => group.size
 }.write(Tsv(args("output")))
}

56

Group by word and
count each group size.

Friday, November 15, 13

class WordCount(args : Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.toLowerCase.split("\\s")
 }.groupBy('word) {
 group => group.size
 }.write(Tsv(args("output")))
}

57

Write to tab-delim. output.

Friday, November 15, 13

For more on
Scalding see my talk:

Scalding for Hadoop

58

Friday, November 15, 13
http://polyglotprogramming.com/papers/ScaldingForHadoop.pdf

http://polyglotprogramming.com/papers/ScaldingForHadoop.pdf
http://polyglotprogramming.com/papers/ScaldingForHadoop.pdf

More
Functional

Hotness
59

Friday, November 15, 13
FP is also going mainstream because it is the best way to write robust concurrent software. Here’s an example...

sealed abstract class Option[+T]
{…}

case class Some[+T](value: T)
 extends Option[T] {…}

case object None
 extends Option[Nothing] {…}

Avoiding Nulls

60

Friday, November 15, 13
I am omitting MANY details. You can’t instantiate Option, which is an abstraction for a container/collection with 0 or 1 item. If you have one, it is in a Some, which must be a class, since it has
an instance field, the item. However, None, used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type
system, Nothing is a subclass of all other types, so it substitutes for instances of all other types. This combined with a property called covariant subtyping means that you could write “val x:
Option[String] = None” and it would type correctly, as None (and Option[Nothing]) is a subtype of Option[String]. Note that Options[+T] is only covariant in T because of the “+” in front of the
T.

Also, Option is an algebraic data type, and now you know the scala idiom for defining one.

// Java style (schematic)
class Map[K, V] {
 def get(key: K): V = {
 return value || null;
 }}

61
Which is the better API?

// Scala style
class Map[K, V] {
 def get(key: K): Option[V] = {
 return Some(value) || None;
 }}

Friday, November 15, 13
Returning Option tells the user that “there may not be a value” and forces proper handling, thereby drastically reducing sloppy code leading to NullPointerExceptions.

val m =
 Map("one" -> 1, "two" -> 2)
…
val n = m.get("four") match {
 case Some(i) => i
 case None => 0 // default
}

62

Use pattern matching to extract the value (or not)

In Use:

Friday, November 15, 13
Here’s idiomatic scala for how to use Options. Our map if of type Map[String,Int]. We match on the Option[V] returned by map.get. If Some(i), we use the integer value I. If there is no value for
the key, we use 0 as the default. Note: Option has a short-hand method for this idiom: m.getOrElse(“four”, 0).

sealed abstract class Option[+T]
{…}

Option Details: sealed

63

All children must be defined
in the same file

Friday, November 15, 13
I am omitting MANY details. You can’t instantiate Option, which is an abstraction for a container/collection with 0 or 1 item. If you have one, it is in a Some, which must be a class, since it has
an instance field, the item. However, None, used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type
system, Nothing is a subclass of all other types, so it substitutes for instances of all other types. This combined with a proper called covariant subtyping means that you could write “val x:
Option[String = None” it would type correctly, as None (and Option[Nothing]) is a subtype of Option[String].

case class Some[+T](value: T)

Case Classes

64

• case keyword creates a
companion object with a
factory apply method, and
pattern matching support.

Friday, November 15, 13

case class Some[+T](value: T)

Case Classes

65

• case keyword toString,
equals, and hashCode
methods to the class.

Friday, November 15, 13

case class Some[+T](value: T)

Case Classes

66

• case keyword makes the
value argument a field
without the val keyword we
had before.

Friday, November 15, 13

class Some<T>
 private T value;

 public Some(T value){
 this.value = value;
 }

 public void T get() { return this.value; }

 public boolean equals(Object other) {
 ...
 }

 public int hashCode() {
 ...
 }

 public String toString() {
 ...
 }
}

Boilerplate
67

Friday, November 15, 13
Typical Java boilerplate for a simple “struct-like” class.
Deliberately too small to read...

case class Some[+T](value: T)

Or This:

68

Friday, November 15, 13

case object None
 extends Option[Nothing] {…}

Object

69

A singleton. Only one instance will exist.

