

MEAP Edition
Manning Early Access Program

Play for Scala version 6

Copyright 2012 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning.com/
http://www.manning-sandbox.com/forum.jspa?forumID=810
http://www.manning-sandbox.com/forum.jspa?forumID=810

brief contents

PART I: GETTING STARTED

 1. Introduction to Play 2

 2. Your first Play application

PART II: CORE TECHNIQUES

 3. Deconstructing Play application architecture

 4. Defining the application's HTTP interface

 5. Storing data—the persistence layer

 6. Building a user-interface with view templates

 7. Validating and processing input with the forms API

PART III: ADVANCED CONCEPTS

 8. Building a single-page JavaScript application with JSON

 9. Modules and plugins

 10. Web services, iteratees and websockets

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810
http://www.manning-sandbox.com/forum.jspa?forumID=810

I
Part 1 introduces Play to readers from various backgrounds, shows a simple
example to make it concrete, and sets-up the approach for the rest of the book.

Getting started

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

1

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

1
This chapter covers

Play isn’t really a Java web framework. Java’s involved, but that isn’t the whole
story.

The first version of Play may have been written in the Java language, but it also
ignored the conventions of the Java platform, providing a fresh alternative to
excessive enterprise architectures. Play was not based on Java Enterprise Edition
APIs and Play was not made for Java developers. Play is for web developers.

Play was not just written web developers, it was written web developers,for by
who brought high-productivity web development from modern frameworks like
Ruby on Rails and Django to the JVM. Play is for productive web developers.

Play 2 is written in Scala, which means that not only do you get to write your
web applications in Scala, but you also benefit from increased type safety
throughout the development experience.

Play isn’t just about Scala and type safety. An important aspect of Play is the
usability and attention to detail that results in a better Developer Experience (DX).
When you add this to higher developer productivity and more elegant APIs and
architectures you get a new emergent property: Play is fun.

Introduction to Play 2

What the Play framework is

What high-productivity web frameworks are about

Why Play supports both Java and Scala

Why Scala needs the Play framework

What a minimal Play application looks like

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

2

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Play is fun. Play makes you more productive. Play is also a web framework whose
HTTP interface is simple, convenient, flexible and powerful. Most importantly,
Play improves on the most popular non-Java web development languages and
frameworks — PHP and Ruby on Rails — by introducing the advantages of the
Java Virtual Machine (JVM).

A variety of features and qualities make Play productive and fun to use.

Declarative application URL scheme configuration.
Type-safe mapping from HTTP to an idiomatic Scala API.
Type-safe template syntax.
Architecture that embraces HTML5 client technologies.
Live code changes when you reload the page in your web browser.
Full-stack web framework features, including persistence, security and
internationalisation.

We’ll get back to why Play makes you more productive, but first let’s look a
little more closely at what it means for Play to be a full-stack framework. A
full-stack framework gives you everything you need to build a typical web
application.

Figure 1.1 Play framework stack

Being ‘full-stack’ is not just a question of functionality, which may already
exist as a collection of open-source libraries. After all, what’s the point of a

1.1 What Play is

1.1.1 Key features

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

3

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

framework if these libraries already exist and already provide everything you need
to build an application? The difference is that a full-stack framework also provides
a documented pattern for using separate libraries together in a certain way. If you
have this, as a developer, you know that you will be able to make the separate
components work together. Without this, you never know whether you are going to
end up with two incompatible libraries, or a badly-designed architecture.

When it comes to actually building a web application, what this all means is
that the common tasks are directly supported in a simple way, which saves you
time.

Play supports Java, and is in fact the best way to build a Java web application.
Java’s success as a programming language, especially in enterprise software
development, means that Play 1.x has been able to quickly build a large user
community. Even if you are not planning to use Play with Java, you still get to
benefit from the size of the wider Play community. Besides, a large segment of this
community is now looking for an alternative to Java.

However, the recent years have seen the introduction of numerous JVM
languages that provide a modern alternative to Java, usually aiming to be more
type-safe, result in more concise code and support functional programming idioms,
with the ultimate goal of allowing developers to be more expressive and productive
when writing code. Scala is currently the most evolved of the new statically-typed
JVM languages, and is the second language that Play supports.

SIDEBAR Play 2 for Java
If you’re also interested in using Java to build web applications in Play,
then you should have a look at , which was written at thePlay 2 for Java
same time as this book. The differences between Scala and Java go
beyond the syntax, and the Java book is not just a copy of this book
with the code samples in Java. is more focused onPlay 2 for Java
enterprise architecture integration than this book, which introduces
more new technology to its readers.

Having mentioned Java and the JVM, it also makes sense to explain how Play
relates to the Java Enterprise Edition (Java EE) platform, partly because most of
our web development experience is with Java EE. This is not particularly relevant
if our web development background is with PHP, Rails or Django, say, in which
case you may prefer to skip the next section and continue reading section 1.11.

1.1.2 Java and Scala

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

4

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Before Play, Java web frameworks were based on the Java Servlet API, the part of
the Java Enterprise Edition stack that provides the HTTP interface. Java EE and its
architectural patterns seemed like a really good idea, and brought some much
needed structure to enterprise software development. However, this turned out to
be a really bad idea, because structure came at the cost of additional complexity
and low developer satisfaction. Play is different, for several reasons.

Java’s design and evolution is focused on the Java platform, which also seemed
like a good idea to developers who were trying to consolidate various kinds of
software development. From a Java perspective, the web is just another external
system. The Servlet API, for example, adds an abstraction layer over the web’s
own architecture that provides a more Java-like API. Unfortunately, this turns out
be a bad idea, because the web is more important than Java. When a web
framework starts an architecture fight with the web, the framework loses. What we
need instead is a web framework whose architecture embraces the web’s, and
whose API embraces HTTP.

The consequence of the Servlet API’s problems is complexity, mostly in the form
of too many layers. This is the complexity caused by the API’s own abstraction
layers, compounded by the additional layer of a web framework that provides an
API that is rich enough to build a web application.

Figure 1.2 Java EE ‘lasagna’ architecture compared to Play’s simplified architecture

The Servlet API was originally intended to be an end-user API for web
developers, using Servlets (the name for controller Java classes), and JavaServer
Pages (JSP) view templates. When new technologies eventually superseded JSP,
they were layered on top, instead of eventually being folded back into Java EE,

1.1.3 Play is not Java EE

LASAGNA ARCHITECTURE

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

5

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

either as updates to the Servlet API or as a new API. With this approach, the
Servlet API becomes an additional layer that makes it harder to debug HTTP
requests. This may keep the architects happy, but at the cost of developer
productivity.

This lack of focus on productive web development is apparent within the current
state of Java EE web development, which is now based on JavaServer Faces (JSF).
JSF focuses on components and server-side state, which also seemed like a good
idea, and gave developers powerful tools for building web applications. However,
again, it turned out that the resulting complexity and the mismatch with HTTP
itself made JSF hard to use productively.

Java EE frameworks such as JBoss Seam did an excellent job at addressing
early deficiencies in JSF, but only by adding yet another layer to the application
architecture. Since then, Java EE 6 has improved the situation by addressing JSF’s
worst shortcomings, but this is certainly too little, too late.

Somewhere in the history of building web applications on the JVM, adding
layers somehow became part of the solution without being seen as a problem.
Fortunately for JVM web developers, Play provides a redesigned web stack that
doesn’t use the Servlet API and works better with HTTP and the web.

Web frameworks for web developers are different. They embrace HTTP and
provide APIs that use HTTP’s features instead of trying to hide HTTP, in the same
way that web developers build expertise in the standard web technologies —
HTTP, HTML, CSS and JavaScript — instead of avoiding them.

Working with HTTP means letting the application developer make the web
application aware of the different HTTP methods, such as GET, POST, PUT and
DELETE. This is different to putting an RPC-style layer on top of HTTP requests,
using ‘remote procedure call’ URLs like order to/updateProductDetails

tell the application whether you want to create, read, update or delete data. With
HTTP it is more natural to use to update a product and PUT /product GET

 to fetch it./product

Embracing HTTP also means accepting that application URLs are part of the
application’s public interface, and should therefore be up to the application
developer to design instead of fixed by the framework.

THE JSF NON-SOLUTION

1.2 High-productivity web development

1.2.1 Working with HTTP

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

6

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

This approach is for developers who not only work with the architecture of the

World Wide Web, instead of against it, but may have even read it .1

Footnote 1 m , W3C, 2004Architecture of the World Wide Web, Volume One
(http://www.w3.org/TR/webarch/)

In the past, none of these web frameworks were written in Java, because the
Java platform’s web technologies failed to emphasise simplicity, productivity and
usability. This is the world that started with Perl (not Lisp as some might assume),
was largely taken over by PHP, and in more recent years has seen the rise of Ruby
on Rails.

In a web framework, simplicity comes from making it easy to do simple things in a
few lines of code, without extensive configuration. A ‘Hello World’ in PHP is a
single line of code; the other extreme is JavaServer Faces, which requires
numerous files of various kinds before you can even serve a blank page.

Productivity starts with being able to make a code change, reload the web page
in the browser, and see the result. This has always been the norm for many web
developers, while Java web frameworks and application servers often have long
build-redeploy cycles. Java hot-deployment solutions exist, but are not standard
and come at the cost of additional configuration. Although there is more to
productivity, this is what matters most.

Usability is related to developer-productivity, but also to developer-happiness.
You are certainly more productive if it is easier to simply get things done, no
matter how smart you are, but a usable framework can be more than that — a joy
to use. Fun, even.

Scala needs its own high-productivity web framework. These days, mainstream
software development is about building web applications, and a language that does
not have a web framework that is suitable for a mainstream developer audience
remains confined to niche applications, whatever the language’s inherent
advantages.

Having a web framework means more than the existence of separate libraries
that you could use together to build a web application; you need a framework that
integrates them and shows you how to use them together. One of a web
framework’s roles is to define a convincing application architecture that works for
a range of possible applications. Without this architecture, you have a collection of

1.2.2 Simplicity, productivity and usability

1.3 Why Scala needs Play

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

7

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.w3.org/TR/webarch/
http://www.manning-sandbox.com/forum.jspa?forumID=810

libraries that might have a gap in the functionality they provide or some
fundamental incompatibility, such as a stateful service that doesn’t play well with a
stateless HTTP interface. What’s more, the framework decides where the
integration points are, so you don’t have to work out how to integrate separate
libraries yourself.

Another role a web framework has is to provide coherent documentation for the
various technologies it uses, focusing on the main web application use cases, so
that developers can get started without having to read several different manuals.
For example, you hardly need to know anything about the JSON serialisation
library that Play uses to be able to serve JSON content. All you need to get started
is an example of the most common use case and a short description about how it
works.

There are other Scala web frameoworks, but these are not not full-stack
frameworks that can become mainstream.

Play takes Scala from being a language with many useful libraries to being a
language that is part of an application stack that large numbers of developers will
use to build web applications with a common architecture. This is why Scala needs
Play.

Play 1.x used bytecode manipulation to avoid the boilerplate and duplication that is
typical when using Java application frameworks. However, this bytecode
manipulation seems like ‘magic’ to the application developer, because it modifies
the code at run-time. The result is that you have application code that looks like it
shouldn’t work, but which is fine at run-time.

The IDE is limited in how much support it can provide, because it doesn’t know
about the run-time enhancement either. This means that things like code navigation
don’t seem to work properly, when you only find a stub instead of the
implementation that is added at run-time.

Scala has made it possible to re-implement Play without the bytecode
manipulation tricks that the Java version required in Play 1.x. For example, Play
templates are Scala functions, which means that view template parameters are
passed normally, by value, instead of as named values that templates refer to.

Scala makes it possible for web application code to be more type-safe. URL
routing and template files are parsed using Scala, with Scala types for parameters.

To implement a framework that provides equivalent idiomatic APIs in both
Java and Scala, you have to use Scala. What’s more, for type-safe web

1.4 Type-safe web development — why Play needs Scala

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

8

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

development, you also need Scala. In other words, Play needs Scala.

As you would expect, it is very easy to do something as simple as output ‘Hello
world!’. All you need to do is use the Play command that creates a new application
and write a couple of lines of Scala code. To begin to understand Play, you should
actually run the commands and type the code, because only then will you get your
first experience of Play’s simplicity, productivity and usability.

The first step is to install Play. This is unusual for a JVM web framework,
because most are just libraries for an application that you deploy to a Servlet
container that you have already installed. Play is different. Play includes its own
server and build environment, which is what you are going to install.

Start by downloading the latest Play 2 release from .http://playframework.org
Extract the ZIP archive to the location where you want to install Play — your
home directory is fine.

Play’s only pre-requisite is a JDK — version 6 or later — which is pre-installed
on OS X and Linux. If you are using Windows, download and install the latest
JDK.

SIDEBAR Mac users can use Homebrew
If you’re using Mac OS X, you could also use Homebrew to install Play
2. Just use the command to install, andbrew install play

Homebrew will download and extract the latest version, and take care
of adding it to your path, too.

Next, you need to add this directory to your PATH system variable, which will
make it possible for you to launch Play by typing the command. Setting theplay

PATH variable is OS-specific.

Mac OS X—Open the file in a text editor, and add a line consisting of the/etc/paths

Play installation path.
Linux—Open your shell’s start-up file in a text editor. The name of the file depends on
which shell you use, e.g. for bash or for zsh. Add the following line to.bashrc .zshrc

the file: , substituting the Play installation path after thePATH="$PATH":/path/to/play

colon.
Windows XP or later—Open the command prompt and execute the command, setx PATH

 substituting the Play installation path after the"%PATH%;c:\path\to\play" /m

semi-colon.

1.5 Hello Play!

1.5.1 Getting Play and setting-up the Play environment

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

9

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://playframework.org
http://playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

Now that you have added the Play directory to your system path, the play

command should be available on the command line. To try it out, open a new
command line window, and enter the command. You should get outputplay

similar to this:

As you can see, the command by itself only did two things: output anplay

error message (‘This is not a play application!’) and suggest that you try the play

 command instead. This is a recurring theme when using Play: whennew

something goes wrong, Play will usually provide a useful error message, guess
what you’re trying to do and suggest what you need to do next. This is not limited
to the command line; you will also see helpful errors in your web browser later on.

For now, let’s follow Play’s suggestion and create a new application.

A ‘Play application’ is a directory on the file system that contains a certain
structure that Play uses to find configuration, code and any other resources it
needs. Instead of creating this structure yourself, you use the play new

command, which creates the required files and directories.
Enter the following command to create a Play application in a new

sub-directory called :hello

When prompted, confirm the application name and select the Scala application

 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.0, http://www.playframework.org

This is not a play application!

Use `play new` to create a new Play application in the
current directory, or go to an existing application
and launch the development console using `play`.

You can also browse the complete documentation at
http://www.playframework.org.

1.5.2 Creating and running an empty application

play new hello

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

10

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.playframework.org
http://www.playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

template:

Listing 1.1 Command-line output when you create a new Play application

The first time you do this, the build system will download some additional files
(not shown).

Listing 1.2 Command-line output when you run the application

$ play new hello
 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.0, http://www.playframework.org

The new application will be created in /src/hello

What is the application name?
> hello

Which template do you want to use for this new application?

 1 - Create a simple Scala application
 2 - Create a simple Java application
 3 - Create an empty project

> 1

OK, application hello is created.

Have fun!

cd hello
play run

$ play run
[info] Loading project definition from /src/hello/project
[info] Set current project to hello (in build file:/src/hello/)

--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HTTP on port 9000...

(Server started, use Ctrl+D to stop and go back to the console...)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

11

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

As when creating the application, the build system will download some
additional files the first time.

The command creates a default application with a basic structure,play new

including a minimal HTTP routing configuration file, a controller class for
handling HTTP requests, a view template, jQuery and a default CSS style sheet.

Listing 1.3 Files in a new Play application

This directory structure is common to all Play applications. The top-level
directories group the files as follows:

app — application source code
conf — configuration files and data
project — project build scripts
public — publicly accessible static files.

The command starts the Play server and runs the application.play run

Now that the application is running, you can access a default welcome page at
.http://localhost:9000/

1.5.3 Play application structure

app/controllers/Application.scala
app/views/index.scala.html
app/views/main.scala.html
conf/application.conf
conf/routes
project/Build.scala
project/plugins.sbt
project/plugins/project/Play.scala
public/images/favicon.png
public/javascripts/jquery-1.6.4.min.js
public/stylesheets/main.css

1.5.4 Accessing the running application

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

12

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 1.3 The default welcome page for a new Play application

This is already a kind of ‘hello world’ — an example of a running application
that outputs something, so you can see how things fit together. This is more than
just a static HTML file that tells you that ‘the web server is running’. Instead, this
is the minimal amount of code that can show you the web framework in action.
This makes it easier to create a ‘hello world’ example than it would be if we had to
start with a completely blank slate - an empty directory that forces you to turn to
the documentation each time you create a new application, which is probably not
something you will do every day.

Now, leaving our example application at this stage would be cheating, so we
need to change the application to produce the proper output. Besides, it doesn’t
actually say ‘hello world’ yet.

Simply edit the file and replaceapp/controllers/Application.scala

the object’s method with the following.Application index

This defines an ‘action method’ that generates an HTTP ‘OK’ response with

1.5.5 Add a controller class

def index = Action {
 Ok("Hello world")
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

13

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

text content. Now serves a plain text documenthttp://localhost:9000/

containing the usual output.
This works because of the line in the HTTP routingconf/routes

configuration file that maps HTTP requests to a method invocation:GET /

The output is actually more interesting if you make a mistake. In the action
method, remove the closing quote from , save the file and"Hello world"

reload the page in your web browser. You get a friendly compilation error.

Figure 1.4 Compilation errors are shown in the web browser, with the relevant source
code highlighted.

Fix the error in the code, save the file and reload the page again. It’s fixed! Play
dynamically reloads changes, so you don’t have to manually build the application
every time you make a change.

This is still not a proper web application example, though, because we did not use
HTTP or HTML yet. To start with, add a new action method with a String
parameter to the controller class:

Next, add a new line to the file to map a different URL to ourconf/routes

GET / controllers.Application.index()

1.5.6 Add a compilation error

1.5.7 Use an HTTP request parameter

def hello(name: String) = Action {
 Ok("Hello " + name)
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

14

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

new method, with an HTTP request parameter called :n

Now open and you can seehttp://localhost:9000/hello?n=Play!

how the URL’s query string parameter is passed to the controller action.

Finally, to complete this first example, we need an HTML template, because we
usually use web application frameworks to generate web pages instead of plain text
documents. Create the file with theapp/views/hello.scala.html

following content.

This is a ‘Scala template’. The first line defines the parameter list — just a
 parameter in this case, and the HTML document includes an HTML tagname em

whose content is a Scala expression — the value of the parameter. Aname

template is really a Scala function definition that Play will convert to normal Scala
code and compile it. Section XREF ch03_section_templates_rendering explains
how templates become Scala functions in more detail.

To use this template, we just have to render it in the action method, tohello

produce its HTML output. Once Play has converted the template to a Scala object
called , this means calling its method. We then useviews.html.hello apply

the rendered template as a value to return an result:String Ok

GET /hello controllers.Application.hello(n: String)

1.5.8 Add an HTML page template

@(name:String)
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello</title>
 </head>
 <body>
 <h1>Hello @name</h1>
 </body>
</html>

def hello(name: String) = Action {
 Ok(views.html.hello(name))
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

15

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/hello?n=Play
http://www.manning-sandbox.com/forum.jspa?forumID=810

Reload the web page — http://localhost:9000/hello?n=Play!

— and you will see the formatted HTML output. Note that the query string
parameter matches the parameter name declared in the routes file, not the n hello

action method parameter.

Web developers are used to doing everything in the browser. With Play, you can
also use the console to interact with your web application’s development
environment and build system. This is important for both quick experiments and
automating things.

To start the console, run the command in the application directoryplay

without an additional command:

If you are already running a Play application, you can just type toControl+D

stop the application and return to the console.
The Play console gives you a variety of commands, including the run

command that you saw earlier. For example, you can compile the application to
discover the same compilation errors that are normally shown in the browser, such
as the missing closing quotation mark that you saw earlier:

You can also start a Scala console, which gives you direct access to your
compiled Play application:

1.6 The console

play

[hello] $ compile
[info] Compiling 1 Scala source to target/scala-2.9.1/classes...
[error] /src/hello/app/controllers.scala:8: unclosed string literal
[error] Ok("Hello world)
[error] ^
[error] /src/hello/app/controllers.scala:9: ')' expected but '}' found.
[error] }
[error] ^
[error] two errors found
[error] {file:/src/hello/}hello/compile:compile: Compilation failed
[error] Total time: 0 s, completed Mar 3, 2012 4:06:33 PM
[hello] $

[hello] $ console
[info] Starting scala interpreter...
[info]

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

16

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/hello?n=Play
http://www.manning-sandbox.com/forum.jspa?forumID=810

Now that you have a Scala console with your compiled application, you can do
things like render a template, which is just a Scala function that you can call:

We just rendered a dynamic template in a web application that is not actually
running. This has major implications for being able to test your web application
without running a server.

Play was built ‘by web developers, for web developers’ — taking good ideas from
existing high-productivity frameworks, and adding the JVM’s power and rich
ecosystem. The result is a web framework that offers productivity and usability as
well as structure and flexibility. After starting with a first version implemented in
Java, Play has now been reimplemented in Scala, with more type-safety throughout
the framework. Play gives Scala a better web framework, and Scala gives Play a
better implementation for both Scala and Java APIs.

As soon as you start writing code, you go beyond Play’s background and its
feature list to what really matters: the user-experience that determines what it’s like
to use Play. Play achieves a level of simplicity, productivity and usability that
means that you can look forward to enjoying Play and, we hope, the rest of this
book.

Welcome to Scala version 2.9.1.final
CO (Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_29).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

scala> views.html.hello.render("Play!")
res2: play.api.templates.Html =

<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello</title>
 </head>
 <body>
 <h1>Hello Play!</h1>
 </body>
</html>

1.7 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

17

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

2
This chapter covers

planning an example Play application

getting started with coding a Play application

creating the initial model, view templates, controllers

designing an HTTP routing configuration

generating barcode images

validating form data

Now that you have seen how to download and install Play, and greet the world
in traditional fashion, you’ll be wanting to start writing some proper code, or at
least read some. This chapter introduces a sample application so you can see how a
basic Play application fits together from a code perspective.

Although we will tell you what all of the code does, we will save most of the
details and discussion until later chapters. We want you to have lots of questions as
you read this chapter, but we are not going to be able to answer all of them
straightaway.

This chapter will also help you understand the code samples in later chapters,
which will be based on the same example.

Our example application is a prototype for a web-based product catalog, with
information about different kinds of paper clips. We shall assume it’s part of a
larger warehouse management system, used for managing a supply chain. This

Your first Play application

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

18

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

may be less glamorous than unique web applications such as Twitter or Facebook,
but then you are more likely to be a commercial software developer building

business applications than a member of Twitter’s core engineering team .1

Footnote 1 m Apart from anything else, this is the kind of business domain the authors work in.

We will start by creating a new application, and then add one feature at a time,
so you can get a feel for what it’s like to build a Play application. Before we do
that, let’s see what we’re going to build.

We will start with a simple list of products, each of which has a name and a
description. This is a prototype, with a small number of products, so there isn’t any
functionality for filtering, sorting or paging the list.

Figure 2.1 The main page, showing a list of products

To make the product list page work, we need a combination of the following.

a view template — a template that generates HTML
a controller action — a Scala function that renders the view
route configuration — to map the URL to the action
the model — Scala code that defines the product structure, and some test data.

These components work together to produce the list page, as shown in figure
2.2.

2.1 The product list page

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

19

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 2.2 The application’s model-view-controller structure

To get started, we need to create the new application and remove files that we are
not going to use. Then we can configure languages.

If you haven’t already downloaded and installed Play, refer to the instructions
in section XREF ch01_installing_play.

As in the previous chapter’s ‘Hello World’ example, use the command toplay

create a new application.

Before going any further you can delete a couple of files that we are not going
to use for our prototype.

Now run the application, to check that your environment works:

http://localhost:9000/ should show the same Play welcome page as

in section XREF ch01_accessing_the_running_application.

2.1.1 Getting started

play new products

rm products/public/images/favicon.png
rm products/public/javascripts/jquery-1.7.1.min.js

cd products
play run

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

20

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

If you are especially observant, you may have wondered why the product list page
screen shot at the start of this section has a formatted title bar, background color
and styled product list. As with any web application, we want to use style sheets to
make sure our user-interface is not inconsistent (or ugly). This means that we need
some CSS. For this sample application, we’re going to use Twitter Bootstrap
footnote:https://github.com/twitter/bootstrap for the look-and-feel.

This just means downloading the Twitter Bootstrap distribution (we’re using
version 2.0.2), copying to ourdocs/assets/css/bootstrap.css

application’s directory and linking to this style sheetpublic/stylesheets

from our page template. Also copy glyphicons-halflings-white.png

and to .glyphicons-halflings.png public/img

These examples also use a custom style sheet (
) that overrides some of the Twitterpublic/stylesheets/main.css

Bootstrap styling for the screen shots in the book.

Listing 2.1 Custom style sheet to override Twitter Bootstrap —
public/stylesheets/main.css

2.1.2 Style sheets

body { color:black; }
body, p, label { font-size:15px; }
.label { font-size:13px; line-height:16px; }
.alert-info { border-color:transparent; background-color:#3A87AD;
 color:white; font-weight:bold; }
div.screenshot { width: 800px; margin:20px; background-color:#D0E7EF; }
.navbar-fixed-top .navbar-inner { padding-left:20px; }
.navbar .nav > li > a { color:#bbb; }
.screenshot > .container { width: 760px; padding: 20px; }
.navbar-fixed-top, .navbar-fixed-bottom { position:relative; }
h1 { font-size:125%; }
table { border-collapse: collapse; width:100%; }
th, td { text-align:left; padding: 0.3em 0;
 border-bottom: 1px solid white; }
tr.odd td { }
form { float:left; margin-right: 1em; }
legend { border: none; }
fieldset > div { margin: 12px 0; }
.help-block { display: inline; vertical-align: middle; }
.error .help-block { display: none; }
.error .help-inline { padding-left: 9px; color: #B94A48; }
footer { clear: both; text-align: right; }
dl.products { margin-top: 0; }
dt { clear: right; }
.barcode { float:right; margin-bottom: 10px; border: 4px solid white; }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

21

Licensed to Jeff Crilly <jlc@sbcglobal.net>

https://github.com/twitter/bootstrap
http://www.manning-sandbox.com/forum.jspa?forumID=810

You can see the result of using Twitter Bootstrap with this style sheet in this
chapter’s screen shots.

This is a good time to configure our application, not that there’s much to do: we
only need to configure which languages we are going to use. For everything else,
there are default values.

First open in an editor and delete all of the linesconf/application.conf

except the ones that define and application.secret

 near the top. You should be left with something like this:application.langs

Listing 2.2 The main configuration file — conf/application.conf

Most of what you just deleted were commented-out example configuration
values, which we are not going to need. We won’t be using logging in this
prototype either, so we don’t need to worry about the log level configuration.

TIP Remove configuration file cruft
Once you have created a new Play application, edit the

 and delete all of the commented linesconf/application.conf

that do not apply to your application, so you can see your whole
configuration at a glance. If you later want to copy entries from the
default file, you can find it in application.conf

.$PLAY_HOME/framework/skeletons/scala-skel/conf/

The value of the configuration property will beapplication.secret

something else: this is a random string that Play uses in various places to generate
cryptographic signatures. We’ll ignore this for now, but you should always leave
this generated property in your application configuration.

The value indicates that our application supportsapplication.langs

English. Since supply chains (and Play) are international, our prototype will2

support additional languages. To indicate additional support for Dutch, Spanish
and French, change the line to:

Footnote 2 m Not to mention the authors; Peter is English, Erik is Dutch and Francisco is Spanish.

2.1.3 Language localization configuration

application.secret="Wd5HkNoRKdJP[kZJ@OV;HGa^<4tDvgSfqn2PJeJnx4l0s77NTl"
application.langs="en"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

22

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Listing 2.3 conf/application.conf

We will use this configuration to access application user-interface text defined
in a messages file for each language:

conf/messages — default messages for all languages, for messages not localised for a
particular language
conf/messages.es — Spanish (which is called in Spanish)Español
conf/messages.fr — French (in French)Français
conf/messages.nl — Dutch (in Dutch).Nederlands

Note that unlike Java properties files, these files must use UTF-8 encoding.
Although we haven’t started on the user-interface yet, we can make a start by

localising the name of the application.
Add the following definitions to the various localized message files.