Friday, November 15, 13
The scala runtime controls (lazy) instantiation of the single instance. Since the user can’t instantiate the instance, objects can’t have constructor argument lists, but they are allowed to define
fields inside the class body (i.e., primary - and only - constructor body).

case object None
 extends Option[Nothing] {…}

Nothing

70

Special child type of all other
types. Used for this special

case where no actual
instances required.

Friday, November 15, 13
None is used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type system, Nothing is a subclass of all other
types, so it substitutes for instances of all other types. This combined with a proper called covariant subtyping means that you could write “val x: Option[String = None” it would type correctly,
as None (and Option[Nothing]) is a subtype of Option[String].

Scala’s Object
Model: Traits

71

Composable Units of Behavior

Friday, November 15, 13
Fixes limitations of Java’s object model.

We would like to
compose objects

from mixins.

72

Friday, November 15, 13

Java: What to Do?
class Server
 extends Logger { … }

73

class Server
 implements Logger { … }

“Server is a Logger”?

Logger isn’t an interface!

Friday, November 15, 13
Made-up example Java type. The “is a” relationship makes no sense, but the Logger we implemented earlier isn’t an interface either.

Java’s object model

• Good

• Promotes abstractions.

• Bad

• No composition through
reusable mixins.

74

Friday, November 15, 13
Chances are, the “logging” and “filtering” behaviors are reusable, yet Java provides no built-in way to “mix-in” reusable implementations. Ad hoc mechanisms must be used.

Like interfaces with
implementations or...

75

Traits

Friday, November 15, 13
One way to compare traits to what you know...

… like
abstract classes +

multiple inheritance
(if you prefer).

76

Traits

Friday, November 15, 13
… and another way.
It’s not an unconstrained form of multiple inheritance like C++. There is no “diamond of death” problem.

77

trait Logger {
 val level: Level // abstract

 def log(message: String) = {
 Log4J.log(level, message)
 }
}

Logger as a Mixin:

Traits don’t have
constructors, but you
can still define fields.

Friday, November 15, 13
I changed some details compared to our original Logger example. Traits don’t have constructor argument lists (for various technical reasons), but we can define fields for them, as shown.
Here, I make the field abstract, which means that any class that mixes in the trait will have to define “level”.

val server =
 new Server(…) with Logger {
 val level = ERROR
 }
server.log("Internet down!!")

78

trait Logger {
 val level: Level // abstract
 …
}

Logger as a Mixin:

mixed in Logging

abstract
member defined

Friday, November 15, 13
Note that could have declared a type, say “class ServerWithLogger(…) extends Server(...) with Logger {…}, but if you only need one instance, we can just do it “on the fly!” Note that the level
is defined as a body for this object, much the same way you define an anonymous inner class and define its abstract members.

Like Java 8 Interfaces?

✓ Default methods

• Can define method bodies.

X Fields

• J8 fields remain static final,
not instance fields.

79

Friday, November 15, 13
Java 8 interfaces aren’t quite the same as traits. Fields remain static final, for backwards compatibility, but now you can define method bodies, which will be the defaults used if a class
doesn’t override the definition.

Actor
Concurrency

80

Friday, November 15, 13
FP is going mainstream because it is the best way to write robust concurrent software. Here’s an example…

NOTE: The full source for this example is at https://github.com/deanwampler/Presentations/tree/master/SeductionsOfScala/code-examples/actor.

When you
share mutable

state...

Hic sunt dracones
(Here be dragons)

81

Friday, November 15, 13
It’s very hard to do multithreaded programming robustly. We need higher levels of abstraction, like Actors.

Actor Model

• Message passing between
autonomous actors.

• No shared (mutable) state.

82

Friday, November 15, 13
Each actor might mutate state itself, but the goal is to limit mutations to just a single actor, which is thread safe. All other actors send messages to this actor to invoke a mutation or read the
state.

Actor Model

• First developed in the 70’s by
Hewitt, Agha, Hoare, etc.

• Made “famous” by Erlang.

83

Friday, November 15, 13
The actor model is not new!!

Akka

• Scala’s Actor library.

• Supports supervision for
resilience.

• Supports distribution and
clustering.

• akka.io
84

Friday, November 15, 13
The Distributed Programming framework for Scala, which also support Java!

http://akka.io/
http://akka.io/

Akka

• Also has a complete Java API.

• akka.io

85

Friday, November 15, 13
The Distributed Programming framework for Scala, which also support Java!

http://akka.io/
http://akka.io/

“self” Display

draw

draw

??? error!

exit“exit”

2 Actors:

86

Friday, November 15, 13
Our example. An actor for drawing geometric shapes and another actor that drives it.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

package shapes

case class Point(
 x: Double, y: Double)

abstract class Shape {
 def draw()
}

abstract draw method

Hierarchy of geometric shapes
87

Friday, November 15, 13
“Case” classes for 2-dim. points and a hierarchy of shapes. Note the abstract draw method in Shape. The “case” keyword makes the arguments “vals” by default, adds factory, equals, etc.
methods. Great for “structural” objects.
(Case classes automatically get generated equals, hashCode, toString, so-called “apply” factory methods - so you don’t need “new” - and so-called “unapply” methods used for pattern
matching.)

NOTE: The full source for this example is at https://github.com/deanwampler/Presentations/tree/master/SeductionsOfScala/code-examples/actor.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

case class Circle(
 center:Point, radius:Double)
 extends Shape {
 def draw() = …
}

case class Rectangle(
 ll:Point, h:Double, w:Double)
 extends Shape {
 def draw() = …
}

concrete draw
methods

88

Friday, November 15, 13
Case classes for 2-dim. points and a hierarchy of shapes. Note the abstract draw method in Shape.
For our example, the draw methods will just do “println(“drawing: “+this.toString)”.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

package shapes
import akka.actor.Actor

class Drawer extends Actor {
 def receive = {
 …
 }
}

89

Use the Akka
Actor library

Actor

receive and handle
each message

Actor for drawing shapes
Friday, November 15, 13
An actor that waits for messages containing shapes to draw. Imagine this is the window manager on your computer. It loops indefinitely, blocking until a new message is received...

Note: This example uses the Akka Frameworks Actor library (see http://akka.io), which has now replaced Scala’s original actors library. So, some of the basic actor classes are part of Scala’s
library, but we’ll use the full Akka distibution.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
}

90

receive
method

Friday, November 15, 13
“Receive” blocks until a message is received. Then it does a pattern match on the message. In this case, looking for a Shape object, the “exit” message, or an unexpected object, handled
with the last case, the default.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
}

91

pattern
matching

Friday, November 15, 13
Each pattern is tested and the first match “wins”. The messages we expect are a Shape object, the “exit” string or anything else. Hence, the last “case” is a “default” that catches anything,
we we treat as an unexpected error.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
}

done

unrecognized message

draw shape
& send reply

92
sender ! sends a reply

Friday, November 15, 13
After handling each message, a reply is sent to the sender, using “self” to get the handle to our actor “nature”.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Altogether
93

package shapes
import akka.actor.Actor
class Drawer extends Actor {
 receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
 }
}

Friday, November 15, 13
Even compressed on a presentation slide, there isn’t a lot of code!

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

import shapes._
import akka.actor._
import com.typesafe.config._

object Driver {
 def main(args:Array[String])={
 val sys = ActorSystem(…)
 val driver=sys.actorOf[Driver]
 val drawer=sys.actorOf[Drawer]
 driver ! Start(drawer)
 }
}
…

Application driver
94

Friday, November 15, 13
Here’s the driver actor. It is declared as an “object” not a class, making it a singleton.
When we start, we send the “go!” message to the Driver actor that is defined on the next slide. This starts the asynchronous message passing.
The “!” is the message send method (stolen from Erlang).