Listing 2.4 conf/messages

Listing 2.5 conf/messages.es

Listing 2.6 conf/messages.fr

Listing 2.7 conf/messages.nl

Now we’re ready to start adding functionality to our application, starting with a
list of products.

application.langs="en,es,fr,nl"

application.name = Product catalog

application.name = Catálogo de productos

application.name = Catalogue des produits

application.name = Productencatalogus

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

23

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We will start our application with the model, which encapsulates the application’s
data about products in the catalog. We don’t have to start with the model, but it is
convenient to do so because it doesn’t depend on the code that we are going to add
later.

To start with, we need to include three things in our example application’s
model, which we will extend later:

a model class — the definition of our product and its attributes
a data access object (DAO) — code that provides access to product data
test data — a set of product objects.

We can put all of these in the same file, with the following contents.

Listing 2.8 The model — app/models/Product.scala

Note that the case class has a companion object, which acts as theProduct

data access object for the product class. For this prototype, the data access object
contains static test data and won’t actually have any persistent storage. In chapter
XREF ch05_chapter, we will see how to use a database instead.

The data access object includes a finder function that returns a list offindAll

2.1.4 Adding the model

package models

case class Product(
 ean: Long, name: String, description: String)

object Product {

 var products = Set(
 Product(5010255079763L, "Paperclips Large",
 "Large Plain Pack of 1000"),
 Product(5018206244666L, "Giant Paperclips",
 "Giant Plain 51mm 100 pack"),
 Product(5018306332812L, "Paperclip Giant Plain",
 "Giant Plain Pack of 10000"),
 Product(5018306312913L, "No Tear Paper Clip",
 "No Tear Extra Large Pack of 1000"),
 Product(5018206244611L, "Zebra Paperclips",
 "Zebra Length 28mm Assorted 150 Pack")
)

 def findAll = this.products.toList.sortBy(_.ean)
}

Model class

Data access object

Finder function

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

24

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

products, sorted by EAN code.
The ‘EAN’ identifier is an International Article Number (previously known as a

European Article Number, hence the abbreviation), which you typically see as a
13-digit bar code on a product. This system incorporates the Universal Product
Code (UPC) numbers used in the US and Japanese Article Number (JAN)
numbers. This kind of externally-defined identifier is a better choice than a
system’s internal identifier, such as a database table primary key, because it is not
dependent on a specific software installation.

Next, we need a view template, which will render HTML output using data from
the model — a list of products in this case.

We’ll put our product templates in the package.views.html.products

For now, we only need a list page, so create the following new file:

Listing 2.9 The list page template — app/views/products/list.scala.html

This is a Scala template: an HTML document with embedded Scala statements,
which start with an character. You will learn more about the template syntax in@

section XREF ch06_template_basics_and_common_structures.
For now, there are two things worth noticing about the template. First, it starts

with parameter lists, like a Scala function. Second, the parameter isproducts

used in a for loop to generate an HTML definition list of products.
The implicit parameter is used for the localized message look-up,Lang

performed by the object. This looks up the page title, which is theMessages

message with the key .application.name

The page title and the HTML block are both passed as parameters to ,main

which is another template: the layout template.

2.1.5 Product list page

@(products: List[Product])(implicit lang: Lang)

@main(Messages("application.name")) {

 <dl class="products">
 @for(product <- products) {
 <dt>@product.name</dt>
 <dd>@product.description</dd>
 }
 </dl>
}

Template
parameters

Loop over the
`products`
parameter

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

25

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The layout template is just another template, with its own parameter lists.

Listing 2.10 The layout template — app/views/main.scala.html

The main purpose of this template is to provide a reusable structure for HTML
pages in the application, with a common layout. The dynamic page-specific parts
are where the page title and page contents are output.

Most of the contents of this template are taken up by the HTML structure for
Twitter Bootstrap, which we will use to style the output.

Now that we have model code that provides data, and a template that renders this
data as HTML, we need to add the code that will co-ordinate the two. This is the
role of a controller, and the code looks like this:

Listing 2.11 The products controller — app/controllers/Products.scala

2.1.6 Layout template

@(title: String)(content: Html)(implicit lang: Lang)
<!DOCTYPE html>
<html>
<head>
 <title>@title</title>
 <link rel="stylesheet" type="text/css" media="screen"
 href='@routes.Assets.at("stylesheets/bootstrap.css")'>
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">
</head>
<body>
<div class="screenshot">

 <div class="navbar navbar-fixed-top">
 <div class="navbar-inner">
 <div class="container">

 @Messages("application.name")

 </div>
 </div>
 </div>

 <div class="container">
 @content
 </div>
</div>
</body>
</html>

Parameter list

Output the title

Output the page
content block

2.1.7 Controller action method

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

26

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:href="@routes.Application.index
http://www.manning-sandbox.com/forum.jspa?forumID=810

This controller is responsible for handling incoming HTTP requests and
generating responses, using the model and views. Controllers are explained further
in section XREF ch04_controllers_the_interface_between_http_and_scala.

We’re almost ready to view the result in the web browser, but first we have to
configure the HTTP interface, by adding a ‘route’ to the new controller action.

The routes configuration specifies the mapping from HTTP to the Scala code in
our controllers. To make our products list page work, we need to map the

 URL to the action. This means/products controllers.Products.list

adding a new line in the file.conf/routes

Listing 2.12 Routes configuration file — conf/routes

As you can see, the syntax is relatively simple. There are two other routes in the
file, for the default welcome page, and for public assets. You can read more about
serving assets in section XREF ch06_section_assets.

Now that we have added the HTTP route to the new products list, you should
be ab le to see i t in your web browser , a t

.http://localhost:9000/products

package controllers

import play.api.mvc.{Action, Controller}
import models.Product

object Products extends Controller {

 def list = Action { implicit request =>

 val products = Product.findAll

 Ok(views.html.products.list(products))
 }
}

Controller action

Get a product list
from the model
Render the view
template

2.1.8 Adding a routes configuration

GET / controllers.Application.index

GET /products controllers.Products.list

GET /assets/*file controllers.Assets.at(path="/public", file)

Welcome page

Products list

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

27

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

If you open then you still see the welcome page,http://localhost:9000/

which we don’t need any more. We can replace it with an HTTP redirect to the
product list, by changing the controller action in

 to return an HTTP redirectapp/controllers/Application.scala

response instead of rendering the default template.

Listing 2.13 The default controller — app/controllers/Application.scala

Now delete the unused template.app/views/index.scala.html

Although we now have a basic products list, we haven’t checked the application
localizations. First, let’s see how the language is selected.

Play sets the application language if the language configuration in the HTTP
request matches one of the configured languages. For example, if you configure
your web browser’s language settings to indicate that you prefer Spanish, then this
will be included with HTTP requests and the application language will be Spanish.

To check the setting, let’s add some debugging information to the page footer.
Create a new template for the footer, in app/views/debug.scala.html

Listing 2.14 Debug information template — app/views/debug.scala.html

2.1.9 Replacing the welcome page with a redirect

package controllers

import play.api.mvc.{Action, Controller}

object Application extends Controller {

 def index = Action {
 Redirect(routes.Products.list())
 }
}

Redirect to the
products list URL

2.1.10 Checking the language localizations

@()(implicit lang: Lang)
@import play.api.Play.current
<footer>
 lang = @lang.code,
 user = @current.configuration.getString("environment.user"),
 date = @(new java.util.Date().format("yyyy-MM-dd HH:mm"))
</footer>

Application
language, set from
the request

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

28

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/
mailto:@lang.code
mailto:@current.configuration.getString
http://www.manning-sandbox.com/forum.jspa?forumID=810

While we’re adding debug information, we’ll include the server user name and
time stamp. The user name comes from a configuration property, so add the
following line to the main configuration file:

Listing 2.15 conf/application.conf

Set the value to the `USER` environment variable

The syntax is a configuration property reference. For more details${ … }

about the configuration file syntax, see section XREF
ch03_application_configuration. Note that on Windows, the environment variable
is , so set the value to instead of .USERNAME ${USERNAME} ${USER}

Finally, we add the footer to the main page template. Rendering one template
from another is just like calling a Scala function, so we just add to the@debug()

main layout template:

Listing 2.16 Adding the page footer to the layout template —
app/views/main.scala.html

Now we can load the page, with the web browser’s preferred language set to
Spanish, and see the page with a Spanish heading and the language code in thees

footer.

environment.user=${USER}

<div class="container">
 @content
 @debug()
</div>

Call the `debug`
template

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

29

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 2.3 The product list page, with the language set to Spanish ()es

The next page is a details page for a particular product. The page’s URL, e.g.
, includes the EAN code, which is also used to/products/5010255079763

generate a barcode image.

Figure 2.4 The product details page, including a generated barcode

To finish the details page we will need several more things:

a new finder method — to fetch one specific product
a view template — to show this details page
an HTTP routing configuration — for a URL with a parameter.

We will also need to add the third-party library that generates the barcode, and
add another URL for the bitmap image. Let’s start with the finder method.

Our new finder method, one that will find a product by its EAN, is very simple.

Listing 2.17 Find a product by its EAN — app/models/Product.scala

This method simply takes the companion object’s of products (Set

) and calls its find method to get the requested product. Simplethis.products

enough, let’s look at the template.

2.2 Details page

2.2.1 Model finder method

object Product {
…
 def findByEan(ean: Long) = this.products.find(_.ean == ean)
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

30

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Our new template will show the details of the requested product, along with the
EAN as a barcode. Since we’ll want to show the barcode in other templates, in
later versions of the application, we’ll make a separate template for it. Now we
have all that we need for a template that will show a product’s details.

Listing 2.18 The product-details template —
app/views/products/details.scala.html

Figure 2.5 TYPESETTER: IMAGE TO
SCALE AND FLOAT OVER LISTING AT
‘Call the barcode tag’

2.2.2 Details page template

@(product: Product)(implicit lang: Lang)

@main(Messages("products.details", product.name)) {
 <h2>
 @tags.barcode(product.ean)
 @Messages("products.details", product.name)
 </h2>

 <dl class="dl-horizontal">
 <dt>@Messages("ean"):</dt>
 <dd>@product.ean</dd>

 <dt>@Messages("name"):</dt>
 <dd>@product.name</dd>

 <dt>@Messages("description"):</dt>
 <dd>@product.description</dd>
 </dl>
}

Call the barcode
tag

Output product
details

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

31

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@tags.barcode
http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 2.6 TYPESETTER: IMAGE TO SCALE AND
FLOAT OVER LISTING AT ‘Output product details’

There’s really not much new in this template, except for the barcode tag that
we’re including: the template will not compile until you add it. Those of you who
are familiar with Play 1, will know that Play 1’s templates were actually Groovy
templates and that you could write your own tags to use in them.

Scala templates don’t really have tags. You may recall that Scala templates
become functions, and that you call those (like any other function) from within
your templates. This is all that our barcode ‘tag’ is — we’re just calling it a ‘tag’
because it’s an idea we’re used to working with. We also have a convention to put
small or frequently-used templates in a package. Let’s make the barcodetags

‘tag’, so that the template compiles, by adding a new file:

Listing 2.19 The barcode tag — app/views/tags/barcode.scala.html

Our product-details template uses some additional internationalized messages, so
we need to update the messages files.

Listing 2.20 Additional details page messages — conf/messages

Listing 2.21 Additional details page messages — conf/messages.es

@(ean: Long)

2.2.3 Additional message localizations

ean = EAN
name = Name
description = Description

products.details = Product: {0}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

32

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:src="@routes.Barcodes.barcode
http://www.manning-sandbox.com/forum.jspa?forumID=810

Listing 2.22 Additional details page messages — conf/messages.fr

Listing 2.23 Additional details page messages — conf/messages.nl

There are a couple of things still missing; let’s add the action that will be
responsible for finding the requested product and rendering its details page.

Since our new action needs to know which product to show, we’ll give it a
parameter, whose value will be the requested product’s EAN code. The action will
use the EAN to find the right product and have it rendered, or return a 404 error if
no product with that EAN was found. This is what it looks like.

Listing 2.24 Details page controller action — app/controllers/Products.scala

Our new action makes use of the fact that returns the productfindByEan

wrapped in an , so that we can call the method toOption Option.map

transform it into an that contains a page that shows the product details.Option

ean = EAN
name = Nombre
description = Descripción

products.details = Producto: {0}

ean = EAN
name = Nom
description = Descriptif

products.details = Produit: {0}

ean = EAN
name = Naam
description = Omschrijving

products.details = Product: {0}

2.2.4 Adding a parameter to a controller action

def show(ean: Long) = Action { implicit request =>

 Product.findByEan(ean).map { product =>
 Ok(views.html.products.details(product))
 }.getOrElse(NotFound)
}

Render a product
details page
… or return a 404
page

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

33

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

This rendered page is then returned, as the action’s result by the call to
. In the case that the product was not found, will havegetOrElse findByEan

returned a whose will return another whose returnsNone map None getOrElse

its parameter — in this case.NotFound

Now that we have an action that takes a parameter, we need a way to pass the
parameter to the action from the request. Let’s look at how to add parameters to
routes.

We want to put the EAN in the path of the request, rather than as a URL parameter.
In Play you can do this by putting the name of the parameter in the path of your
URL with a colon (‘:’) in front of it. This part of the path will then be extracted
from the request and used as the parameter for the method as specified by the route
mapping.

Listing 2.25 Details page route — conf/routes

Route with `ean` parameter

Now we can add the bits for generating the barcode.

To add the barcode to the details page, we need a separate URL that returns a
bitmap image. This means that we need a new controller action to generate the
image, and a new route to define the URL.

First, we’ll add barcode4j to our project’s external dependencies, to make the
library available. In , add an entry to the project/Build.scala

 list:appDependencies

Note that you’ll have to restart SBT or issue its command before itreload

notices the new dependency. Next, we add a new controller object thatBarcodes

defines two functions. One is an helper function that generatesean13BarCode

2.2.5 Adding a parameter to a route

GET /products/:ean controllers.Products.show(ean: Long)

2.3 Barcode image generation

val appDependencies = Seq(
 "net.sf.barcode4j" % "barcode4j" % "2.0"
)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

34

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

an EAN 13 bar code, for the given EAN code, and returns the result as a byte array
containing a PNG image. The other is the action that uses the barcode

 helper function to generate the bar code and return the responseean13BarCode

to the web browser.

Next, we add a route for the controller action that will generate the bar code:

Listing 2.26 Details and barcode routes — conf/routes

package controllers

import play.api.mvc.{Action, Controller}

object Barcodes extends Controller {

 val ImageResolution = 144

 def barcode(ean: Long) = Action {

 import java.lang.IllegalArgumentException

 val MimeType = "image/png"
 try {
 val imageData = ean13BarCode(ean, MimeType)
 Ok(imageData).as(MimeType)
 }
 catch {
 case e: IllegalArgumentException =>
 BadRequest("Couldn’t generate bar code. Error: " + e.getMessage)
 }
 }

 def ean13BarCode(ean: Long, mimeType: String): Array[Byte] = {

 import java.io.ByteArrayOutputStream
 import java.awt.image.BufferedImage
 import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider
 import org.krysalis.barcode4j.impl.upcean.EAN13Bean

 val output: ByteArrayOutputStream = new ByteArrayOutputStream
 val canvas: BitmapCanvasProvider =
 new BitmapCanvasProvider(output, mimeType, ImageResolution,
 BufferedImage.TYPE_BYTE_BINARY, false, 0)

 val barcode = new EAN13Bean()
 barcode.generateBarcode(canvas, String valueOf ean)
 canvas.finish

 output.toByteArray
 }
}

Action that returns
the PNG response

Call to the helper
function

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

35

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Finally, request http://localhost:9000/barcode/5010255079763 in a web browser
to view the generated bar code.

That wasn’t too hard, was it? We added a method to our DAO, two new actions
(for the details page and barcode image), their corresponding routes and some
templates to build some new functionality.

The third page in the application is a form for adding a new product, with model
constraints and input validation.

Figure 2.7 The form for adding a new product

To implement the form, we will need to capture the form data that the browser
sends when a user fills it in and submits it. Before we do that, though, we’ll add the
new messages we’re going to need.

The messages for adding a product illustrate the functionality that we are going to
add. Text for a form submit button—the name of the form’s ‘command’, and status
messages for success and validation failure.

Listing 2.27 conf/messages

GET /barcode/:ean controllers.Barcodes.barcode(ean: Long)

2.4 Adding a new product

2.4.1 Additional message localizations

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

36

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/barcode/5010255079763
http://www.manning-sandbox.com/forum.jspa?forumID=810

Listing 2.28 conf/messages.es

Listing 2.29 conf/messages.fr

Listing 2.30 conf/messages.nl

Now we can return to the data-processing: the next step is the server-side code
that will capture data from the HTML form.

products.form = Product details
products.new = (new)
products.new.command = New
products.new.submit = Add
products.new.success = Successfully added product {0}.

validation.errors = Please correct the errors in the form.
validation.ean.duplicate = A product with this EAN code already exists

products.form = Detalles del producto
products.new = (nuevo)
products.new.command = Añadir
products.new.submit = Añadir
products.new.success = Producto {0} añadido.

validation.errors = Corrija los errores en el formulario.
validation.ean.duplicate = Ya existe un producto con este EAN

products.form = Details produit
products.new = (nouveau)
products.new.command = Ajouter
products.new.submit = Ajouter
products.new.success = Produit {0} ajouté.

validation.errors = Veuillez corriger les erreurs sur le formulaire
validation.ean.duplicate = Un produit avec cette code EAN existe déja

products.form = Productdetails
products.new = (nieuw)
products.new.command = Toevoegen
products.new.submit = Toevoegen
products.new.success = Product {0} toegevoegd.

validation.errors = Corrigeer de fouten in het formulier
validation.ean.duplicate = Er bestaat al een product met dit EAN

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

37

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

In Play we use a object to helps us move data betweenplay.api.data.Form

the web browser and the server-side application. This encapsulatesForm

information about an object’s fields and how they are to be validated.
To create our form, we need some extra imports in our controller.

Listing 2.31 Form imports — app/controllers/Products.scala

The imports above are all we need for this specific form. There are more useful
things in and to help you dealplay.api.data play.api.data.Forms

with forms, so you might prefer to use wildcard imports (and …data._

).…data.Forms._

We’ll be using our form in several action methods in the controller,Products

so we’ll go ahead and add it to the class as a property, instead of making it a local
variable inside one particular action method.

Listing 2.32 Product form — app/controllers/Products.scala

The form’s fields and their constraints
Functions to map between the form and the model

This code shows how a consists of a mapping together with twoForm

functions that the form can use to map between itself and an instance of our
 model class.Product

The first part of the mapping specifies the fields and how to validate them.
There are several different validations and you can easily add your own.

2.4.2 Form object

import play.api.data.Form
import play.api.data.Forms.{mapping, longNumber, nonEmptyText}
import play.api.i18n.Messages

private val productForm: Form[Product] = Form(
 mapping(

 "ean" -> longNumber.verifying(
 "validation.ean.duplicate", Product.findByEan(_).isEmpty),
 "name" -> nonEmptyText,
 "description" -> nonEmptyText

)(Product.apply)(Product.unapply)
)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

38

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The second and third parts of the mapping are the functions the form will use to
create a model instance from the contents of the form and fill the formProduct

from an existing , respectively. Our form’s fields map directly to the Product

 class’ fields, so we simply use the and methods thatProduct apply unapply

the Scala compiler generates for case classes. If you’re not using case classes or
there is no one-to-one mapping between the case class and the form, you’ll have to
supply your own functions here.

Now that we have a form object, we can use it in our template. We want to be able
to show messages to the user. So we’ll have to make some changes to the main
template first.

Listing 2.33 New main template — app/views/main.scala.html

2.4.3 Form template

@(title: String)(content: Html)(implicit flash: Flash,
 lang: Lang)
<!DOCTYPE html>
<html>
<head>
 <title>@title</title>
 <link rel="stylesheet" type="text/css" media="screen"
 href='@routes.Assets.at("stylesheets/bootstrap.css")'>
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">
</head>
<body>
<div class="screenshot">

 <div class="navbar navbar-fixed-top">
 <div class="navbar-inner">
 <div class="container">

 @Messages("application.name")

 </div>
 </div>
 </div>

 <div class="container">
 @if(flash.get("success").isDefined){
 <div class="alert alert-success">
 @flash.get("success")
 </div>
 }

 @if(flash.get("error").isDefined){
 <div class="alert alert-error">
 @flash.get("error")

Flash-scope
parameter

Show a success
message, if present

Show an error
message, if present

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

39

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:href="@routes.Application.index
mailto:@flash.get
mailto:@flash.get
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:@flash.get

The new parts of the template use the flash-scope to show one-time messages to
the user. The main template now expects an implicit to be in scope, so weFlash

have to change the parameter list of all the templates that use it. Just add it to the
second parameter list on the first line of the main template, in

.app/views/products/details.scala.html

We also want to add an ‘Add’ button to our list view, for navigating to the ‘Add
product’ page.

Listing 2.34 Add product button — .app/views/products/list.scala.html

We’ll explain how the flash is filled in section 2.4.5. The following is a
template that allows a user to enter a new product’s details.

Listing 2.35 New product template — app/views/products/editProduct.scala.html

 </div>
 }

 @content
 @debug()
 </div>
</div>
</body>
</html>

@(products: List[Product])(implicit flash: Flash, lang: Lang)

@main(Messages("application.name")) {

 <dl class="products">
 @for(product <- products) {
 <dt>

 @product.name

 </dt>
 <dd>@product.description</dd>
 }
 </dl>

 <p>
 <a href="@controllers.routes.Products.newProduct()"
 class="btn">
 <i class="icon-plus"></i> @Messages("products.new.command")
 </p>
}

New implicit
parameter

Add button

Form parameter

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

40

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href="@controllers.routes.Products.show
mailto:@product.name
mailto:href="@controllers.routes.Products.newProduct
http://www.manning-sandbox.com/forum.jspa?forumID=810

This template’s first parameter is a , which is the type of theForm[Product]

form we defined earlier. We will use this form parameter in our template to
populate the HTML form.

Initially, the form we present to the user will be empty, but if validation fails
and the page is re-rendered it will contain the user’s input and some validation
errors. We can use this data to redisplay the invalid input and the errors, so that the
user can correct the mistakes. We’ll show you how validation works in the next
section.

The method renders an HTML element with the@helper.form form

correct and attributes—the action to submit the form to, and theaction method

HTTP method, which will be POST in this case. These values come from the
routes configuration, which we will add in section 2.4.6.

The input helper methods (and @helper.inputText

) render elements, complete with associated @helper.textarea input

 elements. The label text is retrieved from the messages file using the inputlabel

field name (e.g. “ean”).
The import makes sure that the helpers output all thetwitterBootstrap

necessary scaffolding that Twitter Bootstrap requires.
Now that we have an HTML form in the web browser and a form object on the

server, let’s look at how to use them together to save a new product.

@(productForm: Form[Product]
)(implicit flash: Flash, lang: Lang)
@import helper._
@import helper.twitterBootstrap._

@main(Messages("products.form")) {
 <h2>@Messages("products.form")</h2>

 @helper.form(action = routes.Products.save()) {
 <fieldset>
 <legend>
 @Messages("products.details", Messages("products.new"))
 </legend>
 @helper.inputText(productForm("ean"))
 @helper.inputText(productForm("name"))
 @helper.textarea(productForm("description"))
 </fieldset>
 <p><input type="submit" class="btn primary"
 value='@Messages("products.new.submit")'></p>
 }
}

Form parameter

Form helpers
Twitter Bootstrap
helpers

Render an HTML
form

Render input
elements

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

41

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.inputText
mailto:@helper.textarea
mailto:@helper.form
mailto:(@helper.inputText
mailto:@helper.textarea
http://www.manning-sandbox.com/forum.jspa?forumID=810

To save a new product, we need code in our controller to provide the interface with
the HTTP form data, as well as code in our data access layer that actually saves the
new product. Let’s start with an method in our DAO.add

Listing 2.36 Save a new product — app/models/Product.scala

Since we don’t have a real persistence layer in this version of the application,
the method simply adds the product to the product list. This doesn’t mattersave

much, because by encapsulating the data operations in the DAO, we canProduct

easily modify the implementation later to use persistent storage.
Next we’ll move back to the HTTP interface. Before we can save a new

product, we have to validate it.

When we use the form that we defined in the controller, our goal is to collect the
product details that the user entered in the HTML form and convert them to an
instance of our model class. This is only possible if the data is valid; ifProduct

not, then we cannot construct a valid instance, and we will want toProduct

display validation errors instead. We’ve already shown you how to create a form
and specify its constraints; the next code sample shows how to validate a form and
act according to the results.

Listing 2.37 Validate and save a new product — app/controllers/Products.scala

2.4.4 Saving the new product

object Product {
…

 def add(product: Product) {
 this.products = this.products + product
 }
}

‘Save‘ the new
product

2.4.5 Validating the user input

def save = Action { implicit request =>
 val newProductForm = this.productForm.bindFromRequest()

 newProductForm.fold(

 hasErrors = { form =>
 Redirect(routes.Products.newProduct())
 },

Fill the form with
the user’s input

If validation fails,
redirect back to the
add page

If it validates, save

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

42

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The method searches the request parameters for onesbindFromRequest

named after the form’s fields and uses them as those fields’ values. The
form-helpers we talked about in listing 2.35, made sure to give the input elements
(and therefore, the request parameters) the correct names.

Validation happens at binding-time. This makes validation as easy as calling
 and then to transform the form in to the right kind ofbindFromRequest fold

response. In Scala, ‘fold’ is often used as the name of a method that collapses (or
folds) multiple possible values into a single value. In this case, we are attempting
to fold either a form with validation errors or one that validates correctly into a
response. The method takes two parameters, both of which are functions.fold

The first parameter () is called if validation failed, the other (hasErrors

) if the form validated without errors. This is analogous to Scala’s success

 type. This is exactly what our action does.Either save

However, we’re not done here. When we redirect back to the new-product page
— due to validation errors — the page will be rendered with an empty form and no
indication to the user what went wrong. One solution would be to render the

 template from the function. This would be a badeditProduct hasErrors

idea since we’d be rendering a page in response to a POST and make things
difficult for the users if they try to use the back button. Remember, Play is about
embracing HTTP, not fighting it. What we want to do, is redirect the user back to
the new-product page and somehow make the form-data (including the validation
errors) available to the next request. Let’s do that in an improved version of our

 action.save

Listing 2.38 Validate and save a new product 2 — app/controllers/Products.scala

 success = { newProduct =>
 Product.add(newProduct)
 Redirect(routes.Products.show(newProduct.ean))
 }
)
}

If it validates, save
the new product
and redirect to its
details page

def save = Action { implicit request =>
 val newProductForm = this.productForm.bindFromRequest()

 newProductForm.fold(
 hasErrors = { form =>
 Redirect(routes.Products.newProduct()).
 flashing(Flash(form.data) +
 ("error" -> Messages("validation.errors")))

Add the form-data
to the flash-scope
and an informative

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

43

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We’re calling the method in (which is theflashing SimpleResult

supertype of what Redirect and its brethren, like and , return) toOk NotFound

pass information to the next request. In both cases we set a message to be displayed
to the user on the next request and in the case of validation errors, we also add the
user’s input.

SIDEBAR The flash scope
Most modern web-frameworks have a flash-scope. Like the
session-scope it is meant to keep data, related to the client, outside of
the context of a single request. The difference is that the flash-scope is
kept for the next request only, after which it’s removed. This takes some
effort away from you, as the developer, because you don’t have to write
code that clears things like one-time messages from the session.
Play implements this in the form of a cookie that’s cleared on every
response, except for the response that sets it. The reason for using a
cookie is scalability. If the flash is not stored on the server, each of one
of a client’s requests can be handled by a different server, without
having to synchronize between servers. The session is kept in a cookie
for exactly the same reason.
This makes setting up a cluster a lot simpler. You don’t need to send a
particular client’s request to the same server, you can simply hand out
requests to servers on a round-robin basis.

The reason we add the user’s input to the flash, is so that the new-product page
can fill the rendered form with the user’s input. This allows the user to simply
correct his or her mistakes, as opposed to having to re-type everything. Let’s look
at the new-product action.

Listing 2.39 New product action — app/controllers/Products.scala

 },
 success = { newProduct =>
 Product.add(newProduct)
 val message = Messages("products.new.success", newProduct.name)
 Redirect(routes.Products.show(newProduct.ean)).
 flashing("success" -> message)
 }
)
}

and an informative
message

Add a confirmation
message to the
flash-scope

def newProduct = Action { implicit request =>
 val form = if (flash.get("error").isDefined)
 this.productForm.bind(flash.data)

If there’s a
validation error,

bind flash scope

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

44

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We’re using the presence of an error message as a signal to render the
new-product page with the user’s input and associated error messages. We simply
bind the form with the data in the flash. When this form is rendered by the
template, the form helpers (which we discussed earlier) will also render the error
messages. This is what it looks like.

Figure 2.8 The product form, showing validation errors

When the new-product page is rendered initially — when the user clicks the
new-product button — there is no error message and the action renders an empty
form. You could fill the form with default values by passing a suitably initialized
instance of to its method. When you’re rendering a form forProduct fill

editting, you use the same procedure with a product-instance from your database.
Now we just to add the routes to make it all work.

We need two routes, one for the new product page and one for the save action.

Listing 2.40 Add and save routes — conf/routes

 else
 this.productForm

 Ok(views.html.products.editProduct(form))
}

bind flash scope
data to the form

Render the new
product page

2.4.6 The routes

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

45

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Since Play routes that come first in the file have higher priority, you have to be
careful here and make sure the route comes before the /products/new

 route. Otherwise a request for the former will be interpreted/products/:ean

as a request for the latter with an EAN of ‘new‘ — which will lead to an error
message, since ‘new’ can’t be parsed as an integer.

There’s a version of the sample application that also has functionality to update
a product. Any additional features are left as an exercise for the reader. You’ll see
how to do that and more in later chapters.

To build a Play application, you start with a new application skeleton and then
assemble a variety of components. The application in this chapter includes:

CSS style sheets
application configuration
localized message files
a Scala model and application controller
HTTP routes configuration
several view templates
an external library.

Although this was only a basic application, it shows what a Play application
looks like. A complete implementation of our product catalog idea would have
more code, address more details and use more techniques, but the structure would
be the same.

Perhaps the most important part of understanding Play at this stage, is to get a
sense of which different kinds of code there are, as well as how little code you
actually have to write to get things done. If you actually built the application or
modified the code samples, as well as reading the chapter, you should also have a
sense of what Play’s developer experience feels like.

In the next chapter, you will see how the various application components fit
together as part of a model-view-controller (MVC) architecture, and learn more
details about each part of a Play application.

POST /products controllers.Products.save
GET /products/new controllers.Products.newProduct

2.5 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

46

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

II
Part 2 is a reference manual for the standard features, organised by common web
development concepts, and contains the material that every developer should be
familiar with.

Core functionality

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

47

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

3
This chapter covers

The key concepts used in a Play application’s architecture
How a Play application’s components relate to each other
How to configure a Play application and its HTTP interface
Play’s model-view-controller and asynchronous process APIs
Application modularization

This chapter explains Play at an architectural level. By covering the main parts
of a Play application, this chapter will show you how a Play application is put
together and how the separate components work together, to help you get a broad
understanding of how you use Play to build a web application, without going into
real detail at the code level. This will also allow you to learn which concepts and
terms play uses, so you can recognize Play’s similarities to other web frameworks
and discover the differences.

Play’s API and architecture is based on HTTP and the model-view-controller
(MVC) architectural pattern. These are familiar to many web developers, but if
we’re honest, no-one really remembers how all of the concepts fit together without
looking them up. That’s why this section starts with a re-cap of the main ideas and
terms.

When a web client sends HTTP requests to a Play application, the request is
handled by the embedded HTTP server, which provides the Play framework’s
network interface. The server forwards the request data to the Play framework,
which generates a response that the server sends to the client.

Deconstructing Play application
architecture

3.1 Drawing the architectural big picture

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

48

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 3.1 A client sends an HTTP request to the server, which sends back an HTTP
response.

Web server scalability is always a hot topic, and a key part of that is how many
requests per second your web application can serve in a particular set-up. The last
ten years haven’t really seen much in the way of architectural improvements for
JVM web application scalability in the web tier, and most improvements are due to
faster hardware. However, the last couple of years have seen the introduction of
Java NIO non-blocking servers that greatly improve scalability: instead of tens of
requests per second, think about thousands of requests per second.

NIO, or New I/O, is the updated Java input/output API introduced in Java SE
1.4 whose features include non-blocking I/O. Non-blocking—asynchronous—I/O
makes it possible for Netty to process multiple requests and responses with a single
thread, instead of having to use one thread per request. This has a big impact on
performance, because it allows a web server to handle a large number of
simultaneous requests with a small fixed number of threads.

Play’s HTTP server is JBoss Netty, one of several Java NIO non-blocking
servers. Netty is included in the Play distribution, so there’s no additional
download. Netty is also fully-integrated, so in practice you don’t have to think of it
as something separate, which is why we’ll generally talk about ‘the Play server’
instead. The main consequence of Play’s integration with an NIO server
architecture is that Play has an HTTP API that supports asynchronous web
programming, differing from the Servlet 2.x API that has dominated the last
decade of web development on the JVM. Play also has a different deployment
model.

This web server architecture’s deployment model may be different to what you
are used to. When you use a web framework that is based on the Java Servlet API,
you package your web application as some kind of archive that you deploy to an

3.1.1 The Play server

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

49

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

application server such as Tomcat, which runs your application. With the Play
framework it’s different: Play includes its own embedded HTTP server, so you do
not need a separate application server to run your application.

HTTP is an Internet protocol whose beauty is in its simplicity, which has been a
key factor in its success. The protocol is structured into transactions that each
consist of a request and a response, each of which is text-based. HTTP requests use
a very small set of commands called HTTP methods, and HTTP responses are
characterized by a small set of numeric status codes. The simplicity also comes
from the request-response transactions being stateless.

Figure 3.2 An HTTP request and an HTTP response have text content.

The MVC design pattern separates an application’s logic and data from the user
interface’s presentation and interaction, maintaining a loose coupling between the
separate components. This is the high-level structure that we see if we zoom in on
a Play framework application.

Figure 3.3 A Play application is structured into loosely-coupled model, view and
controller components.

3.1.2 HTTP

3.1.3 MVC

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

50

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Most importantly, the application’s model, which contains the application’s
domain-specific data and logic, has no dependency on or even knowledge of the
web-based user-interface layer. This doesn’t mean that Play doesn’t provide any
model layer support: Play is a full-stack framework, so in addition to the web tier it
provides a persistence API for databases.

Figure 3.4 Play is persistence API agnostic, although it comes with an API for SQL
databases.

The Play framework achieves all of this with fewer layers than traditional Java
EE web frameworks by using the router and controller API to expose the HTTP
directly, using HTTP concepts, instead of trying to provide an abstraction on top of
it. This means that learning to use Play is partly about learning to use HTTP
correctly, which differs from the approach presented by Java Servlet API, for
example.

Depending on your background, this may sound scarier than it actually is.
HTTP is simple enough that you can pick it up as you go along. If you want to
know more, you can read everything a web developer needs to know about HTTP
in the first three chapters of the book , which isWeb Client Programming with Perl

out of print and freely-available on-line .1

Footnote 1 O’Reilly Open Books Project, http://oreilly.com/openbook/webclient/m

Finally, on a different level, Play allows your application to satisfy the constraints
of a REST-style architecture. REST is an architectural style that characterises the
way HTTP works, featuring constraints such as having stateless client-server
interface and a uniform interface between clients and servers.

In the case of HTTP, the uniform interface uniquely identifies resources by

3.1.4 REST

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

51

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://oreilly.com/openbook/webclient/
http://www.manning-sandbox.com/forum.jspa?forumID=810

URL and manipulates them using a fixed set of HTTP methods. This interface
allows clients to access and manipulate your web application’s resources via
well-defined URLs, and it is HTTP’s features that make this possible.

Play enables REST architecture by itself having a stateless client-server
architecture that fits with the REST constraints, and by making it possible to define
your own uniform interface by specifying different HTTP methods to interact with
individually-designed URL patterns. You will see how to do this in section 3.4.

All of this matters because the goals of REST have significant practical
benefits. In particular, a stateless cacheable architecture enables horizontal
scalability with components running in parallel, which gets you further than scaling
vertically by upgrading your single server. Meanwhile, the uniform interface
makes it easier to build rich HTML5-based client-side user-interfaces, compared to
using tightly-coupled client-server user-interface components.

When you create a new Play application, it just works so you don’t have to
configure it at all. This is because Play creates an initial configuration file for you,
and almost all of the configuration parameters are optional.

Play has many configuration options, but these have sensible defaults so you
will not need to set them all yourself.

From an architectural point of view, Play’s configuration file is a central
configuration for all application components, including your application,
third-party libraries and the Play framework itself. Play provides configuration
properties for both third-party libraries, such as the logging framework, and for it’s
own components. For configuring your own application, Play lets you add custom
properties to the configuration and provides an API for accessing them at runtime.

You set configuration options in the configurationconf/application.conf

file. Instead of creating this configuration file yourself, you almost always start
with the file that Play generates when you create a new application.

This default configuration includes a generated value for the application’s
secret key, which is used by Play’s cryptographic functions, a list of the
application’s languages and three properties that configure logging, setting the

3.2 Application configuration—enabling features and changing
defaults

3.2.1 Creating the default configuration

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

52

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

default logging ‘level’ (the root logger), as well as the logging level for Play
framework classes and your application’s classes. Logging is described in more
detail in section ???.

Listing 3.1 Initial minimal configuration file ()conf/application.conf

This format will look familiar if you have used Play 1.x, but with one
difference. You must use double quotes to quote configuration property values,
although you do not need to quote values that only consist of letters and numbers,
such as ‘DEBUG’ in the previous example or ‘42’.

The configuration file also includes a wider selection of commented-out
example options with some explanation of how to use them. This means that you
can easily enable some features, such as a pref-configured in-memory database,
just by un-commenting one or two lines.

Play 2.0 uses a new configuration file format whose syntax comes from the

Typesafe config library. The new format supports a superset of JavaScript2

Serialized Object Notation (JSON), although plain JSON and Java Properties files
are also supported. The configuration format supports various features:

Footnote 2 https://github.com/typesafehub/configm

comments
references to other configuration parameters and system environment variables
file includes
the ability to merge multiple configuration files
specifying and alternate configuration file or URL using system properties
units specifiers for durations, e.g. ‘days’, and sizes in bytes, e.g. ‘MB’.

A common configuration requirement is to use environment variables for operating
system-independent machine-specific configuration. For example, you can use an
environment variable for database configuration:

application.secret="l:2e>xI9kj@GkHu?K9D[L5OU=Dc<8i6jugIVE^[`?xSF]udB8ke"
application.langs="en"

logger.root=ERROR
logger.play=INFO
logger.application=DEBUG

3.2.2 Configuration file format

ENVIRONMENT VARIABLES AND REFERENCES

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

53

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

You can use the same syntax to refer to other configuration variables,${ … }

which you might use to set a series of properties to the same value, without
duplication.

Although you will normally only use a single file, youapplication.conf

may want to use multiple files, either so that some of the configuration can be in a
different format, or just to add more structure to a larger configuration.

For example, you might want to have a separate file for default database
connection properties, and some of those properties in your main configuration
file. To do this, add the following file to yourconf/db-default.conf

application:

This example uses the JSON format to nest properties instead of repeating the
 prefix for each property. Now we can include this configuration indb.default

our main application configuration and specify a different database user name and
password by adding three lines to :application.conf

db.default.url = ${DATABASE_URL}

logger.net.sf.ehcache.Cache=DEBUG
logger.net.sf.ehcache.CacheManager=${logger.net.sf.ehcache.Cache}
logger.net.sf.ehcache.store.MemoryStore=${logger.net.sf.ehcache.Cache}

INCLUDES

db: {
 default: {
 driver: "org.h2.Driver",
 url: "jdbc:h2:mem:play",
 user: "sa",
 password: "",
 }
}

include "db-default.conf"

db.default.user = products
db.default.password = clippy

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

54

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Include the configuration from the other file
Override the user name and password

Here we see that to include a file, we just use followed by a quotedinclude

string file name. Technically, the unquoted is a special name that isinclude

used to include configuration files when it appears at the start of a key. This means
that a configuration key called ‘include’ would have to be quoted:

Just a string property — not a file include

When you use multiple files, the configuration file format defines rules for how
multiple values for the same parameter are merged.

We have already seen how you can replace a previously-defined value, when
we redefined . In general, when you redefine a propertydb.default.user

using a single value, this replaces the previous value.
You can also use the object notation to merge multiple values. For example,

let’s start with the default database settings we saw earlier:db-default.conf

Note that the format allows a trailing comma after , the lastpassword

property in the object.db.default

In , we can replace the user name and password asapplication.conf

before, and also add a new property by specifying a whole object:db

"include" = "kitchen sink"

MERGING VALUES FROM MULTIPLE FILES

db: {
 default: {
 driver: "org.h2.Driver",
 url: "jdbc:h2:mem:play",
 user: "sa",
 password: "",
 }
}

db: {
 default: {
 user: "products"
 password: "clippy must die!"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

55

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Note that the format also allows us to omit the commas between properties,
provided that there is a line break () between properties.\n

The result is equivalent to the following ‘flat’ configuration:

The file isn’t the last word on configuration propertyapplication.conf

values: you can also use Java system properties to override individual values or
even the whole file.

To return to our earlier example of a machine-specific database configuration,
an alternative to setting an environment variable is to set a system property when
running Play. Here’s how to do this when starting Play in production mode from
the Play console:

You can also override the whole file by using a systemapplication.conf

property to specify an alternate file. Use a relative path for a file within the
application:

Use an absolute path for a machine-specific file outside the application
directory:

 logStatements: true
 }
}

db.default.driver = org.h2.Driver
db.default.url = jdbc:h2:mem:play
db.default.user = products
db.default.password = "clippy must die!"
db.default.logStatements = true

3.2.3 Configuration file overrides

$ start -Ddb.default.url=postgres://localhost:products@clippy/products

$ run -Dconfig.file=conf/production.conf

$ run -Dconfig.file=/etc/products/production.conf

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

56

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The Play configuration API gives you programmatic access to the configuration, so
you can read configuration values in controllers and templates. The

 class provides the API for accessingplay.api.Configuration

configuration options and is theplay.api.Application.configuration

configuration instance for the current application. For example, the following code
logs the database URL configuration parameter value.

Using the Play API to retrieve the current application’s configuration in a Scala
class

Import the implicit current application instance for access to the configuration
databaseUrl is the value of the configuration value Option

As you should expect, provides type-safeplay.api.Configuration

access to configuration parameter values, with methods that read parameters of
various types. Currently, Play supports , and types. String Int Boolean

 values are , or ; or , or . ForBoolean true yes enabled false no disabled

example, here’s how to check a Boolean configuration property.

Configurations are structured hierarchically, according to the hierarchy of keys
specified by the file format. The API allows you to get a sub-configuration of the
current configuration. For example, the following code logs the values of the

 and parameters.db.default.driver db.default.url

Accessing a sub-configuration

3.2.4 Configuration API—programmatic access

import play.api.Play.current
current.configuration.getString("db.default.url").map {

 databaseUrl => Logger.info(databaseUrl)
}

current.configuration.getBoolean("db.default.logStatements").foreach {
 if (_) Logger.info("Logging SQL statements...")
}

current.configuration.getConfig("db.default").map {
 databaseConfiguration =>
 databaseConfiguration.getString("driver").map(Logger.info(_))
 databaseConfiguration.getString("url").map(Logger.info(_))
}

Returns an
Option[Configuration]
object

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

57

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Although you can use this to read standard Play configuration parameters, you
are more likely to want to use this to read your own custom application
configuration parameters.

When you want to define your own configuration parameters for your application,
just add them to the existing configuration file and use the configuration API to
access their values.

For example, suppose you want to display version information in your web
application’s page footer. You could add an application.revision

configuration parameter, and display its value in a template. First add the new
entry in the configuration file:

Then read the value in a template, using the implicit instance of current

 to access the current configuration:play.api.Application

Output the value of a configuration parameter in a template:

Configuration.getString actually returns an Option[String]

rather than a , but the template just outputs the value or an empty string,String

depending on whether the has a value.Option

Note that it would actually be better not to hard-code the version information in
the configuration file. Instead, you might get the information from a revision
control system, by writing the output of commands like or svnversion git

 to a file, and reading that from your application.describe --always

The model contains the application’s domain-specific data and logic. In our case,
this means Scala classes that process and provide access to the application’s data.
This data is usually kept in persistent storage, such as a relational database, in
which case the model handles persistence.

3.2.5 Custom application configuration

application.revision = 42

@import play.api.Play.current
<footer>
 Revision @current.configuration.getString("application.revision")
</footer>

3.3 The model—adding data structures and business logic

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

58

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@current.configuration.getString
http://www.manning-sandbox.com/forum.jspa?forumID=810

In a layered application architecture, the domain-specific logic is usually called
‘business logic’ and does not have a dependency on any of the application’s
external interfaces, such as a web-based user-interface. Instead, the model provides
an object-oriented API for interface layers, such as the HTTP-based controller
layer.

One good way to design an application is to start with a logical data model, as well
as an actual physical database. This is an alternative to a UI-centric design that is
based on how users will interact with the application’s user-interface, or a
URL-centric design that focuses on the application’s HTTP API.

Database-centric design means starting with the data model: identifying entities
and their attributes and relationships. Once you have a database design that
structures the some of the application’s data, you can add a user-interface and
external API layers that provides access to this data. This doesn’t necessarily mean
up-front design for the whole database; just that the database design is leading for
the corresponding user-interface and APIs.

For example, we can design a product catalog application by first designing a
database for all of the data that we will process, in the form of a relational database
model that defines the attributes and relationships between entities in our domain:

Product — A Product is a description of a manufactured product as it might appear in a
catalog, such as ‘Box of 1000 large plain paper clips’, but not an actual box of paper
clips. Attributes include a product code, name and description.
Stock Item — A Stock Item is a certain quantity of some product at some location, such
as 500 boxes of a certain kind of paper clip, in a particular Warehouse. Attributes include
quantity and references to a Product and Warehouse.
Warehouse — A Warehouse is a place where Stock Items are stored. Attributes include a
name and geographic location or address.
Order — An Order is a request to transfer ownership of some quantity of one or more
products, specified by Order Lines. Attributes include a date, seller and buyer.
Order line — An Order Line specifies a certain quantity of some Product, as part of an
Order. Attributes include a quantity and a reference to an Order and Product.

Traditionally, this has been a common approach in enterprise environments,
which often view the data model as a fundamental representation of a business
domain that will out-live any single software application. Some organizations even
go further and try to design a unified data model for the whole business.

3.3.1 Database-centric design

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

59

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

TIP Don’t waste your life searching for a unified model
If you use database-centric design in a commercial organization, do
not attempt to introduce a unified enterprise data model. You are
unlikely to even get everyone to agree on the definition of
‘customer’, although you may at least keep several enterprise
architects out of your way for a while.

The benefit of this approach is that you can use established data modeling
techniques to come up with a data model that is a consistent and unambiguous
description of your application’s domain. This data model can then be the basis for
communication about the domain, both among people and in code itself.
Depending on your point of view, a logical data model’s high level of abstraction
is also a benefit, since this makes it largely independent of how the data is actually
used.

There is more than one way to structure your model. Perhaps the most significant
choice is whether to keep your domain-specific data and logic separate or together.
In the past, how you approach this generally depended on which technology stack
you were using. Developers coming to Play and Scala from a Java EE background
are likely to have separated data and behavior in the past, while other developers
may have used a more object-oriented approach that mixes data and behavior in
model classes.

Structuring the model to separate the data model and business logic is common
in Java EE architectures, and it was promoted by Enterprise Java Beans’ separation
between Entity Beans and Session beans. More generally, the domain data model is
specified by classes called Value Objects that do not contain any logic. These
Value Objects are used to move data between an application’s external interfaces
and a service-oriented Business Logic layer, which in turn often uses a separate
Data Access Object layer that provides the interface with persistent storage. This is
described in detail in Sun’s .Core J2EE Patterns

Martin Fowler famously describes this approach as the Anemic Domain Model
anti-pattern, and doesn’t pull any punches when he writes that ‘The fundamental
horror of this anti-pattern is that it’s so contrary to the basic idea of object-oriented

design; which is to combine data and process together.’3

Footnote 3 http://martinfowler.com/bliki/AnemicDomainModel.htmlm

3.3.2 Model class design

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

60

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Play’s original design was intended to support an alternative architecture,
whose model classes include business logic and persistence layer access with their
data. This ‘encapsulated model’ style looks somewhat different to the Java EE
style, as shown in figure ??, and typically results in simpler code.

Figure 3.5 Two different ways to structure your application’s model layer.

Despite all of this, Play does not really have much to do with your domain
model. Play does not impose any constraints on your model, and the persistence
API integration it provides is optional. In the end, you should just use whichever
architectural style you prefer.

It is convenient to define your domain model classes using Scala case classes,
which expose their parameters as public values. In addition, case classes are often
the basis for persistence API integration.

For example, suppose that we are modeling stock level monitoring as part of a
warehouse management system. We need case classes to represent quantities of
various products, stored in warehouses.

Listing 3.2 Case classes for our domain model entities ()app/models/models.scala

3.3.3 Defining case classes

case class Product(
 id: Long,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

61

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The ‘EAN’ identifier is a unique product identifier, which we introduced in
section ???.

You can use your case classes to persist the model using a persistence API. In a
Play application’s architecture, this is entirely separate from the web tier: only the
model uses (i.e. has a dependency on) the persistence API, which in turn uses
external persistent storage, such as a relational database.

Figure 3.6 Persistence architecture in a Play application

Play includes the Slick persistence API so that you can build a complete web
application, including SQL database access, without any additional libraries.
However, you are free to use alternative persistence libraries or approaches to
persistent storage.

For example, given instances of our and classes, youProduct Warehouse

need to be able to execute SQL statements such as the following:

Similarly, you need to be able to perform queries and transform the results into

 ean: Long,
 name: String,
 description: String)

case class Warehouse(id: Long, name: String)

case class StockItem(
 id: Long,
 productId: Long,
 warehouseId: Long,
 quantity: Long)

3.3.4 Persistence API integration

insert into products (id, ean, name, description) values (?, ?, ?, ?);

update stock_item set quantity=? where product_id=? and warehouse_id=?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

62

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Scala types. For example, you need to execute the following query and be able to
get a of the results:List[Product]

Slick is intended as a Scala-based API for relational-database access that you use
instead of using JDBC directly, or adding a complex object-relational mapping
framework. Instead, Slick uses Scala language features to allow you to map
database tables to Scala collections and to execute queries. With Scala, this results
in less code and cleaner code compared to directly using JDBC, and especially
compared to doing so with Java.

For example, you can map a database table to a Product data access object
using Scala code:

Next, you define a query on the object:Product

To execute the query, you can simply use the query object to generate a list of
products, in a database session:

You don’t need to know how to do everything with Slick at this stage—that’s
explained in chapter XREF ch05_chapter. The important thing to note is the way
that you create a type safe data access object that lets you perform type safe

select * from products order by name, ean;

3.3.5 Using Slick for database access

object Product extends Table[(Long, String, String)]("products") {
 def ean = column[Long]("ean", O.PrimaryKey)
 def name = column[String]("name")
 def description = column[String]("description")
 def * = ean ~ name ~ description
}

val products = for {
 product <- Product.sortBy(product => product.name.asc)
} yield (product.ean, product.name, product.description)

val url = "jdbc:postgresql://localhost/slick?user=slick&password=slick"
Database.forURL(url, driver = "org.postgresql.Driver") withSession {
 val productList = products.list
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

63

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

database queries using Scala collections idioms, and the mapped Scala types for
database column values.

One aspect of designing your application is to design a URL scheme for HTTP
requests, for hyperlinks, HTML forms and possibly a public API. In Play, you
define this interface in an ‘HTTP routes’ configuration and implement the interface
in Scala controller classes.

Your application’s controllers and routes make up the controller layer in the
MVC architecture introduced in section 3.1.3.

Figure 3.7 Play routes HTTP requests to action methods in controller classes

More specifically, controllers are the Scala classes that define your
application’s HTTP interface, and your routes configuration determines which
controller method a given HTTP request will invoke. These controller methods are
called ‘actions’—Play’s architecture is in fact an MVC variant called ‘action-based
MVC’—so you can also think of a controller class as just a collection of action
methods.

In addition to handling HTTP requests, action methods are also responsible for
co-ordinating HTTP responses. Most of the time, you will generate a response by
rendering an HTML view template, but a response might also be an HTTP error or
data in some other format, such as plain text, XML or JSON. Responses may also
be binary data, such as a generated bitmap image.

One good way to start building a web application is to plan its HTTP interface—its
URLs. This URL-centric design is an alternative to a database-centric design that
starts with the application’s data, or a UI-centric design that is based on how users
will interact with its user-interface.

3.4 Controllers—handling HTTP requests and responses

3.4.1 URL-centric design

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

64

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

URL-centric design is not better than data model-centric design or UI-centric
design, although it might make more sense for a developer who thinks in a certain
way, or for a certain kind of application. In fact, the best approach is to probably
start on all three, possibly with separate people who have different expertise, and
meet in the middle.

URL-centric design means identifying your application’s resources, and operations
on those resources, and creating a series of URLs that provide HTTP access to
those resources and operations. Once you have a solid design, you can add a
user-interface layer on top of this HTTP interface, and add a model that backs the
HTTP resources.

Figure 3.8 URL-centric design starts with identifying HTTP resources and their URLs

The key benefit of this approach is that you can create a consistent public API
for your application that is more stable than either the physical data model
represented by its model classes, or the user-interface generated by its view
templates.

SIDEBAR RESTful web services
This kind of API is often called a ‘RESTful web service’, which means
that the API is a web service API that conforms to the architectural
constraints of ‘representational state transfer’ (REST). See section
3.1.4.

Modelling HTTP resources is especially useful if the HTTP API is the basis for
more than one external interface, in what can be called a ‘Resource-Oriented
Architecture’ — a REST-style alternative to service-oriented architecture based on
addressable resources.

For example, your application might have a plain HTML user-interface and a
JavaScript-based user-interface that uses Ajax to access the server’s HTTP

HTTP RESOURCES

RESOURCE-ORIENTED ARCHITECTURE

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

65

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

interface, as well as arbitrary HTTP clients that use your HTTP API directly.
This is an API-centric perspective on your application in which you consider

that HTTP requests will not necessarily come from your own application’s
web-based user-interface. In particular, this is the most natural approach if you are

designing a REST-style HTTP API.4

Footnote 4mSee chapter 5—‘Designing Read-Only Resource-Oriented Services’—of ,RESTful Web Services
O’Reilly.

Clean URLs are also relatively short. In principle, this should not matter,
because in principle you never type URLs by hand. However, you do in practice,
and shorter URLs have better usability. For example, short URLs are easier to use
in other media, such as e-mail or instant messaging.

There isn’t much point working on a URL-centric design unless you can actually
make those URLs work in practice. Fortunately, Play’s HTTP routing
configuration syntax gives you a lot of flexibility about how to match HTTP
requests. For example, a URL-centric design for our product catalog might give us
a URL scheme with the following URLs:

To implement this scheme in your application, you create a conf/routes

file like this:

Each line in this routes configuration file has syntax shown in figure 3.9.

3.4.2 Routing HTTP requests to controller action methods

GET /
GET /products
GET /products?page=2
GET /products?filter=zinc
GET /product/5010255079763
GET /product/5010255079763/edit
PUT /product/5010255079763

GET / controllers.Application.home()

GET /products controllers.Products.list(page: Int ?= 1)

GET /product/:ean controllers.Products.details(ean: Long)

GET /product/:ean/edit controllers.Products.edit(ean: Long)

PUT /product/$ean<\d{13}> controllers.Products.update(ean: Long)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

66

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 3.9 Routing syntax for matching HTTP requests

The full details of this routes file syntax are explained in chapter XREF
ch04_chapter. What’s important for now is to notice how straightforward the
mapping is, from an HTTP request on the left to a controller method on the right.