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

import shapes._
import akka.actor._
import com.typesafe.config._

object Driver {
 def main(args:Array[String])={
 val sys = ActorSystem(…)
 val driver=sys.actorOf[Driver]
 val drawer=sys.actorOf[Drawer]
 driver ! Start(drawer)
 }
}
…

95

Singleton for main

Instantiate
actorsSend a message to

start the actors

Friday, November 15, 13
Here’s the driver actor. It is declared as an “object” not a class, making it a singleton.
When we start, we send the “go!” message to the Driver actor that is defined on the next slide. This starts the asynchronous message passing.
The “!” is the message send method (stolen from Erlang).

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

…
class Driver extends Actor {
 var drawer: Option[Drawer] =
 None

 def receive = {
 …
 }
}

96

Companion class

Friday, November 15, 13
Here’s the driver actor “companion class” for the object on the previous slide that held main.
Normally, you would not do such synchronous call and response coding, if avoidable, as it defeats the purpose of using actors for concurrency.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

def receive = {
 case Start(d) =>
 drawer = Some(d)
 d ! Circle(Point(…),…)
 d ! Rectangle(…)
 d ! 3.14159
 d ! "exit"
 case "good bye!" =>
 println("<- cleaning up…")
 context.system.shutdown()
 case other =>
 println("<- " + other)
}

97

sent by
drawer

sent by
driver

Friday, November 15, 13
Here’s the driver actor, a scala script (precompilation not required) to drive the drawing actor.
Normally, you would not do such synchronous call and response coding, if avoidable, as it defeats the purpose of using actors for concurrency.

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

-> drawing: Circle(Point(0.0,0.0),1.0)
-> drawing: Rectangle(Point(0.0,0.0),
2.0,5.0)
-> Error: 3.14159
-> exiting...
<- Shape drawn.
<- Shape drawn.
<- Unknown: 3.14159
<- cleaning up...

98

“<-” and “->” messages
may be interleaved.

 d ! Circle(Point(…),…)
 d ! Rectangle(…)
 d ! 3.14159
 d ! "exit"

Friday, November 15, 13
Note that the -> messages will always be in the same order and the <- will always be in the same order, but the two groups may be interleaved!!

Copyright	
 ©	
 2009-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

…
// Drawing.receive
receive = {
 case s:Shape =>
 s.draw()
 self.reply("…")

 case …
 case …
}

Functional-style
pattern matching

“Switch” statements are
not (necessarily) evil

Object-
oriented-style
polymorphism

99

Friday, November 15, 13
The power of combining the best features of FP (pattern matching and “destructuring”) and OOP (polymorphic behavior).

Recap

100

Friday, November 15, 13

Scala is...

101

Friday, November 15, 13

a better Java,

102

Friday, November 15, 13

object-oriented
and

functional,
103

Friday, November 15, 13

succinct,
elegant,

and
powerful.

104

Friday, November 15, 13

Questions?

105

Dean Wampler
dean@deanwampler.com
@deanwampler
polyglotprogramming.com/talks

November 19, 2013

Friday, November 15, 13

The online version contains more material. You can also find this talk and the code used for
many of the examples at github.com/deanwampler/Presentations/tree/master/
SeductionsOfScala.
Copyright © 2010-2013, Dean Wampler. Some Rights Reserved - All use of the photographs
and image backgrounds are by written permission only. The content is free to reuse, but
attribution is requested.
http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Extra Slides
106

Friday, November 15, 13

Modifying
Existing
Behavior
with Traits

107

Friday, November 15, 13

Example

trait Queue[T] {
 def get(): T
 def put(t: T)
}

A pure abstraction (in this case...)
108

Friday, November 15, 13
A very simple abstraction for a Queue.