What’s more, this includes a type-safe mapping from HTTP request parameters
to controller method parameters. This is called ‘binding’.

Routing an HTTP request to a controller and invoking one of its action methods is
only half of the story: action methods often have parameters, and you also need to
be able to map HTTP request data to those parameters. In practice, this means
parsing string data from the request’s URL path, URL query string and request
body, and converting that data to Scala objects.

For example, figure 3.10 illustrates how a request for a product’s details page
results in both routing to a specific action method and converting the parameter to
a number.

Figure 3.10 Routing and binding an HTTP request

On an architectural level, binding and routing are both part of the mapping
between HTTP and Scala’s interfaces, which is a translation between two very
different interface styles. The HTTP ‘standard interface’ uses a small fixed number
of methods (GET, POST, etc) on a rich model of uniquely identified resources,
while Scala code has an object-oriented interface that supports an arbitrary number
of methods that act on classes and instances.

More specifically, while routing determines which Scala method to call for a
given HTTP request, binding allows this method invocation to use type-safe
parameters. This type safety is a recurring theme: in HTTP, everything is a string,

3.4.3 Binding HTTP data to Scala objects

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

67

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

while in Scala, everything has a more specific type.
Play has a number of separate built-in binders for different types, and you can

also implement your own custom binders.
This was just a quick overview of what binding is; there is a longer explanation

of how binding works in section XREF ch04_section_binding.

Controllers don’t just handle incoming HTTP requests; as the interface between
HTTP and the web application, controllers also generate HTTP responses. Most of
the time, an HTTP response is just a web page, but in general many different kinds
of response are possible, especially when you are building machine-readable web
services.

The architectural perspective of HTTP requests and responses is to consider the
different ways to represent data that is transmitted over HTTP. A web page about
product details, for example, is just one possible representation of a certain
collection of data: the same product information might also be represented as plain
text, XML, JSON or a binary format such as a JPEG product photo or a PNG bar
code that encodes a reference to the product.

In the same way that Play uses Scala types to handle HTTP request data, Play
also provides Scala types for different HTTP response representations. You use
these types in a controller method’s return value, and Play generates an HTTP
response with the appropriate content type. Section XREF ch04_section_response
shows you how to generate different types of response—plain text, HTML, JSON,
XML and binary images.

An HTTP response is not only a response body: the response also includes
HTTP status codes and HTTP headers that provide additional information about
the response. You might not have to think about these much when you write a web
application that generates web pages, but you do need fine control over all aspects
of the HTTP response when you implement a web service. As with the response
body, you specify status codes and headers in controller method return values.

Web applications generally make web pages, so we shall need to know how to
make some of those.

If you were to take a purist view of a server-side HTTP API architecture, you
might provide a way to write data to the HTTP response and stop there. This is
what the original Servlet API did, which seemed like a good idea until you realize

3.4.4 Generating different types of HTTP response

3.5 View templates—formatting output

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

68

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

that web developers really need an easy way to generate HTML documents. In the
case of the Servlet API, this resulted in the later addition of JavaServer Pages,
which was not a high-point of web application technology history.

HTML document output matters: as Mark Pilgrim said (before he disappeared),
‘HTML is not just one output format among many; it is the format of our age’.
This means that a web framework’s approach to formatting output is a critical
design choice. View templates are a big deal; HTML templates in particular.

Before we look at how Play’s view templates work, let’s consider how you
might want to use them.

Yet another good way to design an application is to start with the user-interface,
and to design functionality in terms of how people interact with it. This is both an
alternative and a complement to a database-centric design that starts with the
application’s data, or a URL-centric design that focuses on the application’s HTTP
API.

UI-centric design starts with user-interface mock-ups and progressively adds
detail without starting on the underlying implementation until later, when the
interface design is established. This approach has become especially popular with
the rise of SAAS (Software As A Service) applications.

A clear example of UI-centric design is the application design approach practiced
by 37signals, an American company that sells a suite of SAAS applications.

37signals popularized UI-centric design in their book , whichGetting Real5

describes the approach as ‘interface first’, which simply means that you should
‘design the interface before you start programming’.

Footnote 5 http://gettingreal.37signals.com/ch09_Interface_First.phpm

UI-centric design works well for software that focuses on simplicity and
usability, because functionality must literally compete for space in the UI, while
functionality that you cannot see does not exist. This is entirely natural for SAAS
applications, because of the relative importance of front-end design on public
Internet web sites.

Another reason why UI-centric design suits SAAS applications is that
integration with other systems is more likely to happen at the HTTP layer, in
combination with a URL-centric design, than via the database layer. In this
scenario database-centric design may seem less relevant because the database

3.5.1 UI-centric design

SAAS APPLICATIONS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

69

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

design gets less attention than the UI design, for early versions of the software, at
least.

UI-centric design is also good idea for mobile applications, because it is a better
idea to address mobile devices’ design constraints from the start than to attempt to
squeeze a desktop UI into a small screen later in the development process. Mobile
first design — designing for mobile devices with ‘progressive enhancement’ for
larger platforms — is also an increasingly popular UI-centric design approach.

There are two kinds of web framework templating systems, each addressing
different developer goals: component systems and raw HTML templates.

One approach minimizes the amount of HTML you write, usually by proving a
user-interface component library. The idea is that you construct your user-interface
from UI ‘building blocks’ instead of writing HTML by hand. This approach is
popular with application developers who want a standard look and feel, or whose
focus is more on the back-end than the front-end.

Figure 3.11 UI components that span client and server and generate HTML

In principle, the benefit of this approach is that it results in a more consistent UI
with less coding, and there are various frameworks that achieve this goal.
However, the risk is that the UI-components are a leaky abstraction, and that you
will end up having to debug invalid or otherwise non-working HTML and
JavaScript after all. This is more likely than you might expect, because the
traditional approach to a UI-component model is to use a stateful MVC approach.
You don’t need to be an MVC expert to consider that this might be a mismatch
with HTTP, which is stateless.

MOBILE APPLICATIONS

3.5.2 HTML-first templates

USER-INTERFACE COMPONENTS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

70

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

A different kind of template system works by decorating HTML to make content
dynamic, usually with syntax that provides a combination of tags, for things like
control structures and iteration, and an expression language for outputting dynamic
values. In one sense, this is a more low-level approach, because you construct your
user interface’s HTML by hand, using HTML and HTTP features as a starting
point for implementing user-interaction.

Figure 3.12 Server-side HTML templates

The benefits of starting with HTML become apparent in practice, due to a
combination of factors.

The most important implication of this approach is that there is no generated
HTML, no HTML that you don’t write by hand yourself. This means that not only
can you choose how you write the HTML, but you can also choose which kind of
HTML you use. At the time of writing, you should be using HTML5 to build web
applications, but many UI frameworks are based on XHTML. HTML5 matters not
(just) because it’s new, but because it is the basis for a large ecosystem of
JavaScript UI widgets.

The opportunity to use a wide selection of JavaScript widgets is the most apparent
practical result of having control over your application’s HTML. Contrast this to
web framework UI widgets: a consequence of providing HTML and JavaScript, so
that the developer does not have to code it, is that there is only one kind of HTML
and therefore a fixed set of widgets. However big a web framework’s component
library, there will always be a limit to the number of widgets.

JavaScript widgets are different to framework-specific widgets, because they
can work with any server-side code that gives you control over your HTML and
the HTTP interface. Significantly, this includes PHP: there are always more
JavaScript widgets intended for PHP developers simply because there are more
PHP developers.

HTML TEMPLATES

JAVASCRIPT WIDGETS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

71

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 3.13 Client-side JavaScript components, decoupled from the server

Then end result is a simpler architecture that client-server components, because
you are using HTML and HTTP directly, instead of adding a UI-component
abstraction layer. This makes the user-interface easier to understand and debug.

Play includes a template engine that is designed to output any kind of text-based
format, the usual examples being HTML, XML, plain text and JSON. Play’s
approach is to provide an elegant way to produce exactly the text output you want,
with the minimum interference from the Scala-based template syntax. Later on, in
chapter XREF ch06_chapter, we will explain how to use these templates; for now
we will focus on a few key points.

To start with, minimum interference means that all of the template syntax is
optional. This means that the minimal template for an HTML document is simply a

text file containing an minimal (valid) HTML document :6

Footnote 6 A minimal template is actually an empty file, but that isn’t a very interesting example for a book.m

Listing 3.3 A minimal HTML document template - app/views/minimal.scala.html

An ‘empty’ HTML document like this isn’t very interesting, of course, but it is
a starting point that you can add to. You literally start with a blank page and add a
mixture of static and dynamic content to your template.

One nice thing about this approach is that you only have to learn one thing

3.5.3 Type-safe Scala templates

STARTING WITH A MINIMAL TEMPLATE

<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
</html>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

72

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

about the template syntax at a time, which gives you a shallow learning curve on
which you learn how to use template features just-in-time, as opposed to
just-in-case.

The first dynamic content in an HTML document is probably a page title, which
you add like this, for example:

Listing 3.4 An HTML document template with a title parameter -
app/views/title.scala.html

Even though this is a trivial example, it introduces the first two pieces of
template syntax: the parameter declaration on the first line, and the Scala@title

expression syntax. To understand how this all works, we also need to know how
you render this template in your application. Let’s start with the parameter
declaration.

The parameter declaration, like all template syntax, starts with the special @

character, which is followed by a normal Scala function parameter list. At this
point in the book, it should be no surprise that Play template parameters require a
declaration that makes them type-safe.

Type-safe templates such as these are unusual, compared to most other web
frameworks’ templates, and make it possible for Play to catch more kinds of errors
when it compiles the application—see section XREF ch06_section_type_safe for
an example. The important thing to remember at this stage is that Play templates
have function parameter lists, just like Scala class methods.

The second thing we added was an expression to output the value of the title

parameter. In the body of a template, the character can be followed by any Scala@

expression or statement, whose value is inserted into the rendered template output.

ADDING DYNAMIC CONTENT

@(title:String)
<!DOCTYPE html>
<html>
<head>
<title>@title</title>
</head>
</html>

Template
parameter
declaration

Template
expression output

BASIC TEMPLATE SYNTAX

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

73

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

At first sight it may seem odd that none of this is HTML-specific, but in practice it
turns out a template system with the right kind of unobtrusive syntax gets out of
the way and makes it easier to write HTML. In particular, Play templates’ Scala
syntax does not interfere with HTML special characters. This is not a coincidence.

Next, we need to understand how these templates are rendered.

Scala templates are Scala functions. Sort of. How templates work is not
complicated but it isn’t obvious either.

To use the template in the previous example, we first need to save it in a file in
the application, such as . Then we canapp/views/products.scala.html

render the template in a controller (or just on the Scala console - see section XREF
ch01_section_console) by calling the ‘template function’:

This results in a instance whose play.api.templates.Html body

property contains the rendered HTML:

We can now see that saving a template, with a parameter, intitle:String

a file called gives us a function that weproducts.scala.html products

can call in Scala code to render the template; we just haven’t seen how this works
yet.

When Play compiles the application, Play parses the Scala templates and
generates Scala objects, which are then in turn compiled with the application. The
‘template function’ is really a function on this compiled object.

This results in the following compiled template—a file in
:target/scala-2.9.1/src_managed/main/views/html/

Listing 3.5 Compiled template products.template.scala

HTML-FRIENDLY SYNTAX

3.5.4 Rendering templates—Scala template functions

val html = views.html.products("New Arrivals")

<!DOCTYPE html>
<html>
<head>
<title>New Arrivals</title>
</head>
</html>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

74

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

There are various details here that you don’t really need to know about, but the
important thing is that there is no magic: now we can see that a template isn’t
really Scala function in its initial form, but it becomes one. The template has
simply been converted into a object with an function. Thisproducts apply

function, which has the same parameter list as the template, returns the rendered
template. There is also a method that you can use as an alias for the render

 method.apply

This Scala code will be compiled with the rest of your application’s Scala code.
This means that templates are not separate from the compiled application and do
not have to be interpreted or compiled at runtime, which makes runtime template
execution extremely fast.

There is an interesting consequence to the way that templates use Scala and
compile to Scala functions: in a template you can render another template the way
you would call any function. This means that we can use normal Scala syntax for
things that require special features in other template engines, such as tags. You can
also use more advanced Scala features in templates, such as implicit parameters.
Chapter XREF ch06_chapter includes examples of these techniques.

Finally, you can use Play templates to generate any other text-based syntax,

package views.html

import play.api.templates.{Template1, HtmlFormat, Html}
import play.templates.{Format, BaseScalaTemplate}

object products
 extends BaseScalaTemplate[Html,Format[Html]](HtmlFormat)
 with Template1[String,Html] {

 def apply(title:String):Html = {
 display {
 Seq[Any](format.raw("""
<!DOCTYPE html>
<html>
<head>
<title>"""),_display_(Seq[Any](title)),format.raw("""</title>
</head>
</html>"""))
 }
 }

 def render(title:String) = apply(title)
 def f:((String) => Html) = (title) => apply(title)
 def ref = this
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

75

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

such as XML, as easily as you generate HTML.

A typical web application includes static content—images, JavaScript, style sheets
and downloads. This content is fixed, so it is served from files instead of being
generated by the web framework. In Play, these files are called ‘assets’.

Architects and web frameworks often take the view that static files should be
handled differently to generated content, in a web application’s architecture, often
in the interests of performance. In Play this is probably a premature optimization.
If you have high performance requirements for serving static content, then the best
approach is probably to use a cache or load balancer in front of Play, instead of
avoiding serving the files using Play in the first place.

Play’s architecture for serving assets is no different from how any other HTTP
request is handled. Play simply provides an assets controller whose purpose is to
serve static files. There are two advantages to this approach: you use the usual
routes configuration and get additional functionality in the assets controller.

Using the routes configuration for assets means that you have the same
flexibility in mapping URLs as you do for dynamic content. This also means that
you can use reverse routing to avoid hard-coding directory paths in your
application and to avoid broken internal links.

On top of routing, the assets controller provides additional functionality that is
useful for improving performance when serving static files:

caching support — generating HTTP Entity Tags (ETag) to enable caching
compression — using to compress static files for clients that support itgzip

JavaScript minification — using Google Closure Compiler to reduce the size of
JavaScript files.

Section XREF ch04_section_assets explains how to use these features, and how
to configure assets’ URLs.

3.6 Static and compiled assets

3.6.1 Serving assets

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

76

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Recent years have seen advances in browser support and runtime performance for
CSS style sheets and client JavaScript, at the same time as more variation in how
these technologies are used. One trend is the emergence of new languages that are
compiled to CSS or JavaScript so that they can be used in the web browser. Play
supports one of each: LESS and CoffeeScript, languages that improve on CSS and
JavaScript, respectively.

At compile time, LESS and CoffeeScript assets are compiled into CSS and
JavaScript files. HTTP requests for these assets are handled by the assets controller
which transparently serves the compiled version instead of the source. The benefit
of this integration with Play compilation is that you discover compilation errors at
compile time, not at runtime.

Section XREF ch06_section_assets includes a more detailed introduction to
LESS and CoffeeScript and shows you how to use them in your Play application.

Sometimes, an application has to run some code outside the normal HTTP
request-response cycle, either because it is a long-running task that the web client
doesn’t have to wait for, or because the task must be executed on a regular cycle,
independently of any user or client interaction.

For example, if we use our product catalog application for warehouse
management, we will have to keep track of orders that have to be picked, packed
and shipped. Picking is the task that involves someone finding the order items in
the warehouse, so that they can be packaged for shipment and collected from the
warehouse by a transporter. One way to do this is to generate a ‘pick list’ (nothing
to do with HTML forms) of the backlog of items that still need to be picked.

Figure 3.14 A simple pick list

For a long time, system architectures assumed that these tasks would be
performed outside any web applications, like ‘batch jobs’ in an old-school system.
Today, however, architectures are frequently web-centric, based around a web

3.6.2 Compiling assets

3.7 Jobs—starting processes

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

77

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

application or deployed on a cloud-based application hosting service. These
architectures mean that we need a way to schedule and execute these ‘jobs’ from
within our web application.

To make this more concrete, let’s consider a system to generate a pick list and
e-mail it to the warehouse staff. For the sake of the example, let’s suppose that we
need to do this in a batch process because the generation job spends a long time
calculating the optimal list ordering, to minimize the time it takes to visit the
relevant warehouse locations.

The simplest way to start the pick list generation process in our web application is
to add a big button somewhere in the user-interface that you canGenerate Pick List
use to start generating the list. (It doesn’t really have to be a big button, but big
buttons are more satisfying.) Let’s see how this would actually work.

Figure 3.15 User-interface to manually trigger an asynchronous job

Each entry in the pick list is a request to prepare an order by ‘picking’ an order
line (a quantity of a particular product) from the given warehouse location. We will
use a simple template to render a list of preparation objects:

3.7.1 Asynchronous jobs

@(warehouse: String, list: List[models.Preparation],
 time: java.util.Date)

@main("Warehouse " + warehouse + " pick list for " + time) {

 <table>
 <tr>
 <th>Order #</th>
 <th>Product EAN</th>
 <th>Product description</th>
 <th>Quantity</th>
 <th>Location</th>
 </tr>
 @for((preparation, index) <- list.zipWithIndex) {
 <tr@(if (index % 2 == 0) " class='odd'")>
 <td>@preparation.orderNumber</td>
 <td>@preparation.product.ean</td>
 <td>@preparation.product.description</td>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

78

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The usual way to display this on a web page would be to render the template
directly from a controller action, like this, as we might to do preview the pick list
in a web browser:

Fetch a List[Preparation] from the data access layer
Render the pick list template

Instead, we want to build, render and send the pick list in a separate process, so
that it executes independently of the controller action that sends a response to the
web browser. Play doesn’t provide functionality to this directly, but instead
integrates with Akka, a library for actor-based concurrency that is included with
Play.

Most of what you can do with Akka is beyond the scope of this book; for now
we will see some special cases of using Akka for executing jobs. For everything
else about Akka, see Akka in Action (Manning).

The first thing we will use Akka for is to execute some code asynchronously.
Play provides an Akka helper object whose function does just that.future

 <td>@preparation.quantity</td>
 <td>@preparation.location</td>
 </tr> }
 </table>
}

object PickLists extends Controller {

 def preview(warehouse: String) = Action {

 val pickList = PickList.find(warehouse)
 val timestamp = new java.util.Date

 Ok(views.html.pickList(warehouse, pickList, timestamp))
 }

import java.util.Date
import models.PickList
import play.api.libs.concurrent.Akka

def sendAsync(warehouse: String) = Action {
 import play.api.Play.current

 Akka.future {

 val pickList = PickList.find(warehouse)
 send(views.html.pickList(warehouse, pickList, new Date))
 }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

79

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Use Akka.future to execute a block of code asynchronously
Build render and send a pick list somewhere

Like the action, this example passes the rendered pick list to a preview send

method in our application. For the sake of this example, let’s suppose that it sends
the pick list in an e-mail.

This time, the template rendering code is wrapped in a call to
, which uses Akka to executeplay.api.libs.concurrent.Akka.future

the code asynchronously. This means that however long the call to takes,send

this action immediately performs the redirect. Note that the import is needed for
implicit access to the application, and its Akka Actor system.

What’s happening here is that the Akka Actor system executes code in actors
separately from Play’s controllers and the HTTP request-reponse cycle. That’s why
you can think of this example as a ‘job’ that executes asynchronously — separately
from serving an HTTP response to the user.

Depending on how our warehouse works, it may be more useful to automatically
generate a new pick list every half an hour. To do this we need a scheduled job that
is triggered automatically, without needing anyone to press the button in the
user-interface.

To do this, we will use Akka more directly to schedule an actor to run at regular
intervals. We won’t need a user-interface: instead we create and schedule the actor
when the Play application starts.

 Redirect(routes.PickLists.index())
}

3.7.2 Scheduled jobs

import akka.actor.{Actor, Props}
import models.Warehouse
import play.api.libs.concurrent.Akka
import play.api.GlobalSettings
import play.api.templates.Html

object Global extends GlobalSettings {

 override def onStart(application: play.api.Application) {

 import akka.util.duration._
 import play.api.Play.current

 for (warehouse <- Warehouse.find()) {
 val actor = Akka.system.actorOf(

Run when the Play
application starts

Create an actor for

each warehouse

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

80

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

This is the code to create and schedule an actor for each warehouse, when our
Play application starts. We are using Akka’s scheduler API directly here, with
implicit conversions from the package that convertsakka.util.duration._

expressions like to a instance.30 minutes akka.util.Duration

Each actor will respond to a ‘send’ message, which instructs it to send a pick
list for its warehouse. The actor implementation is a class that extends the

 trait and implements a receive method that uses Scalaakka.actor.Actor

pattern matching to handle the correct method:

The actual implementation of the method, which sends the renderedsend

HTML template somewhere, does not matter for this example. The essence of this
example is how straightforward it is to use an Akka actor to set-up a basic

 Props(new PickListActor(warehouse))
)

 Akka.system.scheduler.schedule(
 0 seconds, 30 minutes, actor, "send"
)
 }
 }

}

each warehouse

Schedule a ‘send’
message to each
actor

import java.util.Date
import models.PickList

class PickListActor(warehouse: String) extends Actor {

 protected def receive = {
 case "send" => {
 val pickList = PickList.find(warehouse)

 val html = views.html.pickList(warehouse, pickList, new Date)
 send(html)
 }
 case _ => play.api.Logger.warn("unsupported message type")
 }

 def send(html: Html) {

 // ...

 }
}

Constructor for a
warehouse

Handle messages

Render and send a
pick list

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

81

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

scheduled job. You don’t need to learn much about Akka for this kind of basic
task, but if you want to do something more complex then you can use Akka as the
basis for a more advanced concurrent, fault-tolerant and scalable application.

The asynchronous job example in section 3.7.1 showed how to start a long-running
job in a separate thread, when you do not need a result from the job. However, in
some cases you want to wait for a result.

For example, suppose our application includes a dashboard that displays the
current size of the order backlog—the number of orders for a particular warehouse
that still need to be picked and shipped. This means checking all of the orders and
returning a number—the number of outstanding orders.

For this example, we are going to use some hypothetical model code that
fetches the value of the order backlog for a given warehouse identifier:

If this check takes a long time, perhaps because it involves web service calls to
another system, then HTTP requests from the dashboard could take up a lot of
threads in our web application. In this kind of scenario, we want our web
application to fetch the order backlog result asynchronously, stop processing the
HTTP request, and make the request processing thread available to process other
requests while it is waiting. Here’s how we do it.

Listing 3.6 Suspend an HTTP request while waiting for asynchronous processing

3.7.3 Asynchronous results and suspended requests

val backlog = models.Order.backlog(warehouse)

import play.api.mvc.{Action, Controller}
import play.api.libs.concurrent.{Promise, Akka}

object Dashboard extends Controller {

 def backlog(warehouse: String) = Action {

 import play.api.Play.current

 val backlog: Promise[String] = Akka.future {
 models.Order.backlog(warehouse)
 }

 Async {
 backlog.map(value => Ok(value))

Controller action to
get a warehouse’s
order backlog

Get a promise of
the order backlog
without blocking

Get a promise of an
action result, also
without blocking

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

82

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Two things happen in this example, both using a
 to wrap a value that is not yetplay.api.libs.concurrent.Promise

available. First, we use , asplay.api.libs.concurrent.Akka.future

before, to execute the code asynchronously. The difference this time is that use its
return value, which has the type . This represents aPromise[String]

placeholder for the result that is not yet available.String

Next, we use the (the value) to make a Promise[String] backlog

 by wrapping the value in an result type. WhenPromise[Result] String Ok

it is available, this result will be a plain text HTTP response that contains the
backlog number. Meanwhile, the is a placeholder for thisPromise[Result]

HTTP result, which is not yet available because the is notPromise[String]

yet available. In addition, we wrap the is a call to the Promise[Result]

 function, which converts it to a .Async play.api.mvc.AsyncResult

The result of this is what we wanted: a controller action that executes
asynchronously. Returning a means that Playplay.api.mvc.AsyncResult

will suspend the HTTP request until the result becomes available. This is important
because it allows Play to release threads to a thread pool, making them available to
process other HTTP requests, so the application can serve a large number of
requests with a limited number of threads.

Although this was not a complete example, it gives you a brief look at a basic
example of asynchronous web programming.

A Play module is a Play application dependency—either reusable third-party code
or an independent part of your own application. The difference between a module
and any other library dependency is that a module depends on Play and can do the
same things an application can do.

 }
 }
}

3.8 Modules—structuring your application

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

83

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 3.16 Play application dependencies on libraries, modules and the framework itself

There are several benefits to splitting application functionality into custom
modules.

The core application, based around its domain model, remains smaller and simpler to
understand.
Modules can enhance Play with functionality that appears to be built-in.
A developer can write and maintain a module without having to understand the main
application.
It is easier to separately demonstrate, test and document functionality that is contained in
a module.
Modules allow you to re-use functionality between applications, and share re-usable code
with other developers.

This section is a high-level description of what modules are and what you can
use them for. You will see how to write your own module in chapter ???.

The first modules you use will probably be third-party modules, which provide
additional functionality that could have been in the core framework but isn’t. This
is an key role for Play’s module system: modules make it possible to extend Play
with functionality that you can use as if it were built-in, without bloating the core
framework with features that not everyone needs.

Here are a few examples of third party modules that provide different kinds of
functionality.

Deadbolt — role-based authorization that allows you to restrict access to controllers and
views.
Groovy Templates — an alternative template engine that uses the Play 1.x Groovy
template syntax.
PDF — adds support for PDF output based on HTML templates.
Redis — integrates Redis to provide a cache implementation.
Sass — adds asset file compilation for Sass style sheet files.

It doesn’t matter if you don’t know what these do. The important thing to notice
is that different modules enhance or replace different aspects of Play’s
functionality, and generally focus on a single thing.

For more information about these and other modules, see
http://www.playframework.org/

In the same way that third-party modules provide specific functionality that is

3.8.1 Third-party modules

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

84

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.playframework.org/
http://www.manning-sandbox.com/forum.jspa?forumID=810

not built in to Play, you can provide your own custom modules that implement part
of your application’s functionality. There are two different ways to think about
custom modules.

One way to approach custom modules is to think of them as a way to split your
applications into separate re-usable components, which helps keeps individual
applications and modules simple.

While developing your application, you may notice that some functionality is
self-contained and does not depend on the rest of the application. When this
happens, you can restructure your application by extracting code into a module, the
same way you might refactor a class by extracting code into a separate class.

For example, suppose we have added commenting functionality to our product
catalog’s details pages, to allow people to add notes about particular products.
Comments are somewhat independent data and have a public interface
(user-interface or API) that is separate from the rest of the application. Comments
functionality requires:

persistent model classes for storing comments
a user-interface on the product details page for adding, removing and listing comments
a controller that provides an HTTP API for adding and viewing comments.

These models, views and controllers may also be in separate files to other parts
of your application. You can take this further by moving them into a new module,
separate from your application. To do this, you would create a new (empty)
Comments module, add the module as an application dependency, and finally
move the relevant code to the module.

TIP Add a sample application and documentation to a custom
module
When you write a custom module, create a minimal sample
application at the same time that lets you demonstrate the module’s
functionality. This will make it easier to maintain the module,
independently of the rest of the application, and makes it easier for
other developers to understand what the module does. You can
also document the module separately.

3.8.2 Extracting custom modules

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

85

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Another approach is to always add new application functionality in a module,
when you can, only adding to the main application when absolutely necessary. This
separates model-specific functionality and domain logic from generic functionality.

For example, once you have added comments functionality to your products
details pages, you might want to allow people to add tags to products. Tagging
functionality is not all that different to comments: a tag is also text, and you also
need a user-interface to add, remove and list them. If you already have a separate
comments module, it is easier to see how a similar tags module would work, so
you can create that independently. More importantly, perhaps, someone else could
implement the tags module without having to understand your main application.

With this approach, each application would consist of a smaller core of
model-specific functionality and logic, plus a constellation of modules that provide
separate aspects of application functionality. Some of these modules would
inevitably be shared between applications.

It is not always obvious when you should put code in a module and when it should
be part of your main application. Even if you adopt a module-first approach, it can
be tricky to work out when it is possible to use a separate module.