Log put
trait QueueLogging[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 println("put("+t+")")
 super.put(t)
 }
}

109

Friday, November 15, 13
(We’re ignoring “get”…) “Super” is not yet bound, because the “super.put(t)” so far could only call the abstract method in Logging, which is not allowed. Therefore, “super” will be bound
“later”, as we’ll so. So, this method is STILL abstract and it’s going to override a concrete “put” “real soon now”.

Log put
trait QueueLogging[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 println("put("+t+")")
 super.put(t)
 }
}

What is super bound to??

110

Friday, November 15, 13
(We’re ignoring “get”…) “Super” is not yet bound, because the “super.put(t)” so far could only call the abstract method in Logging, which is not allowed. Therefore, “super” will be bound
“later”, as we’ll so. So, this method is STILL abstract and it’s going to override a concrete “put” “real soon now”.

class StandardQueue[T]
 extends Queue[T] {
 import ...ArrayBuffer
 private val ab =
 new ArrayBuffer[T]
 def put(t: T) = ab += t
 def get() = ab.remove(0)
 …
}

Concrete (boring) implementation
111

Friday, November 15, 13
Our concrete class. We import scala.collection.mutable.ArrayBuffer wherever we want, in this case, right were it’s used. This is boring; it’s just a vehicle for the cool traits stuff...

val sq = new StandardQueue[Int]
 with QueueLogging[Int]

sq.put(10) // #1
println(sq.get()) // #2
// => put(10) (on #1)
// => 10 (on #2)

Example use
112

Friday, November 15, 13
We instantiate StandardQueue AND mixin the trait. We could also declare a class that mixes in the trait.
The “put(10)” output comes from QueueLogging.put. So “super” is StandardQueue.

val sq = new StandardQueue[Int]
 with QueueLogging[Int]

sq.put(10) // #1
println(sq.get()) // #2
// => put(10) (on #1)
// => 10 (on #2)

Mixin composition;
no class required

113

Example use
Friday, November 15, 13
We instantiate StandardQueue AND mixin the trait. We could also declare a class that mixes in the trait.
The “put(10)” output comes from QueueLogging.put. So “super” is StandardQueue.

Traits are a powerful
composition
mechanism!

114

Friday, November 15, 13
Not shown, nesting of traits...

For
Comprehensions

115

Friday, November 15, 13

val l = List(
 Some("a"), None, Some("b"),
 None, Some("c"))

for (Some(s) <- l) yield s
// List(a, b, c)

116

No if statement

Pattern match; only
take elements of l that

are Somes.

For “Comprehensions”

Friday, November 15, 13
We’re using the type system and pattern matching built into case classes to discriminate elements in the list. No conditional statements required.
This is just the tip of the iceberg of what “for comprehensions” can do and not only with Options, but other containers, too.

val l = List(
 Some("a"), None, Some("b"),
 None, Some("c"))

for (o <- l; x <- o) yield x
// List(a, b, c)

117

Second clause extracts
from option; Nones

dropped

Equivalent to this:

Friday, November 15, 13
We’re using the type system and pattern matching built into case classes to discriminate elements in the list. No conditional statements required.
This is just the tip of the iceberg of what “for comprehensions” can do and not only with Options, but other containers, too.

Building
Our Own
Controls

118

DSLs Using First-Class Functions

Friday, November 15, 13

also the same as

"hello" + "world"
"hello".+("world")

Recall Infix Operator
Notation:

Why is using {...} useful??

"hello".+{"world"}

119

Friday, November 15, 13
Syntactic sugar: obj.operation(arg) == obj operation arg

// Print with line numbers.

loop (new File("…")) {
 (n, line) =>

 format("%3d: %s\n", n, line)
}

Make your own
controls

120

Friday, November 15, 13
If I put the “(n, line) =>” on the same line as the “{“, it would look like a Ruby block.