The comments module is a good example of the need to decouple functionality
to be able to move it into a module. The obvious model design for comments on a
product includes a direct reference from a comment to the product it relates to.
This would mean that comments would depend on the products model, which is
part of the application, and therefore prevent the comments module being
independent of the application.

The solution is to make a weaker link from comments to products, using the
application’s HTTP API. Instead of linking comments directly to the products
model, we can link a comment to an arbitrary application URL, such as a products
details page URL. As long as products are identified by clean URLs for their
details pages, then it is enough to comment on a page instead of on a product.

A similar issue arises in the controller layer, since you want to display
comments in-line in the product details page. To avoid having to add code for
loading comments to the products controller, you can use Ajax to load comments
separately. This could work with a comments template that you include in another
page and which contains JavaScript code that loads comments using Ajax from a

3.8.3 Module-first application architecture

3.8.4 Deciding whether to write a custom module

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

86

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

separate comments controller that returns comments for the specified page as
JSON data.

A good rule of thumb is that you can use a separate module whenever possible
for functionality that is orthogonal to your application’s model. Code that does not
depend on your model can usually be extracted to a separate independent module,
but code that uses your model should not be in a module because then that module
would depend on your application and not be reusable.

If you want to extract functionality that appears to depend on the model,
consider whether there is a way to avoid this dependency, or make it a loose
coupling by using an external reference like the page URL rather than a model
reference like a product ID.

A module is almost the same thing as a whole application. This means that a
module provide any of the same kind of things as an application has: models, view
templates, controllers, static files or other utility code. The only thing a module
lacks is its own configuration; only the main application’s configuration is used.
This means that any module configuration properties must be set in the
application’s file.conf/application.conf

More technically, a module is just another application dependency—like
third-party libraries—that you manage as a separate sbt project. After you have
written your module, you use sbt to package the module and publish it into your
local dependencies repository, where it will be available to applications that
specify a dependency on it.

You can also publish a module online so that other developers can use it. Many
developers in the Play community open-source their modules to gain feedback on
and improvements to their work.

A module can also include a plug-in, which is a class that extends
 in order to intercept application start-up and shutdown.play.api.Plugin

Plug-ins are not specific to modules—a Play application can also include a
plug-in—but they are especially useful for modules that enhance Play. This is
because a module may need to manage its own life cycle on top of the
application’s life-cycle. For example, a tags module might have code to calculate a
tag cloud, using expensive database queries, which must be scheduled as an hourly
asynchronous job when the application starts.

3.8.5 Module architecture

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

87

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

This chapter has been a broad but shallow of the key components that make up a
Play application’s architecture, focusing on the HTTP interface—the focal point of
a web application.

Play has a relatively flat HTTP-centric architecture, including its own
embedded HTTP server. Web applications use Play via a similarly HTTP-centric
action-based model-view-controller API. This API is web-friendly and gives you
unconstrained control over the two main aspects of what we mean by ‘the web’:
HTTP and HTML.

The controller layer HTTP-friendliness is due to its flexible HTTP routing
configuration, for declaratively mapping HTTP requests to controller action
methods, combined with an expressive API for HTTP requests and responses.

The view layer’s HTML-friendliness, meanwhile, is a result of the template
system’s unobtrusive but powerful Scala-based template syntax, which gives you
control over the HTML (or other output) that your application produces. Play’s
view templates integrate well with HTML but are not HTML-specific.

Similarly, Play’s MVC architecture does not constrain the model layer to any
particular persistence mechanism, so you use the bundled Anorm persistence API
or just as easily to use an alternative.

The loose coupling with specific view and model persistence implementations
reflects a general architectural principle: Play provides full-stack features by
selecting components that integrate well, but does not require those components
and makes it just as easy to use a different stack.

3.9 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

88

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

4
This chapter covers

As you may recall from chapter ???, the Model View Controller architecture
assigns these responsibilities to the controller layer.

This chapter is all about controllers, at least from an architectural perspective.
From a more practical point of view, this chapter is really about your application’s
URLs and the data that the application receives and sends over HTTP.

In this chapter, we are going to talk about designing and building a web-based
product catalog for various kinds of paper clips that allows you to view and edit
information about the many different kinds of paper clips you might find in a paper
clip manufacturer’s warehouse.

Defining the application’s HTTP interface

defining URLs that the web application responds to

mapping HTTP requests for those URLs to Scala
methods

mapping HTTP request data to type-safe Scala objects

validating HTTP form data

returning a response to the HTTP client.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

89

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

If you were to ask yourself how you designed the URL scheme for the last web
application you built, the most likely answer is that you didn’t. Normally, you
build a web application and its pages turn out to have certain URLs; the application
works, and you don’t think about it. This is an entirely reasonable approach,
especially when you consider that many web frameworks don’t give you much
choice in the matter.

Rails or Django, on the other hand, have excellent URL configuration support.
If that’s what you’re used to then the examples in the next few sections will
probably make your eyes hurt, and it would be safer to skip straight to section 4.7.

A good example of using the URLs the framework gives you is what happens
when you build a web application with Struts 1.x. Struts has since been improved
upon, and is now obsolete, but was at one time the most popular Java web
framework.

Struts 1.x has an action-based MVC architecture that is not all that different to
Play’s. This means that to show a product details page, which shows information
about a specific product, you would write a JavaProductDetailsAction

class, and access it with a URL like:

In this URL, the extension causes the request to be mapped to an action.do

class, and identifies which action class to use.product

You would also need to identify a specific product, for example by specifying a
unique numeric ‘EAN code’ in a query string parameter:

The ‘EAN’ identifier is an International Article Number, introduced in chapter
???.

Next, you might extend your action class to include additional Java methods,
for variations such as an editable version of the product details, with a different
URL:

4.1 Designing your application’s URL scheme

4.1.1 Implementation-specific URLs

/product.do

/product.do?ean=5010255079763

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

90

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

When you built your web application like this, it worked, and all was good.
More or less. However, what many web application developers took for granted,
and still do, is that this URL is implementation-specific.

First, the doesn’t really mean anything, and is just there to make the HTTP.do

to Java interface work; a different web framework would do something different.
You could of course change the to something else in the Struts configuration,.do

but to what? After all, ‘file extension’ means something, but it does not mean
anything for a URL to have an ‘extension’.

Secondly, the query string parameter was a result of using amethod=edit

particular Struts feature. Refactoring your application might mean changing the
URL to something like:

If you don’t think changing the URL matters, then this is probably a good time
to read , which Tim Berners-Lee wrote in 1998, adding toCool URIs don’t change
the 1992 WWW style guide that forms part of the documentation for the web itself.

SIDEBAR C o o l U R I s d o n ’ t c h a n g e —
http://www.w3.org/Provider/Style/URI.html
A fundamental characteristic of the web is that hyper links are
uni-directional, not bi-directional. This is both a strength and a
weakness: it lowers the barrier to linking by not requiring you to modify
the target resource, at the cost of the risk that the link will ‘break’
because resource stops being available at that URL.
You should care about this because the resources you publish at URLs
will not only have more value if they are available for longer, but
because also because if people expect them to be available in the
future. Besides, complaints about broken links get annoying.
The best way to deal with this is to avoid breaking URLs in the first
place, both by using server features that allow old URLs to continue
working when new URLs are introduced, and to design URLs so that
they are less likely to change.

/product.do?ean=5010255079763&method=edit

/productEdit.do?ean=5010255079763

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

91

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.w3.org/Provider/Style/URI.html
http://www.manning-sandbox.com/forum.jspa?forumID=810

Once you have understood the need for stable URLs, you cannot avoid the fact that
you have to give them some forethought. You have to design them. Designing
stable URLs may seem like a new idea to you, but it is really a kind of API design,
not that much different from designing a public method signature in
object-oriented API design. Tim Berners-Lee tells us how to start: ‘Designing
mostly means leaving information out.’

Designing product details web page URLs that are more stable than the Struts
URLs we saw earlier means simplifying them as much as possible by avoiding any
implementation specific details. To do this, you have to imagine that your web
application framework does not impose any constraints on your URLs’ contents or
structure.

If you didn’t have any constraints on what your URLs looked like, and you
worked on coming up with the simplest and clearest scheme possible, you might
come up with the following URLs.

A list of products.
Details of one product, for some unique identifier.
Editable representation (an edit page) of one product.

These URLs are stable because they are ‘clean’ - there is no unnecessary
information or structure. We solved the problem of implementation-specific URLs.
But that’s not all: you can even use URL design as the starting point for your
whole application’s design, if you want.

Earlier in this chapter, we explained that web applications built with Struts 1.x
usually have URLs that contain implementation-specific details. This is partly due
to the way that the Java Servlet API maps incoming HTTP requests to Java code.
Servlet API URL mapping is too limited to handle even our first three example
URLs, because it only lets you match URLs exactly, by prefix or by ‘file
extension’.

What’s missing is a notion of ‘path parameters’ that match variable segments of

4.1.2 Stable URLs

/products

/product/5010255079763

/product/5010255079763/edit

4.1.3 Java Servlet API — limited URL configuration

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

92

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

the URL, using ‘URL templates’:

In this example, is a URL template for a path parameter called .{ean} ean

URL parsing is about text-processing, so we really want something more
flexible and powerful that would allow us to specify that the second segment only
contains digits. We want regular expressions:

However, none of the updates to the Servlet specification have added support
for things like regular expression matching or path parameters in URLs. The result
is that the Servlet API’s approach is simply not rich enough to enable URL-centric
design.

Sooner or later, you end up giving up on URL mapping, using the default
mapping for all requests, and writing your own framework to parse URLs. In fact,
this is what Servlet-based web frameworks generally do these days: map all
requests to a single controller Servlet, and add their own useful URL mapping
functionality. Problem solved, but at the cost of adding another layer to the
architecture. This is unfortunate, because a lot of web application development
over the last ten years has been using web frameworks based on the Java Servlet
API.

What this all means is that instead of supporting URL-centric design, the
Servlet API provides a minimal interface that is almost always used as the basis for
a web framework. It’s as if Servlet technology was a one-off innovation to improve
on the 1990’s Common Gateway Interface (CGI), with no subsequent
improvements to the way web build web applications.

To summarize this section on designing your application’s URL scheme, there are
several benefits to a good URL design.

A consistent public API — The URL scheme makes your application easier to
understand, by providing an alternative machine-readable interface.
The URLs don’t change — Avoiding implementation specifics makes the URLs stable, so
they do not change when the technology does.
Short URLs — Short URLs are more usable—easier to type, or paste into other media,

/product/{ean}/edit

/product/(\d+)/edit

4.1.4 Benefits of good URL-design

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

93

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

such as e-mail or instant messages.

Controllers are the application components that handle HTTP requests for
application resources identified by URLs. This makes your application’s URLs a
good place to start an explanation of Play framework controllers.

In Play, you use controller classes to make your application respond to HTTP
requests for URLs, such as the product catalog URLs:

With Play, you map each of these URLs to the corresponding method in the a
controller class, which defines three action methods—one for each URL.

We will start by defining a controller class, which will contain fourProducts

action methods for handling different kinds of requests: , , list details edit

and . The action, for example, will handle a request for the update list

 URL and generate a product list result page. Similarly, /products details

shows product details, shows an editable product details form and edit update

modifies the server-side resource.

Figure 4.1 A controller handles an HTTP request by invoking an action method that
returns a result.

In the next section, we shall explain how Play selects the action tolist

process the request, instead of one of the other three actions. We shall also return

4.2 Controllers—the interface between HTTP and Scala

/products
/product/5010255079763
/product/5010255079763/edit

4.2.1 Controller classes and action methods

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

94

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

to the product list result later in the chapter, when we look at how a controller
generates an HTTP response. For now, we will focus on the controller action.

A controller is a Scala singleton object that is a subclass of
, which provides various helpers for generatingplay.api.mvc.Controller

actions. Although a small application may only have a single controller, you will
typically group related actions in separate controllers.

An action is a controller method that returns an instance of
. You can define an action like this:play.api.mvc.Action

Generate an HTTP ‘501 NOT IMPLEMENTED’ result

This constructs a Scala function that handles the(Request) => Result

request and returns a result. is a predefined result thatNotImplemented

generates the HTTP 501 status code to indicate that this HTTP resource is not
implemented yet, which is appropriate because we won’t look at implementing the
body of action methods, including using things like , untilNotImplemented

later in this chapter.
The action may also have parameters, whose values are parsed from the HTTP

request. For example, if you are generating a paginated list then you can use a
 parameter:pageNumber

The method body typically uses the request data to read or update the model,
and to render a view. More generally, in MVC, controllers process events, which
can result in updates to the model and are also responsible for rendering views.

The following listing shows an outline of the Scala code for our Products

controller.

Listing 4.1 A controller class with four action methods.

def list = Action { request =>

 NotImplemented
}

def list(pageNumber: Int) = Action {
 NotImplemented
}

package controllers

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

95

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Each of the four methods corresponds to one of the product catalog URLs:

As you can see, there isn’t a fourth URL for the method. This isupdate

because we will use the second URL to both fetch and update the product details,
using the HTTP GET and PUT methods, respectively. In HTTP terms, we use
different HTTP methods to perform different operations on a single HTTP
resource.

For now, we haven’t filled in the body of each action method, which is where
we will process the request and generate a response to send back to the HTTP
client. We’ll get back to the interactions with the model and views later. For now,
let’s focus on the controller.

import play.api.mvc.{Action, Controller}

object Products extends Controller {

 def list(pageNumber: Int) = Action {
 NotImplemented
 }

 def details(ean: Long) = Action {
 NotImplemented
 }

 def edit(ean: Long) = Action {
 NotImplemented
 }

 def update(ean: Long) = Action {
 NotImplemented
 }
}

Show product list

Show product
details

Edit product details

Update product
details

/products

/product/5010255079763

/product/5010255079763/edit

Show product list

Show product
details
Edit product details

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

96

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 4.2 Requests are mapped by URL to actions that generate web pages

In general, an action corresponds roughly to a page in your web application, so
you will have a similar number of actions as you do pages. Not every action
corresponds to a page, though: in our case, the action updates a product’supdate

details and then sends a redirect to a details page to display the updated data.
You will have relatively few controllers, according to how you choose to group

the actions. In an application like our product list, you might have one controller
for pages and functionality related to products, another for the warehouses that
products are stored in, and another for users of the application—user-management
functionality.

TIP Group controllers by model entity
Create one controller for each of the key entities in your
application’s high-level data model. For example, the four key
entities Product, Order, Warehouse and User might correspond to a
data model with more than a dozen entities. In this case it would
probably be a good idea to have four controller classes: ,Products

, and . Note that it is a usefulOrders Warehouses Users

convention to use plural names for controllers, so distinguish the
 controller from the model class.Products Product

In Play, each controller is a singleton Scala object that defines one or more
actions. Play uses a singleton object because the controller does not have any state;
the controller is just used to group some actions. This is where you can really see
Play’s stateless MVC architecture.

Each action is a Scala function that takes an HTTP request and returns an
HTTP result. In Scala terms, this means that each action is a function

 whose type parameter is the request body type.(Request[A] => Result) A

This ‘action’ is a method in the controller class, so this is the same as saying

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

97

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

that the controller layer processes an incoming HTTP request by invoking a
controller class’ action method. This is the relationship between HTTP requests
and Scala code in a Play application.

More generally, in an action-based web framework such as Play, the controller
layer routes an HTTP request to an ‘action’ that handles the request. In an
object-oriented programming language, the controller layer consists of one or more
classes, and the actions are methods in these classes.

The controller layer is therefore the mapping between stateless HTTP requests
and responses and the object-oriented model. In MVC terms, controllers process
events (HTTP requests in this case), which can result in updates to the model, and
are also responsible for rendering views. This is a push-based architecture where
the actions ‘push’ data from the model to a view.

Play models controllers, actions, requests and responses as Scala traits in the
 package—the Scala API for the controller layer. This MVC APIplay.api.mvc

mixes the HTTP concepts, such as the request and the response, with MVC
concepts such as controllers and actions.

The following MVC API traits and classes correspond to HTTP concepts, and
act as wrappers for the corresponding HTTP data.

play.api.mvc.Cookie — An HTTP cookie—a small amount of data stored on the client
and sent with subsequent requests.
play.api.mvc.Request — An HTTP request: HTTP method, URL, headers, body and
cookies.
play.api.mvc.RequestHeader — Request meta-data: a name-value pair.
play.api.mvc.Response — An HTTP response, with headers and a body; wraps a Play
Result.
play.api.mvc.ResponseHeader — Response meta-data: a name-value pair.

The controller API also adds its own concepts. Some of these are wrappers for
the HTTP types that add structure, such as a , and some represent additionalCall

controller functionality, such as . Play controllers use the followingFlash

concepts in addition to HTTP concepts.

play.api.mvc.Action — A function that processes a client Request and returns a
Result.
play.api.mvc.Call — An HTTP request—the combination of an HTTP method and a
URL.
play.api.mvc.Content — An HTTP response body with a particular content type,

4.2.2 HTTP and the controller layer’s Scala API

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

98

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

play.api.mvc.Controller — A generator for Action functions.
play.api.mvc.Flash — A short-lived HTTP data scope used to set data for the next
request.
play.api.mvc.Result — The result of calling an Action to process a Request, used to
generate an HTTP response.
play.api.mvc.Session — A set of String keys and values, stored in an HTTP cookie.

Don’t worry about trying to remember what all of these are. We will come
across the important ones again, one at a time, during the rest of this chapter.

You will often want common functionality for several controller actions, which
might result in duplicated code. For example, it is a common requirement for
access to be restricted to authenticated users, or to cache the result that an action
generates. The simple way to do this is to extract this functionality into methods
that you call within your action method, as in the following listing.

However, we can do this a better way in Scala. Actions are functions, which
means you can compose them, to apply common functionality to multiple actions.
For example, you could define actions for caching and authentication, and use
them like this:

This example uses to create an action function that is passed as aAction

parameter to , which returns a new action function. This, in turn, is passedCached

as a paramter to , which decorates the action function again.Authenticated

4.2.3 Action composition

def list = Action {
 // Check authentication.
 // Check for a cached result.

 // Process request…
 // Update cache.
}

def list =
 Authenticated {
 Cached {
 Action {

 // Process request…
 }
 }
 }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

99

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We’ll see an example of how to implement these composed actions in section ???.
Now that we have had a good look at actions, let’s see how to route HTTP

requests to them.

Once you have controllers that contain actions, you need a way to map different
request URLs to different action methods. For example, the previous section
described mapping a request for the URL to the /products Products.list

controller action, but it did not explain how the action is selected.list

At this point, we must not forget to include the HTTP method in this mapping
as well, because the different HTTP methods represent different operations on the
HTTP resource identified by the URL. After all, the HTTP request GET

 should have different result to . The URL/products DELETE /products

path refers to the same HTTP resource—the list of products—but the HTTP
methods may correspond to different basic operations on that resource. As you
may recall from our URL design, we are going to use the PUT method to update a
product’s details

In Play, mapping the combination of an HTTP method and a URL to an action
method is called ‘routing’.

The Play router is a component that is responsible for mapping each HTTP
request to an action and invoking it. The router also binds request parameters to
action method parameters. First, let’s add the routing to our picture of how the
controller works.

Figure 4.3 Selecting the route that is the mapping from to GET /products
Products.list

The router performs the mapping from to GET /products

 as a result of selecting the route that specifies this mapping.Products.list

4.3 Routing HTTP requests to controller actions

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

100

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The router translates the request to a controller call andGET /products

invokes your controller action method. The controller actionProducts.list

method can then use your model classes and view templates to generate an HTTP
response to send back to the client.

Instead of using the router programmatically, you configure it in the routes file at
. The routes file is a text file that contains route definitions. Theconf/routes

great thing about this approach is that your web application’s URLs—its public
HTTP interface—are all specified in one place, which makes it easier for you to
maintain a consistent URL design. This means that you have no excuse for not
having nice clean and well-structured URLs in your application.

For example, to add to our earlier example, our product catalog will use the
following HTTP methods and URLs.

This is the URL scheme that is the result of our URL design, and is what we

4.3.1 Router configuration

Table 4.1 URLs for the application’s HTTP resourcesm

Method URL path Description

GET / Home page

GET /products Product list

GET /products?page=2 The product list’s second page

GET /products?filter=zinc Products that match ‘zinc’

GET /product/5010255079763 The product with the given code

GET /product/5010255079763/edit Edit page for the given product

PUT /product/5010255079763 Update the given product details

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

101

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

will specify in the router configuration. This table is the design, and the router
configuration is the code. In fact, the router configuration will not look much
different to this.

The routes file structure is line-based: each line is either a blank line, a
comment line or a route definition. A route definition has three parts on one line,
separated by white-space. For example, our application’s product list has the
following route definition.

Figure 4.4 Routes file route definition syntax

The call definition must be a method that returns an action. We can start with
the simplest possible example, which is an HTTP GET request for the URL path,/

mapped to the action method in the controller class:home Products

Similarly, the route for the products list is:

If the call definition returns an action method that has parameters, the router
will map request URL query string parameters with the same name as the method
parameters. For example, let’s add an optional page number parameter, with a
default value, to the product list.

You would implement the parameter the same way as the filter page

parameter — as an additional parameter in the list action method. In the action
method, you use these parameters to determine which products to list.

The URL pattern may declare URL path parameters. For example, the route
definition for a product details URL that includes a unique product identifier, such
as , is as follows./product/5010255079763

GET / controllers.Products.home()

GET /products controllers.Products.list()

GET /products controllers.Products.list(page: Int ?= 1)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

102

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

TIP Use external identifiers in URLs
Use unique externally-defined identifiers from your domain model
for in URLs instead of internal identifiers such as database primary
keys, when you can, because it makes your API and data more
portable. If the identifier is an international standard, so much the
better.

Note that in both cases, the parameter types must match the action method
types, or you will get an error at compile time. This parameter binding is type-safe,
as described in the next section.

Putting this all together, we end up with the following router configuration. In a
Play application, this is the contents of the file.conf/routes

This looks very similar to our URL design in table 4.1. This is not a
coincidence: the routing configuration syntax is a direct declaration, in code, of the
URL design. We might have even written the table like this, referring to the
controllers and actions, making it even more similar.

GET /product/:ean controllers.Products.details(ean: Long)

GET / controllers.Application.home()

GET /products controllers.Products.list(page: Int ?= 1)

GET /product/:ean controllers.Products.details(ean: Long)

GET /product/:ean/edit controllers.Products.edit(ean: Long)

PUT /product/:ean controllers.Products.update(ean: Long)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

103

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The only thing missing from the original design are the descriptions, such as
‘Details for the product with the given EAN code’. If you want to include more
information in your routes configuration files then you could include these
descriptions as line comments for individual routes, using the character:#

The benefit of this format is that you can see your whole URL design in one
place, which makes it much more straightforward to manage than if the URLs were
specified in many different files.

Note that you can use the same action more than once in the routes
configuration, to map different URLs to the same action. However, the action
method must have the same signature in both cases: you cannot map URLs to two
different action methods that have the same name but different parameter lists.

TIP Keep your routes tidy
Keep your routing configuration tidy and neat, avoiding duplication
or inconsistencies, because this is the same as refactoring your
application’s URL design.

Table 4.2 URLs for the application’s HTTP resourcesm

Method URL path Mapping

GET / Application controller’s actionhome

GET /products Products.list action, parameterpage

GET /product/5010255079763 Products.details action, parameterean

GET /product/5010255079763/edit Products.edit action, parameterean

PUT /product/5010255079763 Products.update action, parameterean

Details for the product with the given EAN code
GET /product/:ean controllers.Products.details(ean: Long)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

104

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Most of the time, you will only need to use the routes file syntax from the
previous section, but there are some special cases where additional router
configuration features are useful.

URL path parameters are normally delimited by slashes, as in the example of our
route configuration for URLs like , whose/product/5010255079763/edit

13-digit number is a path parameter.
Suppose we want to extend our URL design to support product photo URLs

that start with , followed by a file path, such as:/photo/

You could try using the following route configuration, with a path parameter
for the photo file name:

file cannot include slashes

This route does not work because it only matches the first of the three URLs.
The path parameter syntax does not match Strings that include slashes.:file

The solution is a different path parameter syntax, with an asterisk instead of a
colon, that matches paths that include slashes:

file may include slashes

Slashes are a special case of a more general requirement, to handle specific
characters differently.

4.3.2 Matching URL path parameters that contain forward slashes

/photo/5010255079763.jpg
/photo/customer-submissions/5010255079763/42.jpg
/photo/customer-submissions/5010255079763/43.jpg

GET /photo/:file controllers.Media.photo(file: String)

GET /photo/*file controllers.Media.photo(file: String)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

105

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

In your URL design, you may want to support alternative formats for a URL path
parameter. For example, suppose that we would like to be able to address a product
using an abbreviated product alias as an alternative to its EAN code:

Product identified by EAN code
Product identified by alias

You could try using the following route configuration, in the attempt to support
both kinds of URLs:

Unreachable route

This does not work because a request for
 matches the first/product/paper-clips-large-plain-1000-pack

route, and the binder attempts to bind the alias as a . This results in a bindingLong

error:
For request [Cannot parseGET /product/paper-clips-large-plain-1000-pack

parameter ean as Long: For input string: "paper-clips-large-plain-1000-pack"]
The solution is make the first of the two routes only match a thirteen-digit

number, using the regular expression . The route configuration syntax is\d{13}

Regular expression match

4.3.3 Constraining URL path parameters with regular expressions

/product/5010255079763

/product/paper-clips-large-plain-1000-pack

GET /product/:ean controllers.Products.details(ean: Long)

GET /product/:alias controllers.Products.alias(alias: String)

GET /product/$ean<\d{13}> controllers.Products.details(ean: Long)

GET /product/:alias controllers.Products.alias(alias: String)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

106

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

T h i s w o r k s b e c a u s e a r e q u e s t f o r
 does not match the/product/paper-clips-large-plain-1000-pack

first route, because the alias doespaper-clips-large-plain-1000-pack

not match the regular expression. Instead, the request matches the second route; the
URL path parameter for the alias is bound to a object and used as String alias

argument to the action method.Products.alias

The previous section described how the router maps incoming HTTP requests to
action method invocations. The next thing that the router needs to do is to parse the
EAN code request parameter value . HTTP does not define5010255079763

types, so all HTTP data is effectively text data, which means that we have to
convert the thirteen character string into a number.

Some web frameworks consider all HTTP parameters to be strings, and leave
any parsing or casting to types to the application developer. For example, Ruby on
Rails parses request parameters into a hash of strings, and the Java Servlet API’s

 method returns anServletRequest.getParameterValues(String)

array of string values for the given parameter name.
When you use a web framework with a stringly-typed HTTP API, you have to

perform runtime conversion in the application code that handles the request. This
results in code like the following Java code, which is all low-level data processing
that should not be part of your application:

Listing 4.2 Servlet API method to handle a request with a numeric parameter.

Play, along with other modern web frameworks such as Spring MVC, improves

4.4 Binding HTTP data to Scala objects

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {

 try {
 final String ean = request.getParameter("ean");
 final Long eanCode = Long.parseLong(ean);
 // Process request…

 }
 catch (NumberFormatException e) {
 final int status = HttpServletResponse.SC_BAD_REQUEST;
 response.sendError(status, e.getMessage());
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

107

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

1.

2.

3.

on treating HTTP request parameters as strings by performing type conversion
before it attempts to call your action method. Compare the previous Java Servlet
API example with the Play Scala equivalent:

Listing 4.3 Play action method to handle a request with a numeric parameter.

Only when type conversion succeeds does Play call this action method, using
the correct types for the action method parameters — for the parameter,Long ean

in this case.
In order to perform parameter type conversion before the router invokes the

action method, it first constructs objects with the correct Scala type to use as actual
parameters. This process is called ‘binding’ in Play, and is handled by various
type-specific binders that parse untyped text values from HTTP request data.

Figure 4.5 Routing requests: binding parameters and invoking controller actions.

Figure 4.5 shows the routing process, including binding, which works as
follows.

Play’s router handles the request .PUT /product/5010255079763

The router matches the request against configured routes, and selects the
r o u t e : PUT /product/:ean

controllers.Products.update(ean: Long)

The router binds the parameter using one of the type-specificean

def details(ean: Long) = Action {
 // Process request…
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

108

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

3.

4.

5.

binders.

The binder converts to a Scala object.Long 5010255079763 Long

The router invokes the selected route’s action,Products.update

passing as an actual parameter.5010255079763L

Binding is actually pretty special, because it means that Play is providing type
safety for untyped HTTP parameters. This is part of how Play helps make an
application maintainable when it has a large number of HTTP resources:
debugging a large number of HTTP routes without this compile-time checking
takes much longer. This is because routes and their parameters are more tightly
mapped to a controller action, which makes it easier to deal with lots of them. For
example, you can map the following two URLs (for two different resources) to two
different actions based on the parameter type:

Listing 4.4

What makes this easier is that a similar URL with a missing parameter, e.g.
, would never be mapped to the action method in the first place. This/product/

is more convenient than having to deal with a null value for the productId

action method parameter.
Binding applies to three kinds of request data: URL path parameters, query

string parameters and form data in HTTP POST requests. The controller layer
simplifies this by binding all three the same way, so that the action method has the
same Scala method parameters regardless of which parts of the HTTP request their
values come from.

For example, our product details route has an parameter that will beean

converted to a , which means that the URL path must end in a number. If youLong

send an HTTP request for then binding fails, because is not a/product/x x

number, and Play will return an HTTP response with the 400 (‘Bad Request’)
status code and an error page:

/product/5010255079763
/product/paper-clips-large-plain-1000

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

109

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 4.6 The error page that Play shows as a result of a binding error

In practice, this is a client programming error: the Play web application will not
use an invalid URL internally because this is prevented by reverse routing, which
is described in section 4.31.

You get the same error if binding fails for a query string parameter, such as a
non-numeric page number as in the URL ./products?page=x

Play defines binders for a number of basic types, such as numbers, Boolean
values and dates. You can also add binding for custom types, such as your
application’s domain model types, by adding your own Formatter

implementation. Section ??? shows you how to define a custom formatter.
A common case for binding data to Scala objects, however, is when you want

to bind the contents of an HTML form to a domain model object. To do this, define
a form that maps its fields to types.

For example, suppose we want to define a form for our product details, as
defined in the following class:

We can do this with the following form definition.

Form objects, which HTTP data to your model, are described in detail in
chapter XREF ch07_chapter.

case class Product(ean: Long, name: String, description: String)

import play.api.data.Forms._

val form = Form(
 mapping(
 "ean" -> longNumber,
 "name" -> nonEmptyText,
 "description" -> text
)(Product.apply)(Product.unapply)
)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

110

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

1.

2.

3.

4.

As well as mapping incoming URL requests to controller actions, a Play
application can also do the opposite: map a particular action method invocation to
the corresponding URL. It might not be immediately obvious why you would want
to generate a URL, but it turns out to facilitate a key aspect of URL-centric design.
Let’s start with an example.

For example, in our product catalog application, we need to be able to delete
products. Here’s how we want this to work.

The user-interface includes an HTML form that includes a Delete
 button.Product

When you click the button, the browser sends the HTTPDelete Product
request (or perhaps a POST /product/5010255079763/delete

 request for the product details URL).DELETE

The request is mapped to a controller actionProducts.delete

method.

The action deletes the product.

The interesting part is what happens next, after deleting the product. Let’s
suppose that after deleting the product, we want to show the updated product list.
We could just render the product list page directly, but this exposes us to the
double-submit problem: if the user ‘reloads’ the page in a web browser, this could
result in a second call to the action, which will fail because the specifieddelete

product no longer exists.

The standard solution to the double-submit problem is the redirect-after-POST
pattern: after performing an operation that updates the application’s persistent
state, the web application sends an HTTP response that consists of an ‘HTTP
redirect’.

In our example, after deleting a product, we want the web application
(specifically the action method) to send a response that redirects to the product list.
A ‘redirect’ is an HTTP response with a status code that indicates that the client
should send a new HTTP request for a different resource, at a given location:

4.5 Generating HTTP calls for actions with reverse routing

4.5.1 Hard-coded URLs

REDIRECT-AFTER-POST

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

111

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Play can generate this kind of response for us, so we should be able to
implement the action that deletes a product’s details and then redirects to the list
page as follows.

Attempt to redirect to the /products URL, which will fail at run-time because of a
typo in the URL

This looks like it will do the job, but it doesn’t smell very nice because we have
hard-coded the URL in a string. The compiler cannot check the URL, which is a
problem in this example because we mistyped the URL as instead of /proudcts

. The result is that the redirect will fail at run-time./products

Even if you don’t make typos in your URLs, you may change them in the future.
Either way, the result is the same: the wrong URL in a string in your application
represents a bug that you can only find at run-time. To put it more generally, a
URL is part of the application’s external HTTP interface, and using one in a
controller action makes the controller dependent on the layer above it—the routing
configuration.

This might not seem important, when you look at an example like this, but this
approach becomes unmaintainable as your application grows and makes it difficult
to safely change the application’s URL interface without breaking things. When
forced to choose between broken links and ugly URLs that do not get refactored
for simplicity and consistency, web application developers tend to choose the ugly
URLs, and then get the broken links anyway.

Fortunately, Play anticipates this issue with a feature that solves this problem:
‘reverse routing’.

HTTP/1.1 302 Found
Location: http://localhost:9000/products

def delete(ean: Long) = Action {
 Product.delete(ean)

 Redirect("/proudcts")
}

HARD-CODED URL PATHS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

112

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

Reverse routing is a way to programmatically access the routes configuration, to
generate a URL for a given action method invocation. In other words, you can do
reverse routing by writing Scala code.

For example, we can change the action so that we don’t hard-code thedelete

product list URL:

This example uses reverse routing by referring to
: this is a ‘reverse route’ that generates a call toroutes.Products.list()

the action. Passing the result to controllers.Products.list()

 generates the same HTTP redirect to Redirect

 that we saw earlier. Morehttp://localhost:9000/products

specifically, the reverse route generates a URL in the form of an HTTP call (a
) for a certain action method, including the parameterplay.api.mvc.Call

values.

Figure 4.7 Routing requests to actions, compared to reverse-routing actions to requests

4.5.2 Reverse routing

def delete(ean: Long) = Action {
 Product.delete(ean)
 Redirect(routes.Products.list())
}

Redirect to the
list() action

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

113

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

Generating internal URLs in a Play application means making the routing and
binding described in the previous sections go backwards. Doing things backwards,
and reverse routing in particular, gets confusing if you think about it too much, so

it’s easiest to remember it like this :1

Footnote 1mUnless your mother tongue is Arabic, in which case it might be less obvious to think of
right-to-left as the ‘reverse’ direction.

routing is when URLs are routed to actions—left-to-right in the routes file
reverse routing is when call definitions are ‘reversed’ into URLs—right-to-left.

Reverse routes have the advantage of being checked at compile time, and allow
you to change the URLs in the routes configuration without having to update
strings in Scala code.

You also need reverse routes when your application uses its URLs in links
between pages. For example, the product list web page will include links to
individual product details pages, which means generating HTML that contains the
details page URL:

Listing XREF templates-typesafe-template-index shows you how to use reverse
routing in templates, so you don’t have to hard-code URLs there either.

TIP Avoid literal internal URLs
Refer to actions instead of URLs within your application. A
worthwhile and realistic goal is for each of your application’s URLs
to only occur once in the source code, in the routes configuration
file.

Note that the routes file may define more than one route to a single controller
action. In this case, the reverse route from this action resolves to the URL that is
defined first in your routes configuration.

REVERSE ROUTING IN PRACTICE

5010255079763 details

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

114

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

SIDEBAR Hypermedia as the engine of application state
In general, a web application will frequently generate internal URLs in
views that link to other resources in the application. Making this part of
how a web application works is the REST principle of ‘hypermedia as
the engine of application state’, whose convoluted name and ugly
acronym ‘HATEOS’ obscure its simplicity and importance.
Web applications have the opportunity to be more usable than software
with other kinds of user-interfaces, because a web-based user-interface
in an application with a REST architecture is more discoverable. You
can find the application’s resources—its data and their behaviour—by
browsing the user-interface. This is the idea that hypermedia—in this
case hypertext in the form of HTML—allows you to use links to discover
additional resources that you did not already know about.
This is a strong contrast to the desktop GUI software user-interfaces
that predate the web, whose help functionality was entirely separate or,
most of the time, non-existent. Knowing about one command rarely
results in finding out about another one.
When people first started using the web, the experience was so
liberating they called it ‘surfing’. This is why HATEOS is so important to
web applications, and why the Play framework’s affinity with web
architecture makes it inevitable that Play includes powerful and flexible
reverse routing functionality to make it easy to generate internal URLs.

You don’t really need to understand how reverse routing works to use it, but if you
want to see what’s really going on you can.

Our example uses reverse routing to generate a call to the
 action, resulting in an HTTP redirect. More specifically, itProducts.list()

generates the HTTP request in the form of an HTTP call (a GET /products

) for the action method, including the parameter values.play.api.mvc.Call

To make this possible, when Play compiles your application it also generates
and compiles a ‘reverse controller’ whose controllers.ReverseProducts

 method returns the call for . If we exclude the list GET /products

 parameter, for simplicity, this reverse controller and its pageNumber list

method looks like this:

PLAY’S GENERATED REVERSE-ROUTING API

package controllers {
 class ReverseProducts {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

115

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Play generates these Scala classes for all of the controllers, each with methods
that return the call for the corresponding controller action method.

These reverse controllers are, in turn, made available in a
 Java class that is generated by Play:controllers.routes

Reverse controller alias

The result is that we can use this API to perform reverse routing. You will
recall from chapter XREF ch01_chapter that you can access your application’s
Scala API from the Scala console, so let’s do that. First, run the play command in
your application’s directory to start the Play console:

 def list() = {
 Call("GET", "/products")
 }

 // other actions’ reverse routes…
 }
}

Reverse route for
Products.list()

package controllers;

 public class routes {
 public static final controllers.ReverseProducts Products =

 new controllers.ReverseProducts();

 // other controllers’ reverse controllers…
 }

$ play
[info] Loading project definition from /samples/ch04/products/project
[info] Set current project to products
[info] (in build file:/samples/ch04/products/)
 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.0, http://www.playframework.org

> Type "help" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[products] $

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

116

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.playframework.org
http://www.manning-sandbox.com/forum.jspa?forumID=810

Now start the Scala console:

First, perform reverse routing to get a object:play.api.mvc.Call

As you will recall from the generated Scala source for the reverse controller’s
list method, the object contains the route’s HTTP method and the URL path:Call

So far in this chapter, we have already seen a lot of detail about handling HTTP
requests, but we still haven’t done anything with those requests. This section is
about how to generate an HTTP response to send back to a client, such as a web
browser, that sends a request.

An HTTP response consists of an HTTP status code, optionally followed by
response headers and a response body. Play gives you total control over all three,
so you can craft any kind of HTTP response you like, but also gives you a
convenient API for handling common cases.

It’s useful if you can inspect HTTP responses, so you can check the HTTP headers
and the unparsed raw content. Two good ways to debug HTTP responses are to use

cURL on the command line and a web browser’s debugging functionality.2

Footnote 2 http://curl.haxx.se/m

To use cURL, use the option to specify the HTTP method and --request

[products] $ console
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.9.1.final
Type in expressions to have them evaluated.
Type :help for more information.

scala>

scala> val call = controllers.routes.Products.list()
call: play.api.mvc.Call = /products

scala> val (method, url) = (call.method, call.url)
method: String = GET
url: String = /products

4.6 Generating a response

4.6.1 Debugging HTTP responses

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

117

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 to include HTTP response headers in the output, followed by the--include

URL. For example:

Alternatively, web browsers such as Safari and Chrome have a ‘Network’
debug view that shows HTTP requests and the corresponding response headers and
content:

Figure 4.8 The ‘Network’ debug view in Safari, showing response headers at the bottom

For Firefox, there are plug-ins that provide the same information.

Earlier in the chapter we mentioned a ‘products list’ resource, identified by the
 URL path. When our application handles a request for this resource,/products

it will return a ‘representation’ of a list of products. The response body will consist
of this representation, in some particular format.

In practice, we use different formats for different kinds of resources, depending
on the use case. Typical formats are:

plain text — such as an error message, or lightweight web service response
HTML — a web page, including a representation of the resource as well as application
user-interface elements, such as navigation controls
XML — data accessed via a web service
JSON — a popular alternative to XML that is better suited to Ajax applications
binary data — typically non-text media such as a bitmap image or audio.

You’re probably using Play to generate web pages, but not necessarily.

To output plain text from an action method, simply add a parameter toString

one of the predefined result types, such as :Ok

curl --request GET --include http://localhost:9000/products

4.6.2 Response body

PLAIN TEXT REPRESENTATION

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

118

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

The canonical web application response is a web page. In principle, this is also just
a string, but in practice you use a templating system. Play templates are covered in
chapter XREF ch06_chapter, but all you need to know for now is that a template is
compiled into a Scala function in the views package. This template function returns
content whose type is a format like HTML, rather than just a string.

To render a template you use the same approach as for plain text: the rendered
template is a parameter to a result type’s method:apply

In this example, we call the method on the apply views.html.index

object that Play generates from an HTML template. This method returnsapply

the rendered template in the form of a object,play.api.templates.Html

which is a kind of .play.api.mvc.Content

This trait is what different output formats have in common. ToContent

render other formats, such as XML or JSON, you pass a instance in justContent

the same way.

There are typically two different ways to output JSON, depending on what you
need to do. You either create a JSON template, which works the same way as a
conventional HTML template, or you use a helper method to generate the JSON by
serialising Scala objects.

For example, suppose you want to implement a web service API that requires a
JSON response. The easiest way to do this is to{ "status": "success" }

serialize a Scala Map as follows.

def version = Action {
 Ok("Version 2.0")
}

HTML REPRESENTATION

def index = Action {
 Ok(views.html.index())
}

JSON REPRESENTATION

def json = Action {
 import play.api.libs.json.Json

 val success = Map("status" -> "success")

 val json = Json.toJson(success)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

119

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Serialize the success object into a play.api.libs.json.JsValue

In this example, we serialize a Scala object and pass the resulting
 instance to the result type. As we will seeplay.api.libs.json.JsValue

later, this also sets the HTTP response’s header.Content-Type

You can use this approach as the basis of a JSON web service that serves JSON
data. For example, if you implement a single-page web application that uses
JavaScript to implement the whole user-interface, you need a web service to
provide model data in JSON format. In this architecture, the controller layer is a
data access layer, instead of being part of the HTML user-interface layer.

For XML output, you have the same options as for JSON output: serialise Scala
objects to XML (also called ‘marshalling’), or use an XML template.

In Scala, another option is to use a literal . Forscala.xml.NodeSeq

example, you can pass an XML literal to a result type, just like passing a string for
plain text output:

Most of the binary data that you serve from a web application will be static files,
such as images. We will see how to serve static files later in this chapter.

However, some applications also serve dynamic binary data, such as PDF or
spreadsheet representations of data, or generated images. In Play, returning a
binary result to the web browser is little different from serving other formats: as
with XML and JSON, you set an appropriate content type and pass the binary data
to a result type.

For example, suppose our products list application needs the ability to generate
bar codes for product numbers, so we can print labels that can be later scanned
with a bar code scanner.

 Ok(json)
}

XML REPRESENTATION

def xml = Action {
 Ok(<status>success</status>)
}

BINARY DATA

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

120

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 4.9
Generated PNG
bar code,
served as an
image/png
response

We can do this by implementing an action that generates a bitmap image for an

EAN 13 bar code. To do this, we’ll use the open-source barcode4j library .3

Footnote 3mhttp://sourceforge.net/barcode4j

First, we’ll add barcode4j to our project’s external dependencies, to make the
library available. In , add an entry to the project/Build.scala

 list:appDependencies

Next, we add a helper function that generates an EAN 13 bar code, for the
given EAN code, and returns the result as a byte array containing a PNG image:

Next, we add a route for the controller action that will generate the bar code:

val appDependencies = Seq(
 "net.sf.barcode4j" % "barcode4j" % "2.0"
)

def ean13Barcode(ean: Long, mimeType: String): Array[Byte] = {
 import java.io.ByteArrayOutputStream
 import java.awt.image.BufferedImage
 import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider
 import org.krysalis.barcode4j.impl.upcean.EAN13Bean
 val BarcodeResolution = 72
 val output: ByteArrayOutputStream = new ByteArrayOutputStream
 val canvas: BitmapCanvasProvider =
 new BitmapCanvasProvider(output, mimeType, BarcodeResolution,
 BufferedImage.TYPE_BYTE_BINARY, false, 0)
 val barcode = new EAN13Bean()
 barcode.generateBarcode(canvas, String valueOf ean)
 canvas.finish
 output.toByteArray
}

GET /barcode/:ean controllers.Products.barcode(ean: Long)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

121

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Finally, we add a controller action that uses the helperean13BarCode

function to generate the bar code and return the response to the web browser:

The MIME type for the generated bar code: a PNG image
The byte array containing the generated image data
Render the binary image data in the HTTP response, with the image/png content
type
Handle an error, such as an invalid EAN code checksum

As you can see, once you have binary data, all you have to do is pass it to a
result type and set the appropriate header. In this example, weContent-Type

are passing a byte array to an result type.Ok

Finally, request http://localhost:9000/barcode/5010255079763 in a web browser
to view the generated bar code — figure 4.9.

TIP Use an HTTP redirect to serve locale-specific static files
One use case for serving binary data from a Play controller is to
choose one of several static files to serve based on some
application logic. For example, after localizing your application, you
may have language-specific versions of graphics files. You could
use a controller action to serve the contents of the file that
corresponds to the current language, but a simpler solution is to
send an HTTP redirect that instructs the browser to request a
language-specific URL instead.

def barcode(ean: Long) = Action {
 import java.lang.IllegalArgumentException

 val MimeType = "image/png"
 try {

 val imageData: Array[Byte] =
 ean13BarCode(ean, MimeType)

 Ok(imageData).as(MimeType)
 }

 catch {
 case e: IllegalArgumentException =>
 BadRequest("Could not generate bar code. Error: " + e.getMessage)
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

122

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/barcode/5010255079763
http://www.manning-sandbox.com/forum.jspa?forumID=810

The simplest possible response that you might want to generate consists of only an
HTTP status line that describes the result of processing the request. A response
would usually only consist of a status code in the case of some kind of error, such
as the following status line:

We’ll get to generating a proper response, such as a web page later. First lets
look at how you can choose the status code using Play.

We saw this ‘Not Implemented’ error earlier in this chapter, with action method
examples like the following, in which the error was that we hadn’t implemented
anything else yet:

Generate an HTTP ‘501 NOT IMPLEMENTED’ result

To understand how this works, first recall that an action is a function
. In this case, the function simply returns the single (Request => Result)

 value, which is defined as a withNotImplemented play.api.mvc.Status

HTTP status code . is a subclass of 501 Status play.api.mvc.Result

object. This means that the previous example is the same as:

When Play invokes this action, it calls the function created by the Action

wrapper and uses the return value to generate an HTTP response. In thisResult

case, the only data in the object is the status code, and so the HTTPResult

response is just a ‘status line’:

4.6.3 HTTP status codes

HTTP/1.1 501 Not Implemented

def list = Action { request =>

 NotImplemented
}

def list = Action {
 NotImplemented
}

HTTP/1.1 501 Not Implemented

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

123

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

NotImplemented is one of many HTTP status codes that are defined in the

 class via the trait.play.api.mvc.Controller play.api.mvc.Results

You would normally use these errors to handle exception cases in actions that
normally return a success code and a more complete response. We will see
examples of this later in this chapter.

In practice, the status result that you use the least is , since this wouldOk

indicate a successful request by generating a ‘200 OK’ status code and an empty
response, such as a web page.

Perhaps the only scenario when a successful request would not generate a
response body is when you create or update a server side resource, as a result of
submitting an HTML form or sending data in a web service request. In this case,
there is no response body because the purpose of the request was to send data, not
to fetch data. However, the response to this kind of request would normally include
response headers, so let’s move on.

As well as a status, a response may also include response headers: meta-data that
instructs HTTP clients how to handle the response. For example, the earlier ‘HTTP
501’ response example would normally include a header toContent-Length

indicate that there is no response body:

A successful request that does not include a response body can use a
 header to instruct the client to send a new HTTP request for a differentLocation

resource. For example, earlier in the chapter we saw how to use in anRedirect

action method to generate what is colloquially called an ‘HTTP redirect’ response:

Internally, Play implements the method by adding a Redirect Location

header for the given to a result:url Status

4.6.4 Response headers

HTTP/1.1 501 Not Implemented
Content-Length: 0

HTTP/1.1 302 Found
Location: http://localhost:9000/products

Status(FOUND).withHeaders(LOCATION -> url)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

124

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

You can use the same approach if you want to customise the HTTP response.
For example, suppose you are implementing a web service that allows you to add a
product by sending a POST request to . You may prefer to indicate/products

that this was successful with a ‘201 Created’ response that provides the new
product’s URL:

Given a newly-created instance, as in our earliermodels.Product

examples, you can generate this response with the following code in your action
method (this and the next few code snippets are what go inside):Action { … }

Although you can set any header like this, Play provides a more convenient API
for common use cases. Note that as in section 4.31 we are using the

 reverse route that Play generates from our routes.Products.details

 action.controllers.Products.details

Every HTTP response that has a response body also has a Content-Type

header, whose value is the MIME type that describes the response body format.
Play automatically sets the content type for supported types, such as text/html

when rendering an HTML template or when you output a stringtext/plain

response.
Suppose you want to implement a web service API that requires a JSON {

 response. You can add the content type header to a"status": "success" }

string response to override the default:text/plain

This is a fairly common use case, which is why Play provides a convenience
method that does the same thing:

HTTP/1.1 201 Created
Location: /product/5010255079763
Content-Length: 0

val url = routes.Products.details(product.ean).url
Status(CREATED).withHeaders(LOCATION -> url)

SETTING THE CONTENT TYPE

val json = """{ "status": "success" }"""
Ok(json).withHeaders(CONTENT_TYPE -> "application/json")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

125

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

While we’re simplifying, we can also replace the content type string with a
constant: is defined in the trait,JSON play.api.http.ContentTypes

which extends.Controller

Play sets the content type automatically for some more types: Play selects
 for values, and fortext/xml scala.xml.NodeSeq application/json

JSON values. For example, we saw earlier how to output JSON by serialising a
Scala object. This also sets the content type, which means that we can also write
the previous two examples like this:

Sometimes you want your web application to ‘remember’ things about what a user
is doing. For example, you might want to display the ‘previous search’ on every
page, to allows the user to repeat the previous search request. This data does not
belong in the URL, because it does not have anything to do with whatever the
current page is. You probably also want to avoid the complexity of adding this data
to the application model and storing it in a database on the server (although sooner
or later, the marketing department is going to find out that this is possible).

One simple solution is to use ‘session’ data, which is a map for string key-value
pairs (a) that is available when processing requests forMap[String,String]

the current user. The data remains available until the end of the user ‘session’,
when the user closes the web browser.

Here’s how you do it, in a controller. First, save a search query in the session:

Then, elsewhere in the application, retrieve the value stored in the session:

Ok("""{ "status": "success" }""").as("application/json")

Ok("""{ "status": "success" }""").as(JSON)

Ok(Json.toJson(Map("status" -> "success")))

SESSION DATA

Ok(results).withSession(
 request.session + ("search.previous" -> query)
)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

126

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

To implement ‘Clear previous search’ in your application, you can remove a
value from the session with:

The session is actually implemented as an HTTP session cookie, which means
that its total size is limited to a few kilobytes. This means that it is well-suited to
small amounts of string data, like this, but not for larger or more complex
structures. We’ll address cookies in general later on.

TIP Don’t cache data in the session cookie
Don’t try to use session data as a cache, to improve performance
by avoiding fetching data from server-side persistent storage. Apart
from the fact that session data is limited to the 4 KB of data that fits
in a cookie, this will increase the size of subsequent HTTP
requests, which will include the cookie data, and may make
performance worse overall.

The canonical use case for session cookies is to identify the currently
authenticated user. In fact, it is reasonable to argue that if you can identify the
current user, using a session cookie, then you should not use cookies for anything
else, and load user-specific data from a persistent data model.

The Play cookie is signed, using the application secret key as a salt, to prevent
tampering. This is important if you are using the session data for things like the
authenticated user, to prevent a malicious user from constructing a fake session
cookie that would allow them to impersonate another user. You can see this by
inspecting the cookie called that is stored in your browser for aPLAY_SESSION

Play application, or by inspecting the header in the HTTP response.Set-Cookie

One common use for a ‘session’ scope in a web application is to display success
messages.

Earlier we saw an example of using the redirect-after-POST pattern to delete a
product from our product catalog application, and then redirect to the updated

val search = request.session.get("search.previous")

Ok(results).withSession(
 request.session - "search.previous"
)

FLASH DATA

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

127

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

products list. When you display updated data after making a change, it is useful to
show the user a message that confirms that the operation was successful—‘Product
deleted!’, in this case.

The usual way to display a message on the products list page would for the
controller action to pass it directly to the products list template when rendering the
page. This does not work in this case because of the redirect: the message is lost
during the redirect because template parameters are not preserved between
requests. The solution is to use session data, as described above.

Displaying a message when handling the next request, after a redirect, is such a
common use case that Play provides a special session scope called ‘flash scope’.
Flash scope works the same way as the session, except that any data that you store
is only available when processing the next HTTP request, after which it is
automatically deleted. This means that when you store the ‘product deleted’
message in flash scope, it will only be displayed once.

To use flash scope, add values to a response type. For example, to add the
‘product deleted’ message:

To display the message on the next page, retrieve the value from the request:

You will learn how to do this in a page template, instead of in a controller
action, in chapter XREF ch06_chapter.

The session and flash scopes described above are implemented using HTTP
cookies, which you can use directly if the session or flash scopes do not solve your
problem.

Cookies store small amounts of data in an HTTP client, such as a web browser
on a specific computer. This is useful for making data ‘sticky’ when there is no
user-specific server-side persistent storage, such as for user preferences. This is the
case for applications that do not identify users.

Redirect(routes.Products.flash()).flashing(
 "info" -> "Product deleted!"
)

val message = request.flash("info")

SETTING COOKIES

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

128

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

TIP Avoid using cookies
Most of the time, there is a better way to solve a problem than to
use cookies directly. Before you turn to cookies, consider whether
you can store the data using features that provide additional
functionality, such as the Play session or flash scopes, or
server-side cache or persistent storage.

Setting cookie values is actually another special case of an HTTP response
header, but this can be complex to use directly. If you do need to use cookies, you
can use the Play API to create cookies and add them to the response, and to read
them from the request.

Note that one common use case for persistent cookies—application language
selection—is built-in in Play.

Not everything in a web application is dynamic content: a typical web application
also includes static files, such as images, JavaScript files and CSS style sheets.
Play serves these static files over HTTP the same way it serves dynamic responses:
by routing an HTTP request to a controller action.

Most of the time you just want to add a few static files to your application, in
which case the default configuration is fine. Put files and folders inside your
application’s folder and access them using the URL path ,public/ /assets

followed by the path relative to .public

For example, a new Play application includes a ‘favorites icon’ at
, which you can access at public/images/favicon.png

. The samehttp://localhost:9000/assets/images/favicon.png

applies to the default JavaScript and CSS files in and public/javascripts/

. This means that you can refer to the icon from anpublic/stylesheets/

HTML template with:

To see how this works, look at the default file. The defaultconf/routes

HTTP routing configuration contains a route for static files, called ‘assets’:

4.6.5 Serving static content

USING THE DEFAULT CONFIGURATION

<link href="/assets/images/favicon.png"
 rel="shortcut icon" type="image/png">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

129

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/assets/images/favicon.png
http://www.manning-sandbox.com/forum.jspa?forumID=810

This specifies that HTTP GET requests for URL that start with are/assets/

handled by the controller’s action, which takes two parameters thatAssets at

tell the action where to find the requested file.
In this example, the parameter takes a fixed value of . Youpath "/public"

can use a different value for this parameter if you want to store static files in
another folder, for example by declaring two routes:

The parameter value comes from a URL path parameter. You may recallfile

from section 4.3.2 that a path parameter that starts with an asterisk, such as *file

, matches the rest of the URL path, including forward slashes.