// Print with line numbers.

loop (new File("…")) {
 (n, line) =>

 format("%3d: %s\n", n, line)
}

Make your own
controls

control?

How do we do this?

File to loop through

what do for each line

Arguments passed to...

121

Friday, November 15, 13

 1: // Print with line …
 2:
 3:
 4: loop(new File("…")) {
 5: (n, line) =>
 6:
 7: format("%3d: %s\n", …
 8: }

Output on itself:

122

Friday, November 15, 13

import java.io._

object Loop {

 def loop(file: File,
 f: (Int,String) => Unit) =
 {…}
}

123

Friday, November 15, 13
Here’s the code that implements loop...

import java.io._

object Loop {

 def loop(file: File,
 f: (Int,String) => Unit) =
 {…}
}

_ like * in Java

“singleton” class == 1 object

loop “control”

function taking line # and line

two parameters

like “void”

124

Friday, November 15, 13
Singleton “objects” replace Java statics (or Ruby class methods and attributes). As written, “loop” takes two parameters, the file to “numberate” and a the function that takes the line number
and the corresponding line, does something, and returns Unit. User’s specify what to do through “f”.

object Loop {

 def loop(file: File,
 f: (Int,String) => Unit) =
 {…}
}

two parameters

125

loop (new File("…")) {
 (n, line) => …
}

Friday, November 15, 13
The oval highlights the comma separating the two parameters in the list. Watch what we do on the next slide...

object Loop {

 def loop(file: File) (
 f: (Int,String) => Unit) =
 {…}
}

two parameters lists

126

loop (new File("…")) {
 (n, line) => …
}

Friday, November 15, 13
We convert the single, two parameter list to two, single parameter lists, which is valid syntax.

// Print with line numbers.
import Loop.loop

loop (new File("…")) {
 (n, line) =>

 format("%3d: %s\n", n, line)
}

Why 2 Param. Lists?

2nd parameter: a function literal

import

1st param.:
a file

127

Friday, November 15, 13
Having two, single-item parameter lists, rather than one, two-item list, is necessary to allow the syntax shown here. The first parameter list is (file), while the second is {function literal}.
Note that we have to import the loop method (like a static import in Java). Otherwise, we could write Loop.loop.

object Loop {
 def loop(file: File) (
 f: (Int,String) => Unit) =
 {
 val reader =
 new BufferedReader(
 new FileReader(file))
 def doLoop(i:Int) = {…}
 doLoop(1)
 }
}

Finishing Numberator...
128

nested method

Friday, November 15, 13
Finishing the implementation, loop creates a buffered reader, then calls a recursive, nested method "doLoop".

object Loop {
 …
 def doLoop(n: Int):Unit ={
 val l = reader.readLine()
 if (l != null) {
 f(n, l)
 doLoop(n+1)
 }
 }
}

129

Finishing Numberator...

f and reader visible
from outer scope

recursive

Friday, November 15, 13
Here is the nested method, doLoop.

doLoop is recursive.
There is no mutable

loop counter!

A goal of Functional Programming
130

Friday, November 15, 13

def doLoop(n: Int):Unit ={
 …
 doLoop(n+1)
}

131

Scala optimizes tail
recursion into loops

It is Tail Recursive

Friday, November 15, 13
A tail recursion - the recursive call is the last thing done in the function (or branch).

Functions
with

Mutable
State

132

Friday, November 15, 13

Since functions
are objects,

 they could have
mutable state.

133

Friday, November 15, 13

134

class Counter[A](val inc:Int =1)
 extends Function1[A,A] {
 var count = 0
 def apply(a:A) = {
 count += inc
 a // return input
 }
}
val f = new Counter[String](2)
val l1 = "a" :: "b" :: Nil
val l2 = l1 map {s => f(s)}
println(f.count) // 4
println(l2) // List("a","b")

Friday, November 15, 13
Our functions can have state! Not the usual thing for FP-style functions, where functions are usually side-effect free, but you have this option. Note that this is like a normal closure in FP.