In section 4.31, we saw how to use reverse routing to avoid hard-coding your
application’s internal URLs. Since is a normal controller action, itAssets.at

also has a reverse route that you can use in your template:

This results in the same href="/assets/images/favicon.png"

attribute as before. Note that we do not specify a value for the action’s path

parameter, so we are using the default. However, if you had declared a second
assets route, then you would have to provide the parameter value explicitly:path

GET /assets/*file controllers.Assets.at(path="/public", file)

GET /images/*file controllers.Assets.at(path="/public/images", file)
GET /styles/*file controllers.Assets.at(path="/public/styles", file)

USING ASSETS’ REVERSE ROUTES

<link href="@routes.Assets.at("images/favicon.png")"
 rel="shortcut icon" type="image/png">

<link href="@routes.Assets.at("/public/images", "favicon.png")"
 rel="shortcut icon" type="image/png">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

130

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href="@routes.Assets.at
mailto:href="@routes.Assets.at("/public/images
http://www.manning-sandbox.com/forum.jspa?forumID=810

As well as reverse routing, another benefit of using the assets controller is its
built-in caching support, using an HTTP Entity Tag. This allows a web client to
make conditional HTTP requests for a resource so that the server can tell the client
it can use a cached copy instead of returning a resource that hasn’t changed.

For example, if we send a request for the favorites icon, the assets controller
calculates an ETag value and adds a header to the response:

The ETag header value is a hash of the resource file’s name and modification
date. Don’t worry if you don’t know about hashes: all you need to know is that if
the file on the server is updated, with a new version of a logo for example, this
value will change.

Once it has an ETag value, a HTTP client can make a conditional request,
which means ‘only give me this resource if it has not been modified since I got the
version with this ETag’. To do this, the client includes the ETag value in a request
header:

When this header is included in the request, and the file hasfavicon.png

not been modified (has the same ETag value), then Play’s assets controller will
return the following response, which means ‘you can use your cached copy’:

An eternal issue in web development is how long it takes to load a page.
Bandwidth may tend to increase from one year to the next, but people increasingly
access web applications in low-bandwidth environments using mobile devices.
Meanwhile, page sizes keep increasing, due to factors like the use of more and
larger JavaScript libraries in the web browser.

HTTP compression is a feature of modern web servers and web clients that

CACHING AND ETAGS

Etag: 978b71a4b1fef4051091b31e22b75321c7ff0541

If-None-Match: 978b71a4b1fef4051091b31e22b75321c7ff0541

HTTP/1.1 304 Not Modified
Content-Length: 0

COMPRESSING ASSETS WITH GZIP

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

131

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

helps address page sizes by sending compressed versions of resources over HTTP.
The benefit of this is that you can significantly reduce the size of large text-based
resources, such as JavaScript files. Using to compress a large minifiedgzip

JavaScript file may reduce its size by a factor of two or three, significantly
reducing bandwidth usage. This compression comes at the cost of increased
processor usage on the client, which is usually less of an issue than bandwidth.

The way this works is that the web browser indicates that it can handle a
compressed response by sending an HTTP request header such as

 that specifies supported compression methods. TheAccept-Encoding: gzip

server may then choose to send a compressed response whose body consists of
binary data instead of the usual plain-text, together with a response header that
specifies this encoding, such as:

In Play, HTTP compression is transparently built-in to the assets controller,
which can automatically serve a compressed version of a static file, if it is available
and if gzip is supported by the HTTP client. This happens when:

Play is running in ‘prod’ mode (production mode is explained in section ???) - HTTP
compression is not expected to be used during development
Play receives a request that is routed to the assets controller
the HTTP request includes an headerAccept-Encoding: gzip

the request maps to a static file and a file with the same name but with an additional .gz
suffix is found.

If any one of these conditions is not true, then the assets controller serves the
usual (uncompressed) file.

For example, suppose our application includes a large JavaScript file at
 that we want to compress when possible. First,public/javascripts/ui.js

we need to make a compressed copy of the file using on the command linegzip

(without removing the uncompressed file):

This should result in a file that is significantly smaller than theui.js.gz

original file.ui.js

Content-Encoding: gzip

gzip --best < ui.js > ui.js.gz

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

132

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Now, when Play is running in ‘prod’ mode, a request for
 that includes the /assets/javascripts/ui.js Accept-Encoding:

 header will result in a gzipped response.gzip

To test this on the command line, start Play in ‘prod’ mode using the play

 command, and then use cURL on the command line to send the HTTPstart

request:

You can see from the binary response body and the Content-Encoding

header that the response is compressed.

This chapter has shown you how Play implements its model-view-controller
architecture and how Play processes HTTP requests. This architecture is designed
to support declarative application URL scheme design, and type-safe HTTP
parameter mapping.

Request processing starts with the HTTP routing configuration that determines
how the Router processes request parameters and dispatches the request to a
controller. First, the Router uses the Binder to convert HTTP request parameters to
strongly-typed Scala objects. Then the router maps the request URL to a controller
action invocation, passing those Scala objects as arguments.

Meanwhile, Play uses the same routing configuration to generate ‘reverse
controllers’ that you can use to refer to controller actions without having to
hard-code URLs in your application.

This chapter did not describe HTML form validation — using business rules to
check request data. This responsibility of your application’s controllers is
described in detail in chapter ???.

Response processing, after a request has been processed, means determining the
HTTP response’s status code, headers and response body. Play provides both
controller helper functions that simplify the task of generating standard responses,
as well as giving full control over status codes and headers. Using templates to
generate a dynamic response body, such as an HTML document, is described in
chapter XREF ch06_chapter.

In Play, this request and response processing come together in a Scala HTTP
API that combines convenience for common cases with the flexibility to handle

curl --header "Accept-Encoding: gzip" --include
[CA] http://localhost:9000/assets/javascripts/ui.js

4.7 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

133

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/assets/javascripts/ui.js
http://www.manning-sandbox.com/forum.jspa?forumID=810

more complex or unusual cases, without attempting to avoid HTTP features and
concepts.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

134

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

5
This chapter covers:

The persistence layer is a crucial part of the Play architecture for most applications;
unless you’re writing a trivial web application, you’ll need to store and retrieve
data at some point. This chapter explains how to build a persistence layer for your
application. There are different kinds of database paradigms in active use, today. In
this chapter we'll focus on SQL databases. The following diagram shows the
persistence layer’s relationship to the rest of the framework.

Figure 5.1 An overview of Play’s persistence layer

The diagram shows that the model is pretty much isolated from the rest of the
framework and should provide an API for the controllers to use. If we manage to

Storing data — the persistence layer

Using Anorm

Using Squeryl

Caching data

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

135

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

create our own persistence layer without leaking any of the web application
concepts into it, we will have self-contained model that will be easier to maintain,
and a standalone API that could potentially be used in another application that uses
the same model.

In this chapter we’ll teach you how to use Anorm — which comes out of the
box with Play — and Squeryl.

In order to talk to the database, you’ll have to create SQL at some point. A modern
Object-Relation Mapper (ORM) like Hibernate or the Java Persistence API (JPA)
provides its own query language (HQL and JPQL, respectively), which is then
translated into the target database’s SQL dialect.

Anorm and Squeryl are at opposite ends of the SQL-generation/translation
spectrum. Squeryl generates SQL by providing a Scala Domain Specific Language
(DSL) that’s similar to actual SQL. Anorm doesn’t generate any SQL, and instead
relies on the user to write SQL. In case you are used to ORMs like Hibernate or
JPA we should probably repeat that Anorm doesn’t define a new query language
but uses actual SQL.

Both approaches have their benefits and disadvantages. The most important
benefits of each are that:

Anorm allows you to write any SQL that you can come up with, even using proprietary
extensions of the particular database that you’re using
Squeryl’s DSL allows the compiler to check that your queries are correct, which meshes
well with Play’s emphasis on type safety.

We’ll use our paper clip warehouse example again, to show you how to store
and retrieve information about paper clip stock-levels in our warehouse.

Most web applications will store data at some point. Whether that data is a
shopping basket, user profiles or blog entries, doesn’t matter very much. What
does matter is that your application should be able to receive — or generate — the
data in question, store it in a persistent manner and be able to show it to the user,
when requested, reliably.

In the following sections, we’ll explain how to define your model — for both
Anorm and Squeryl — and create an API to be used from your controllers.

5.1 Talking to a database

5.1.1 What are Anorm and Squeryl

5.1.2 Saving model objects in a database

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

136

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We’ll be going back to our paper clip warehouse example to explain how to
create a persistence layer, with both Anorm and Squeryl. We’ll explain how to
create classes for our paper clips, stock levels and warehouses, how to retrieve
them from the database and saving the changes to it.

Play comes with support for an H2 in-memory database out of the box, but there’s
no database configured by default. In order to configure a database you need to
uncomment two lines in or re-add them if you’reconf/application.conf

following along from the start.

db.default.driver=org.h2.Driver
db.default.url="jdbc:h2:mem:play"

An in-memory database is fine for development and testing but doesn’t cut it
for most production environments. In order to configure another database, you
need to get the right kind of JDBC library first. Play uses SBT, so we can specify a
dependency in (assuming you used toproject/Build.scala play new

create your Play project. Just add a line for PostgreSQL in the
 .appDependencies Seq

val appDependencies = Seq(
 "postgresql" % "postgresql" % "9.1-901.jdbc4"
)

Now we can configure our database in .application.conf

db.default.user=user
db.default.password=qwerty
db.default.url="jdbc:postgresql://localhost:5432/paperclips"
db.default.driver=org.postgresql.Driver

5.1.3 Configuring your database

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

137

Licensed to Jeff Crilly <jlc@sbcglobal.net>

Anorm lets you write SQL queries and provides an API to parse result sets. What
we’re talking about here is actual unaltered SQL code in strings. The idea behind
this is that you should be able to use the full power of your chosen database’s SQL
dialect. Since there are so many SQL dialects and most (if not all) of them provide
at least one unique feature, it is impossible for ORMs to map all those features
onto a higher-level language — like HQL, for example.

With Anorm you can write your own queries, map them to your model or create
any kind of collection of data retrieved from your database. When you retrieve data
with Anorm, there are three ways to process the results: the Stream API, pattern
matching and parser combinators. We will show you how to use all three, but since
all three methods eventually yield the same results, we suggest that you choose the
method you like best. First we have to show you how to create your model, though.

Anorm relies on you to build queries, so it doesn’t need to know anything about
your model. Therefore, your model is simply a bunch of classes that represent the
entities that you want to use in your application and store in the database, as shown
in listing 5.1.

Listing 5.1 The model

case class Product(
 id: Long,
 ean: Long,
 name: String,
 description: String)

case class Warehouse(id: Long, name: String)

case class StockItem(
 id: Long,
 productId: Long,
 warehouseId: Long,
 quantity: Long)

That’s it, that’s our model. There are no Anorm-related annotations or imports
necessary for this step. Like we said, Anorm doesn’t really know about your
model. The only thing Anorm wants to know is how to map result sets to the
collections of objects that you’re going to use in your application. There are several
ways you can do that with Anorm. Before we can do anything else with our

5.2 Using Anorm

5.2.1 Defining your model

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

138

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

database, we need to create our schema; Section 5.4 shows how to use evolutions
to do this. Now we can have a look at the stream API.

Before we can get results, we have to create a query. With Anorm, you simply call
 with your query as a parameter:anorm.SQL String

import anorm.SQL
import anorm.SqlQuery
val sql: SqlQuery = SQL("select * from products order by name asc")

We’re making the property part of the companion object. Thesql Product

companion object of an entity is a convenient place to keep any data access
functionality related to the entity, turning the companion object into a DAO.

Now that we have our query, we can call its method. The apply apply

method has an implicit parameter block that takes a ,java.sql.Connection

which Play provides in the form of . Since returnsDB.withConnection apply

a , we can just use the method to transform the resultsStream[SqlRow] map

into entity objects. In listing 5.2 you can see our first DAO method.

Listing 5.2 Convert the query results to entities

import play.api.Play.current
import play.api.db.DB
def getAll: List[Product] = DB.withConnection {
 implicit connection =>
 sql().map (row =>
 Product(row[Long]("id"), row[Long]("ean"),
 row[String]("name"), row[String]("description"))
).toList
}

Creates a Connection before running our code, and closes it afterwards
Make the Connection implicitly available
Iterate over each row
Create a Product from the contents of each row
Since Streams are lazy, we convert it to a List, which makes it retrieve all the
results

The variable in the function-body given to is an , which hasrow map SqlRow

an method that retrieves the requested field by name. The type parameter isapply

there to make sure the results are cast to the right Scala type. Our methodgetAll

5.2.2 Using Anorm’s stream API

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

139

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

uses a standard map operation (in Scala, anyway) to convert a collection of
database results into instances of our Product class. Let’s see how to do this with
pattern matching.

An alternative to the stream API is to use pattern matching to handle query results.
The pattern-matching version of the previous method is very similar. Take a look
at listing 5.3.

Listing 5.3 Use a pattern to convert query results

def getAllWithPatterns: List[Product] = DB.withConnection {
 implicit connection =>
 import anorm.Row
 sql().collect {
 case Row(Some(id: Long), Some(ean: Long),
 Some(name: String), Some(description: String)) =>
 Product(id, ean, name, description)
 }.toList
}

For each row that matches this pattern (all of them, in this case)
Create the corresponding Product

Instead of calling , we’re calling with a partial function. Thismap collect

partial function specifies that for each row that matches its pattern — a Row

containing two instances with instances and two instances with Some Long Some

 instances — we want to create a with the values from the String Product Row

. Anorm wraps each value that comes from a nullable column in a so thatSome

nulls can be represented with .None

We’ve said before that the query’s method returns a standard Scala apply

; we’ve used this in both of the last two examples. Both andStream Stream map

 are part of the standard Scala collections API and are simplycollect Streams

lists that haven’t computed — or in this case retrieved — their contents, yet. This
is why we had to convert them to with , to actually retrieve theLists toList

contents.
So, we’ve been writing pretty standard Scala code. Anorm has only had to

provide us with a way to create a from a query string, as wellStream[SqlRow]

as a class () and an extractor () to do some fancy stuff. But that’s notSqlRow Row

all; Anorm provides parser combinators as well.

5.2.3 Pattern matching results

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

140

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

You can also parse results with , a functional programmingparser combinators1

technique for building parsers by combining other parsers, which can be used in
other parsers, etc. Anorm supports this concept by providing field, row and result
set parsers. You can build your own parsers with the parsers that are provided.

Footnote 1 m http://en.wikipedia.org/wiki/Parser_combinators

We’ll need to retrieve, and therefore parse, our entities many times, so it is a good
idea to build parsers for each of our entities. Let’s build a parser for a Product

record, the result is in listing 5.4.

Listing 5.4 Parse a product

import anorm.RowParser
val productParser: RowParser[Product] = {
 import anorm.~
 import anorm.SqlParser._
 long("id") ~
 long("ean") ~
 str("name") ~
 str("description") map {
 case id ~ ean ~ name ~ description =>
 Product(id, ean, name, description)
 }
}

long and are parsers that expect to find a field with the right type andstr

name. These are combined with to form a complete row. The part after is~ map

where we specify what we want to turn this pattern into; we convert a sequence of
four fields into a . We’re not quite done: from our method’s return type,Product

we can see we’ve made a , but Anorm needs a .RowParser ResultSetParser

OK, let’s make one:

import anorm.ResultSetParser
val productsParser: ResultSetParser[List[Product]] = {
 productParser *
}

Yes, it’s that simple; by combining our original parser with we’ve built a *

. parses zero or more rows of whatever parser is in front ofResultSetParser *

5.2.4 Parsing results

BUILDING A SINGLE-RECORD PARSER

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

141

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://en.wikipedia.org/wiki/Parser_combinators
http://www.manning-sandbox.com/forum.jspa?forumID=810

it. In order to use our new parser, we can just pass it to our query’s method:as

def getAllWithParser: List[Product] = DB.withConnection {
 implicit connection =>
 sql.as(productsParser)
}

By giving Anorm the right kind of parser, it can produce a list of Products

from our query.
So far we’ve been converting result sets into instances of our model class, but

you can use any of the techniques described above to generate anything you like.
For example, you could write a query that returns a tuple of each product’s name
and EAN code, or a query that returns each product along with all of its stock
items. Let’s do that with parser combinators.

You may recall from our example’s model that each product in our catalog is
associated with zero or more stock items, which each record the quantity that is
available in a particular warehouse. To fetch stock item data, we’ll use SQL to
query the and database tables.products stock_items

Since we’re going to be parsing a product’s , we need anotherStockItems

parser. We’ll put this parser in ’s companion object:StockItem

val stockItemParser: RowParser[StockItem] = {
 import anorm.SqlParser._
 import anorm.~
 long("id") ~ long("product_id") ~
 long("warehouse_id") ~ long("quantity") map {
 case id ~ productId ~ warehouseId ~ quantity =>
 StockItem(id, productId, warehouseId, quantity)
 }
}

We’re not doing anything new here: it looks just like our parser. InProduct

order to get our products and stock items results, we’ll have to write a join query,
which will give us rows of stock items with their corresponding products, thereby
repeating the products. This is not exactly what we want, but we can deal with that
later. For now let’s build a parser that can parse the combination of a product and
stock item:

BUILDING A MULTI-RECORD PARSER

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

142

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

import anorm.~
def productStockItemParser: RowParser[(Product, StockItem)] = {
 import anorm.SqlParser._
 productParser ~ StockItem.stockItemParser map (flatten)
}

As before, we’re combining parsers to make new parsers — they don’t call
them parser combinators for nothing. This looks mostly like stuff we’ve done
before but there is something new. (in) simply turnsflatten map (flatten)

the given into a standard tuple. Let’s see what the~[Product, StockItem]

final result looks like in listing 5.5.

Listing 5.5 Products with stock items

def getAllProductsWithStockItems: Map[Product, List[StockItem]] = {
 DB.withConnection { implicit connection =>
 val sql = SQL("select p.*, s.* " +
 "from products p " +
 "inner join stock_items s on (p.id = s.product_id)")
 val results: List[(Product, StockItem)] =
 sql.as(productStockItemParser *)
 results.groupBy { _._1 }.mapValues { _.map { _._2 } }
 }
}

A join query
Use our RowParser to parse the ResultSet
Turn the list of tuples into a map of Products with a list of its StockItems

The call to groups the list’s elements by the first part of the tuple (groupBy

), using that as the key for the resulting map. The value for each key is a list_._1

of all the its corresponding elements. This leaves us with a Map[Product,

, which is why we map over the valuesList[(Product, StockItem)]]

and, for each value, we map over each list to produce a Map[Product,

.List[StockItem]]

Now that you’ve seen three ways to get data out of the database, let’s see how
we put some data in.

To insert data we simply create an insert statement and call onexecuteUpdate

it. The following example, listing 5.6, also shows how to supply named
parameters.

5.2.5 Inserting, updating and deleting data

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

143

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Listing 5.6 Inserting records

def insert(product: Product): Boolean = {
 DB.withConnection { implicit connection =>
 SQL("""insert
 into products
 values ({id}, {ean}, {name}, {description})""").on(
 "id" -> product.id,
 "ean" -> product.ean,
 "name" -> product.name,
 "description" -> product.description
).executeUpdate() == 1
 }
}

Identifiers surrounded by curly braces denote named parameters to be mapped with
the elements in on(…)
Each named parameter is mapped to its value
executeUpdate returns the number of rows the statement has affected

Executing an insert statement follows a similar pattern to running a query: you
create a string with the statement and get Anorm to execute it. As you can guess,
update and delete statements are the same: see listing 5.7.

Listing 5.7 Update and delete

def update(product: Product): Boolean = {
 DB.withConnection { implicit connection =>
 SQL("""update products
 set name = {name},
 ean = {ean},
 description = {description}
 where id = {id}
 """).on(
 "id" -> product.id,
 "name" -> product.name,
 "ean" -> product.ean,
 "description" -> product.description).
 executeUpdate() == 1
 }
}
def delete(product: Product): Boolean = {
 DB.withConnection { implicit connection =>
 SQL("delete from products where id = {id}").
 on("id" -> product.id).executeUpdate() == 0
 }
}

In the previous sections we’ve learned how to use Anorm to retrieve, insert,

The SQL update
statement

Map the values to
the named
parameters

Check that our
update does what
we expect it to do

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

144

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

update and delete from the database. We’ve also learned different methods to parse
query results. Let’s take a look at how Squeryl does things differently.

Squeryl is a Scala library for mapping an object model to an RDBMS. The author
defines it as ‘A Scala ORM and DSL for talking with Databases with minimum

verbosity and maximum type safety.’ This means that Squeryl is an ORM that2

gives you two features that other ORMs do not:

Footnote 2 m http://squeryl.org/

a DSL
type safety

These features mean that you can write queries in a language that the Scala
compiler understands and you find out whether there are errors in your queries at
compile-time. For instance, if you remove a field from one of your model classes,
all Squeryl queries that specifically use that field will no longer compile. Contrast
this with other ORMs (or Anorm — Anorm is Not an ORM) that rely on the
database to tell you that there are errors in your query, and don’t complain until the
queries are actually run. Many times you don’t discover little oversights until your
users tell you about them.

The following sections will teach you how to create your model and map it to a
relational database, store and retrieve records and handle transactions.

Because Play comes with Anorm out of the box, you’ll have to do a bit of work to
use Squeryl. Before you can use Squeryl to perform queries, you’ll have to add
Squeryl as a dependency to your project and initialise Squeryl’s session. To add a
dependency for Squeryl to your project, we just add another line to

 in :appDependencies project/Build.scala

val appDependencies = Seq(
 "net.sf.barcode4j" % "barcode4j" % "2.0",
 "org.squeryl" % "squeryl_2.9.0-1" % "0.9.4"
)

The next step is to define a Global object that extends ,GlobalSettings

whose method will be called by Play on start-up. In this onStart onStart

5.3 Using Squeryl

5.3.1 Plugging Squeryl in

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

145

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://squeryl.org/
http://www.manning-sandbox.com/forum.jspa?forumID=810

method we can initialize a , which Squeryl will use to createSessionFactory

sessions as needed. A Squeryl session is just an SQL connection so that it can talk
to a database and an implementation of a Squeryl database adapter that knows how
to generate SQL for that specific database. In listing 5.8 we show how to do this.

Listing 5.8 Initialize Squeryl

import org.squeryl.adapters.H2Adapter
import org.squeryl.{Session, SessionFactory}
import play.api.db.DB
import play.api.{Application, GlobalSettings}

object Global extends GlobalSettings {
 override def onStart(app: Application) {
 SessionFactory.concreteFactory = Some(() =>
 Session.create(DB.getConnection()(app), new H2Adapter))
 }

Provide Squeryl with a function to create a session; every time Squeryl needs a
new session it will execute this function

We are using an H2 database in this example, but most mainstream databases
will work. We give Squeryl’s a function that creates a sessionSessionFactory

that’s wrapped in a . Every time Squeryl needs a new session, it will call ourSome

function. This function does nothing more than call with a Session.create

 and an ,java.sql.Connection org.squeryl.adapters.H2Adapter

which is an H2 implementation of .DatabaseAdapter

The call to looks a bit weird because we’re supplyingDB.getConnection

the method with a one-parameter block after an empty parameter block. This is
because is intended to be used in an environment where anDB.getConnection

 is available as an implicit and you can call it without the secondApplication

parameter block. This isn’t the case here; it’s being supplied as a lowly method
parameter. If we really wanted, we could make it available as an implicit by
assigning to a new implicit val:app

implicit val implicitApp = app
DB.getConnection()

We would only recommend this if the implicit Application is going to be used
several more times.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

146

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

There, we’ve set up Play to make Squeryl available in our code. Now we can
define a model.

In order for Squeryl to be able to work with our data, we need to tell it how the
data is structured. This will enable Squeryl to store and retrieve our data in a
database and even tell us whether our queries are correct at compile-time.

When it comes to defining your model, Squeryl gives you a certain amount of
freedom; you can use normal classes or case classes, and mutable or immutable
fields (vs.). We’ll be using the same logical data model as in the Anormval var

section, with minor changes to accommodate Squeryl. We’ll explain how to define
our data model and support code in the following code samples. All the samples
live in the package; we put them in the same file, but you can split themmodels

up if you like.
First we define three classes that represent records in each of the three tables.

We’ll be using case classes in this example because that gives us several benefits,
with minimal boilerplate.

Case classes are like regular classes with some bonus features:

the constructor parameters (the parentheses after the class’ name) automatically become
fields of the class
the fields are immutable
you get a method that can create a copy with zero or more fields changedcopy

you can instantiate an instance without (new val warehouse = Warehouse(0,

)"Rotterdam")

The immutability of our model classes is especially useful. Because you can’t
change an instance of a case class — you can only instantiate a modified copy with
the instance’s method — one thread can never change another thread’s viewcopy

on the model by changing fields in entities that they might be sharing. Let’s look at
our model in listing 5.9:

Listing 5.9 The model

import org.squeryl.KeyedEntity

case class Product(
 id: Long,
 ean: Long,
 name: String,
 description: String) extends KeyedEntity[Long]

5.3.2 Defining your model

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

147

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

case class Warehouse(
 id: Long,
 name: String) extends KeyedEntity[Long]

case class StockItem(
 id: Long,
 product: Long,
 location: Long,
 quantity: Long) extends KeyedEntity[Long]

The only thing that’s different from vanilla case classes, is that we’re extending
. This tells Squeryl that we want it to manage our field andKeyedEntity id

generate values for it.

Let us explain in more detail why you might want to use an immutable model. In
simple applications you won’t have to worry about your model being mutable,
since you won’t be passing entities between threads, but if you start caching
database results or passing entities to long-running jobs, you might get into a
situation where multiple threads are using and updating the same objects. This can
lead to all sorts of race conditions, due to one thread updating an object while
another thread is reading it.

You can avoid this by making sure that you can’t actually change the objects
you’re passing around, in other words: make them immutable. When an object is
immutable, you can only change it by making a copy. This ensures that other
threads that have a reference to the same object won’t be affected by the changes.

There’s another case to be made for using immutable objects, which is to
protect yourself from errors in your code. In the same way we use the type system
to protect ourselves from, for instance, passing the wrong kind of parameters to our
methods. When we only pass immutable parameters, buggy methods can never
cause problems for the calling code by unexpectedly updating its parameters. Next
we’ll define our schema.

This is where we tell Squeryl which tables our database will contain.
 contains some utility methods and will allow us toorg.squeryl.Schema

group our entity classes in such a way that Squeryl can make sense of them. We do
this by creating a object that extends and contains three Database Schema

 fields that map to our entity classes. We’ll use these fields later inTable Table

our queries. Listing 5.10 shows what our object looks like.Database

IMMUTABILITY AND THREADS

DEFINING THE SCHEMA

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

148

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Listing 5.10 Define the schema

import org.squeryl.Schema
import org.squeryl.PrimitiveTypeMode._

object Database extends Schema {
 val productsTable: Table[Product] =
 table[Product]("products")
 val stockItemsTable: Table[StockItem] =
 table[StockItem]("stock_items")
 val warehousesTable: Table[Warehouse] =
 table[Warehouse]("warehouses")

 on(productsTable) { p => declare {
 p.id is(autoIncremented)
 }}

 on(stockItemsTable) { s => declare {
 s.id is(autoIncremented)
 }}

 on(warehousesTable) { w => declare {
 w.id is(autoIncremented)
 }}
}

The table method returns a table for the class specified as the type parameter
and the optional string parameter defines the table’s name in the database. That’s
it, we’ve defined three classes to contain records and we’ve told Squeryl which
tables we want it to create and how to map it to our model. What we’ve built can
be illustrated as follows:

Figure 5.2 The relationship between the Schema and the model classes

In the previous listing we added a bunch of type annotations to make it clear

We define all three
tables and map
them to our case
classes

We tell Squeryl to
generate IDs for
our entities for
each of the tables

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

149

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

what all the properties are — the same reason we’ve added them to several other
listings. However, this looks rather verbose to most non-novice Scala developers
and in this example it starts to get a bit too much. So, here’s a more idiomatic
version of the same code.

Listing 5.11 Idiomatic schema

import org.squeryl.Schema
import org.squeryl.PrimitiveTypeMode._

object Database extends Schema {
 val productsTable = table[Product]("products")
 val stockItemsTable = table[StockItem]("stock_items")
 val warehousesTable = table[Warehouse]("warehouses")

 on(productsTable) { p => declare {
 p.id is(autoIncremented)
 }}

 on(stockItemsTable) { s => declare {
 s.id is(autoIncremented)
 }}

 on(warehousesTable) { w => declare {
 w.id is(autoIncremented)
 }}
}

Before we can do anything else, we’ll have to make sure our schema is created.
Squeryl does define a method that creates the schema when called fromcreate

our object. However, since this can’t update a schema, it’s better toDatabase

use the evolutions method described in section 5.4. Now we have a database, we
can define our data access objects for performing queries.

At some point you’ll want to get data out of your database to show to the user. In
order to write your Squeryl queries, you’ll use Squeryl’s DSL.

Let’s see what a minimal query looks like:

import org.squeryl.PrimitiveTypeMode._
import org.squeryl.Table
import org.squeryl.Query
import collection.Iterable

5.3.3 Extracting data — queries

WRITING SQUERYL QUERIES

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

150

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

object Product {
 import Database.{productsTable, stockItemsTable}

 def allQ: Query[Product] = from(productsTable) {
 product => select(product)
 }

We import the products table from for convenience. takes aDatabase from

table as its first parameter. The second parameter is a function that takes an item
and calls, at least, . determines what the returned list willselect select

contain. Let’s see what this looks like in figure 5.3:

Figure 5.3 What a simple query looks like

Instead of returning a model object, we can also return a field from the product
by calling , for instance. This will return — when theselect(product.name)

query is actually called — a list of all the name fields in the products table. As a
next step we’re going to sort our results:

def allQ = from(productsTable) {
 product => select(product) orderBy(product.name desc)
}

In Squeryl we order by using an order by clause, just like in SQL, figure 5.4
shows what it looks like.

Figure 5.4 Squeryl’s order by clause

Note that we only the query, we did not run it or access the database indefined
any way. So how do we get our results?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

151

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

If you look up the source code for (the return type of our query methods),Query

you’ll see that it also extends . This might suggest to you that you canIterable

just loop over the query or otherwise extract its contents to get at the results.
Well… yes, but not just yet. Our doesn’t actually contain the resultsIterable

yet but will retrieve them for you as soon as you try to access its content (by
looping over it, for example). Without a database connection available, this will
fail with an exception. We can provide our query with a connection by wrapping
our code in a transaction.

In Squeryl lingo a ‘transaction’ is just a database context: a collection of a
database connection and a database transaction (something you can commit or
rollback) and any other bookkeeping that Squeryl needs to keep track of. You can
pick either or as the wrapper, the differencetransaction inTransaction

will be explained later. This will provide our query with a context to run in, which
makes the right kind of variables available for it to be able to talk to our database.
Knowing that, we can define a method to get our result set:

def findAll: Iterable[Product] = inTransaction {
 allQ.toList
}

That’s right, all we have to do to get our records is call the method. toList

 loops over collection items and puts each of them in a newly created list.toList

This may not seem like much, after all we’re just turning one kind of collection
into another kind of collection with the same contents. But we’ve done something
crucial here, we’ve made Squeryl retrieve our records and turn our lazy

 into a collection that actually contains our results and can be usedIterable

outside of a transaction.

SIDEBAR Retrieving results
The crucial bit in this section is that, although your query behaves like
an Iterable, you can’t access any results outside of a transaction. You
either do everything you have to do inside one of the transaction
blocks or, like in the example, you call on the query (also insidetoList

a transaction) and then use that list outside of a transaction.

ACCESSING A QUERY’S RESULTS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

152

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We told you that takes a table as a parameter, we lied; it takes a from

. A is a , but so is a . This makes theQueryable Table Queryable Query

query in listing 5.12 possible.

Listing 5.12 A nested query

def productsInWarehouse(warehouse: Warehouse) = {
 join(productsTable, stockItemsTable)((product, stockItem) =>
 where(stockItem.location === warehouse.id).
 select(product).
 on(stockItem.product === product.id)
)
}
def productsInWarehouseByName(name: String,
 warehouse: Warehouse): Query[Product]= {
 from(productsInWarehouse(warehouse)){ product =>
 where(product.name like name).select(product)
 }
}

Instead of passing a table parameter to , we’ve given it a query (from

). By doing this, we’ve defined way to filterproductsInWarehouse one

products on whether or not they are present in a specific warehouse and reused the
same filter in another query. We can now use the productsInWarehouse

query as the basis for all queries that need to filter in the same way. If we decide, at
some point, that the filter needs to change in some way, we only have to do it in
one place.

SIDEBAR Automatic filters
The more experienced Scala developers among you will already have
started thinking about using this feature to implement automatic filtering
capabilities. You could, for instance, add an implicit parameter block to
all your queries and use that to filter all queries based on the current
user.

By using queries as building blocks for other queries, we can achieve a higher
level of reuse and reduce the likelihood of bugs. Now that we know how to get
data out, how do we put it in?

BUILDING QUERIES FROM QUERIES

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

153

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We can be very brief on saving records: you call the table’s or insert update

method.

def insert(product: Product): Product = inTransaction {
 productsTable.insert(product)
}
def update(product: Product) {
 inTransaction { productsTable.update(product) }
}

Again, we’re wrapping our code in a transaction. That’s it, that’s how you store
data in Squeryl. There’s a bit of a snag, though. If you’re using immutable classes
— which vanilla case classes are — you might be worried when you discover that
Squeryl updates your object’s field when you insert it. That means that if youid

execute the following code,

val myImmutableObject = Product(0, 5010255079763l,
 "plastic coated blue",
 "standard paperclip, coated with blue plastic")
Database.productsTable.insert(myImmutableObject)
println(myImmutableObject)

the output will be, quite unexpectedly, something like: Product(13,

5010255079763, "plastic coated blue", "standard

. This can lead to badpaperclip, coated with blue plastic")

situations if the rest of your code expects an instance of one of your model classes
to never change. In order to protect yourself from this sort of stuff, we recommend
you change the methods we showed you earlier into this:insert

def insert(product: Product): Product = inTransaction {
 productsTable.insert(product.copy())
}

This version of gives Squeryl’s a throw-away copy of ourinsert insert

instance for Squeryl to do with it as it pleases — this is one of the nice features a
case class gives you: a method. This way we don’t have to change ourcopy

assumptions about the (im)mutability of our model classes.
Now there’s just one more thing to explain: transactions. We’re almost there.

5.3.4 Saving records

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

154

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

In order to ensure your database’s data-integrity, you’ll want to use transactions.
Databases that provide transactions guarantee that all write operations, in the same
transaction, will either succeed together or fail together. For example, this protects
you from having a without its in your database when youProduct StockItem

were trying to insert both. Figure 5.5 illustrates the problem.

Figure 5.5 Why you want transactions

Squeryl provides two methods for working with transactions, transaction

and . Both of these make sure that the code block that theyinTransaction

wrap are in a transaction. The difference is that always makes itstransaction

own transaction and only makes a transaction (and eventuallyinTransaction

commits) if it’s not already in a transaction. This means that, because our DAO
methods wrap everything in an , they themselves can beinTransaction

wrapped in a and succeed or fail together and never partially.transaction

Let’s say our warehouse receives a shipment of a product that’s not yet known.
We can insert the new and the new and be sure that bothProduct StockItem

will be in the database if the outer transaction succeeds, or neither if it fails. To
illustrate, we’ll put two utility methods in our controller (listing 5.13), one good
and one not so good.

Listing 5.13 Using transactions

5.3.5 Handling transactions

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

155

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

import models.Database
import models.Product
import models.StockItem
import org.squeryl.PrimitiveTypeMode.transaction
def addNewProductGood(product: Product, stockItem: StockItem) {
 import Database.{productsTable, stockItemsTable}
 transaction {
 productsTable.insert(product)
 stockItemsTable.insert(stockItem)
 }
}
def addNewProductBad(product: Product, stockItem: StockItem) {
 import Database.{productsTable, stockItemsTable}
 productsTable.insert(product)
 stockItemsTable.insert(stockItem)
}

Create a transaction
Insert each of the records inside the transaction
Insert the product in its own transaction
Insert the stock-item in another transaction

In we’re wrapping two s in a addNewProductGood inTransaction

, effectively creating just one transaction. Because transaction

 doesn’t wrap the calls to the methods, each ofaddNewProductBad insert

them will create their own transaction. Should something go wrong with the
second transaction, but not with the first, we’d end up in a situation where the

 is in the database, but the not the . This is not what weProduct StockItem

want. We illustrate this as in figure 5.6.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

156

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 5.6 Using transactions to protect data integrity

The diagram shows that relies on the calls to addNewProductBad

 in each of the methods and therefore fails to create ainTransaction insert

single transaction around both of the inserts, which could lead to inconsistent data
in your database. The call to in ,transaction addNewProductGood

however, creates a single transaction and ensures that either both records are
inserted or not at all.

Now that we know all about transactions, let’s take a look at what kind of
support Squeryl has for relationships between entities.

There are two flavours of entity relations in Squeryl. One works somewhat like
traditional ORMs, in the sense that it allows you to traverse the object tree, and one
that is… different. Let’s start with the approach that’s different, which Squeryl
calls ‘stateless relations’.

5.3.6 Entity relations

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

157

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Squeryl’s stateless relations don’t allow you to traverse the object tree like
traditional ORMs do. Instead they give you ready-made queries that you can call

 on, or use in other queries’ clauses. Before we go any further, let’stoList from

redefine our model to use stateless relations. The result is in listing 5.14.

Listing 5.14 Stateless relations version of our model

import org.squeryl.PrimitiveTypeMode._
import org.squeryl.dsl.{OneToMany, ManyToOne}
import org.squeryl.{Query, Schema, KeyedEntity, Table}

object Database extends Schema {
 val productsTable = table[Product]("products")
 val warehousesTable = table[Warehouse]("warehouses")
 val stockItemsTable = table[StockItem]("stockItems")

 val productToStockItems =
 oneToManyRelation(productsTable, stockItemsTable).
 via((p,s) => p.id === s.productId)

 val warehouseToStockItems =
 oneToManyRelation(warehousesTable, stockItemsTable).
 via((w,s) => w.id === s.warehouseId)
}

case class Product(
 id: Long,
 ean: Long,
 name: String,
 description: String) extends KeyedEntity[Long] {

 lazy val stockItems: OneToMany[StockItem] =
 Database.productToStockItems.left(this)
}

case class Warehouse(
 id: Long,
 name: String) extends KeyedEntity[Long] {

 lazy val stockItems: OneToMany[StockItem] =
 Database.warehouseToStockItems.left(this)
}

case class StockItem(
 id: Long,
 productId: Long,
 warehouseId: Long,
 quantity: Long) extends KeyedEntity[Long] {

 lazy val product: ManyToOne[Product] =

STATELESS RELATIONS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

158

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 Database.productToStockItems.right(this)
 lazy val warehouse: ManyToOne[Warehouse] =
 Database.warehouseToStockItems.right(this)
}

We define the one-to-many relationship between products and stock items, with the
fields, on each side, that indicate the relationship
Same for the relationship between warehouses and stock items
We assign the left-hand side of the products relationship to stock items
We do the same for the warehouse relationship
We assign the right-hand sides of both relations to product and warehouse

Now that we’ve defined our relationships, each entity has a ready-made query
to get its related entities. Now you can simply get a product’s related stock items:

def getStockItems(product: Product) =
 inTransaction {
 product.stockItems.toList
 }

or define a new query that filters the stock items further:

def getLargeStockQ(product: Product, quantity: Long) =
 from(product.stockItems) (s =>
 where(s.quantity gt quantity)
 select(s)
)

Obviously you need to be able to add stock items to products and warehouses.
You could simply set the foreign keys in each stock item by hand. Which is simple
enough, but Squeryl offers some help here. has the methods OneToMany assign

and , both of which assign the key of the “one” end to the foreign keyassociate

field of the “many” end. Assigning a stock item to a product and warehouse is
simply:

product.stockItems.assign(stockItem)
warehouse.stockItems.assign(stockItem)
transaction { Database.stockItemsTable.insert(stockItem) }

The difference between and is that alsoassign associate associate

saves the stock item; the example then becomes:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

159

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

transaction {
 product.stockItems.associate(stockItem)
 warehouse.stockItems.associate(stockItem)
}

Note that since Squeryl uses the entity’s key to determine whether it needs to
do an insert or an update, this will only work with entity classes that extend

.KeyedEntity

Instead of providing queries, Squeryl’s ‘stateful relations’ provide collections of
related entities that you can access directly. To use them, you only need to change
the call to to and similarly to :left leftStateful right rightStateful

lazy val stockItems =
 Database.productToStockItems.leftStateful(this)

Since a stateful relation gets the list of related entities during initialization, you
should always make it lazy. Otherwise you would have problems instantiating
entities outside of a transaction. This also means that you need to be in a
transaction the first time you try to access the list of related entities.

StatefulOneToMany has an method that does the same thingassociate

as its non-stateful counter-part, but it doesn’t have an method. Apart fromassign

that, there’s a method which refreshes the list from the database. Since arefresh

 is simply a wrapper for a , you can access StatefulOneToMany OneToMany

 to get the latter’s features.relation

Anorm can’t create your schema for you because it doesn’t know anything about
your model. Squeryl can create your schema for you but isn’t able to update it.
This means you’ll have to write the SQL commands to create (and later update)
your schema yourself. Play does offer some help in the form of ‘evolutions’. To
use evolutions, you write an SQL script for each revision of your database, Play
will then automatically detect that a database needs to be upgraded and will do so
after asking for your permission.

Evolutions scripts should be placed in the conf/evolutions/default

directory and named for the first revision, for the second, etc.1.sql 2.sql

Apart from statements to upgrade a schema, the scripts should also contain

STATEFUL RELATIONS

5.4 Creating the schema

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

160

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

statements to revert the changes and downgrade a schema to a previous version.
This is used when you want to revert a release. Let’s look at what our script looks
like in listing 5.36.

Listing 5.15 Schema creation

--- !Ups

CREATE TABLE products (
 id long,
 ean long,
 name varchar,
 description varchar);

CREATE TABLE warehouses (
 id long,
 name varchar);

CREATE TABLE stock_items (
 id long,
 product_id long,
 warehouse_id long,
 quantity long);

--- !Downs

DROP TABLE IF EXISTS products;

DROP TABLE IF EXISTS warehouses;

DROP TABLE IF EXISTS stock_items;

This is where the upgrade part starts
Create all the tables
This is where the downgrade part starts
Drop all the tables that the first part creates

Next time you run your application, Play will ask if you want to have your
script applied to the configured database.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

161

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Just press the red button labeled ‘Apply this script now!’ and you’re set.

Certain applications have usage patterns where the same information is retrieved
and sent to the users many times. When your application hits a certain threshold of
concurrent usage, the load caused by continuously hitting your database with
queries for the same information will degrade your application’s performance.
Now, any database worth its salt will cache results for queries it encounters often.
However, you’re still dealing with the overhead of talking to the database —
inter-process communication will always be slower than calling methods in the
same process — and there are usually more queries hitting the database, which
may push these results out of the cache. In order to mitigate these performance
issues, we can use a cache.

Like the cache in your computer’s processor, this kind of cache is a place to put
data where it is quicker to access than from where the data normally resides. This

5.5 Caching data

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

162

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

gives us several benefits, the most important of which are that heavily used data is
retrieved more quickly, and the database will perform better because it can use its
resources for other queries.

Play’s Cache API is rather straightforward: to put something in the cache you
call and to retrieve it, . It’s possible that yourCache.set() Cache.get()

application’s usage pattern is such that an insert is usually followed by several
requests for the inserted entity. In that case, your action might look like:insert

def insert(product: Product) {
 val insertedProduct = Product.insert(product)
 Cache.set("product-" + product.id, product)
}

and the corresponding action:show

def show(productId: Long) {
 Cache.get[Product]("product-" + productId) match {
 case Some(product) => Ok(product)
 case None => Ok(Product.findById(productId))
 }
}

That’s it, that’s how you use the cache.

Play has flexible support for database storage. Anorm is Play’s default data-access
library, which allows you to use any SQL that your database supports without
limits. Second, it lets you map any result set (that you can produce with a query)
onto entity classes or any kind of data-structure you can think of by leveraging
standard Scala collections APIs and parser combinators. Play makes it easy to
plug-in other libraries, which allows you to use other libraries, like Squeryl.
Squeryl allows you to write type-safe queries that are checked at compile-time
against your model.

Evolutions is an easy to use system to upgrade the schema in your development
and production databases when necessary by creating scripts with the appropriate
commands. The cache allows you to increase your application’s performance by
making it easy to store data in memory for quick retrieval of data that’s been
accessed before.

5.6 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

163

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

6
This chapter covers:

Chances are, you are building a web application that is going to used by humans.
Even though the web is increasingly a place where applications talk to each other
via APIs, and many web applications only exist as back-ends for applications on
mobile devices, it is probably safe to say that the majority of web applications
interact with humans via a web browser.

Browsers interpret HTML, and with it you can create the shiny interfaces that
users expect, using your application to present the HTML front-end to the user.
Your Play application can generate this HTML on the server, and sent to the
browser, or the HTML can be generated by JavaScript on the client. A hybrid
model is also possible, where parts of the page’s HTML are generated on the
server, and other parts are filled with HTML generated in the browser.

This chapter will focus on generating HTML on the server, in your Play
application. Note that we won’t teach how to write HTML itself, there are many
good other resources for that.

Building a user-interface with view
templates

an introduction to type-safe template engines

creating templates

the template syntax

structuring larger templates into reusable pieces

internationalization support

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

164

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

You might imagine that you could just use plain Scala to generate HTML on the
server. After all, Scala has a rich string manipulation library and built-in XML
support, which could be put to good use here. That’s not ideal, though. You would
need a lot of boilerplate code, and it would be difficult for designers that don’t
know Scala to work with.

Scala is expressive and fast, however, which is why Play includes a template
engine that is based on Scala and as expressive as Scala, but with templates that are
compact and easy to understand or adapt by people that don’t know Scala. Instead
of writing Scala code that emits HTML, you write HTML files interspersed with
Scala-like snippets. This gives a greater productivity than using plain Scala to write
templates. Figure 6.1 shows you how a template fits into Play’s request-response
cycle.

Figure 6.1 Templates in the request life cycle

Templates allow you to reuse pieces of your HTML when you need them, such
as a header and a footer section that are the same or similar on every page. You can
build a single template for this, and reuse that template on multiple pages. The
same thing also works for smaller fragments of HTML. For example, a shopping
cart application may have a template that shows a list of articles, which you can
reuse on any page that features a list of articles.

Another reason to use templates is that they help you to separate business logic
from presentation logic; separating these two concerns has several advantages.
Maintenance and refactoring are easier if business logic and presentation logic are

6.1 The why of a template engine

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

165

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

not entangled but cleanly separated. It is also easier to change the presentation of
your application without accidentally affecting business logic. This also makes it
easier for multiple people to work on various parts of the system at the same time.

In this chapter you will learn how to leverage Play’s template engine to
generate HTML and how to separate business logic from presentation logic.

Play Scala templates are HTML files with snippets of Scala code in them that are
compiled into plain Scala code before your application is started . Play templates
are type-safe, which is not common among web frameworks. In most frameworks,
templates are evaluated at runtime which means that problems in a template only
show up when that particular template is rendered. These frameworks do not help
you detect errors early, and this causes fragility in your application. In this section
we will compare a regular non-type-safe template engine with Play’s type-safe
template engine.

As an example, we will build a catalog application. The main page is a list of
all the articles in the catalog. Every article on this page has a hyperlink to a details
page for that article, where more information about that article is shown. We will
first show how this is done with the Play 1.x template engine and then compare it
with the type-safe template engine in Play 2.0.

For our catalog application, we have a controller with two actionArticles

methods: which renders a list of all articles in the database, and ,index show

which shows the details page for one article. The action gets a list of allindex

articles from the database, and renders the template index.html, where the name is
inferred from the name of the controller by convention. The listing 6.1 shows how
to do this in Play 1.x with Java. Play 1.x contains some magic that causes the
articles list to be available by that name in the template.

Listing 6.1 Listing. Play 1.x with Java controller example

public class Articles extends Controller {

 public static void index() {
 List<Article> articles = Article.findAll();
 render(articles);
 }

 public static void show(Long id) {

This action shows
the list of all
articles

This action shows

6.2 Type-safety of a template engine

6.2.1 A non type-safe template engine

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

166

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 Article article = Article.find("byId", id).first();
 render(article);
 }

}

Now that we have the controller covered, we move our attention to the
template, as shown in listing 6.2.

Listing 6.2 Play 1 Groovy template

<h1>Articles</h1>

#{list articles, as:'article'}

 ${article.name} -
 details

#{/list}

This is a Groovy template, which is the default template type in Play 1.x. Let’s
dissect this sample to see how it works. We use a Play 1 construct named a list tag
to iterate over all the articles in the list:

#{list articles, as:'article'}

For each element in the articles list, this tag assigns that element to the variable
specified by the attribute, and it prints the body of the tag, which ends at as

.#{/list}

Inside the body, we use the tag to create a list element. The line:li

${article.name}

prints the name field of the object in the article variable. In the next line, we
generate a link to the controller’s action:Articles show

details`

The indicates that we want to use reverse routing, to generate a URL that@

the details of one
article

Loop over all
articles

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

167

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

corresponds to a given action. Play provides reverse routing to decouple the routes
from the templates, so you can safely change your URL scheme, and the templates
will keep working. In this case, it will return something like

./articles/show/123

Now, while this works fine, there are a lot of things that can go wrong. Let’s
look at the code again in listing 6.3, but focus on potential problems:

Listing 6.3 Play 1.x Groovy template

<h1>Articles</h1>

#{list articles, as:'article'}

 ${article.name} -

 details

#{/list}

The articles variable that is used at is not explicitly declared, so have to
inspect the template to figure out what parameters it needs. In , the template
variable is not type-safe. Whether the object in the article variable has a name field
is only determined at runtime and it will only fail at runtime if it doesn’t. In , the
Play 1.x router will generate a route, whether actually accepts a parameter ofshow

the same type as article.id or not. Again, if you make a mistake, it will only break
at runtime.

In the next section we will look at the same example, but written for a type-safe
template engine.

Now let’s rebuild our catalog application in Play 2.0 with Scala templates. The
new template is shown in listing 6.4.

Listing 6.4 Play 2.0 Scala template

@(articles: Seq[models.Article])
<h1>Articles</h1>

@for(article <- articles) {

 @article.name -

articles not
explicitly declared
article not
type-safe
routing not
type-safe

parameters
explicitly defined

type-safe variables

6.2.2 A type-safe template engine

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

168

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@article.name
http://www.manning-sandbox.com/forum.jspa?forumID=810

 details

}

In this example, the articles parameter is explicitly declared at . You can
easily determine the parameters that this template takes and their types, and so can
your IDE. The article at is type-safe, so if name is not a valid field of Article

, this won’t compile. At , the reverse routing will not compile if the actionshow

does not take a parameter of the same type as article.id.
With Scala templates, you have to define the template parameters on the first

line. Here, we define that this template uses a single parameter, named articles and
of type , which is a sequence of articles. The template compilerSeq[Article]

compiles this template into a function that takes the same parameters, to beindex

used in a controller, as shown in listing 6.5

Listing 6.5 Play 2.0 with Scala controller example

object Articles extends Controller {

 def index = Action {
 val articles = Article.findAll()
 Ok(views.html.articles.index(articles))
 }

 def show(id : Long) = Action {
 Article.findById(id) match {
 case None => NotFound
 case Some(article) => Ok(views.html.articles.show(article))
 }
 }

}

The most important difference with the Play 1.x example is that in this case, the
signature of the method to render the template is def index(articles:

 Unlike the Play 1.x example, weSeq[models.Article]) : Html 1

explicitly declare this template’s single parameter named articles and that the
template returns an object of type . This allows an IDE to assist you whenHtml

you are using this template.

type-safe reverse
routing

This action lists all
articles

This action shows
a single article

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

169

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href="@controllers.routes.Articles.show
http://www.manning-sandbox.com/forum.jspa?forumID=810

Footnote 1 Actually, the method name is apply, but it is defined in an object index, so you can call it usingm
index(articles).

Now, let’s see how the different mistakes you can make will be handled by Play
2.0. The first potential issue we saw in Play 1.x, changing the name of the variable
in the controller, is not a problem at all in Play 2.0. As rendering a template is a
regular method call, the template itself defines the formal parameter name. The
first actual parameter you give will be known as articles in the template. This
means that you can safely refactor your controller code without breaking templates,
because they don’t depend on the names of variables in the controller. This cleanly
decouples the template from the action method.

If you try to use a list with a different type in the template, you will
immediately get an error from Play, as in figure 6.2.

Figure 6.2 Type error

You don’t have to visit this specific page to see this error. This error will be
shown regardless of the URL you visit, since your application will not start when it
has encountered a compilation error. This is extremely useful for detecting errors
in unexpected places.

In the Play 1.x example, changing the parameter that the action methodshow

accepts from a id to a barcode did not cause the template to break.Long String

The reverse routing would still generate a link, but it would just not work. In Play
2.0 with Scala templates, if you change the parameters of the action in theshow

same way, your application won’t start and Play will show an error indicating that
the type of the parameter that you are using in reverse routing does not match the
type that the action method accepts.

Now that we have written our example template both for a type-safe and a non
type-safe template engine, we can compare them. Tables 6.1 and 6.2 compares
type-safe template engines with non-type-safe template engines.

6.2.3 Type-safe and non type-safe compared

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

170

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

A type-safe template engine will help you build a more robust application. Both
your IDE and Play itself will warn you when a refactoring causes type errors, even
before you render the template. This eases maintenance and helps you feel secure
that you aren’t accidentally breaking things when you refactor your code. The
templates’ explicit interface conveys the template designer’s intentions and makes
them easier to use, both by humans and IDEs.

In this section we will quickly go over the essential syntax and basic structures in
templates. After this section you will know enough about the Scala templates to
start building your views with them.

Table 6.1 Non-type-safe template enginesm

Advantages Disadvantages

Quicker to write the template Fragile
Feedback at run time
Harder to figure out parameters
Not the fastest
Harder for IDEs

Table 6.2 Type-safe template enginesm

Advantages Disadvantages

Robust
Feedback at compile time
Easier to use a template
Fast
Better for IDEs

More typing required

6.3 Template basics and common structures

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

171

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

If you’ve read the previous section, you’ve probably noticed that the character is@

special. In Scala templates, the character marks the start of a Scala expression.@

Unlike many other template languages, there is no explicit marker that indicates
the end of a Scala expression. Instead, the template compiler infers this from what
follows the . It parses a single Scala expression, and then reverts to normal mode.@

This makes it extremely concise to write simple expressions:

Hello @name!
Your age is @user.age.

On the first line of example, is a Scala expression. On the second line, name

 is a Scala expression. Now suppose that we want to make a somewhatuser.age

larger expression and calculate the user’s age next year:

Next year, your age will be @user.age + 1

This doesn’t work. As in the previous example, only is processeduser.age

as a Scala code, so the output would be something like:

Next year, your age will be 27 + 1

For this to work as intended, you’ll have to add brackets around the Scala
expression:

Next year, your age will be @(user.age + 1)

Sometimes, you’ll even want to use multiple statements in an expression. For
that, you will have to use curly braces:

Next year, your age will be
@{val ageNextYear = user.age + 1; ageNextYear}

Inside these multi-statement blocks, you can use any Scala code you want.
Sometimes you need to output a literal . In that case, you can use another as@ @

6.3.1 @, the special character

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

172

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@user.age
mailto:@user.age
http://www.manning-sandbox.com/forum.jspa?forumID=810

an escape character:

username@@example.com

You can add comments to your views by wrapping them between and :@* *@

@* This won’t be output *@

The template compiler does not output these comments in the resulting
compiled template function, so comments have no runtime impact at all.

In section 6.2.2 we were working on an example template to display a list of
articles. We will continue with that example here. This is how it looked until now:

@(articles: Seq[models.Article])
<h1>Articles</h1>

@for(article <- articles) {

 @article.name -
 details

}

Now suppose that we want to display the name of each article in capitals; how
should we proceed? The name property of every article is just a Scala string, and as
a Scala is in fact a Java , we can use Java’s String String toUpperCase

method:
@article.name.toUpperCase

Easy as it is, it’s unlikely that we actually want to perform this transformation.
It is more generally useful to capitalize each word of the name, so that the string

 becomes . A method to do thatRegular steel paper clips Regular Steel Paper Clips
is not available on a Scala itself, but it is available on the String

 class, and an implicitscala.collection.immutable.StringOps

conversion between and is always imported by Scala. SoString StringOps

you use this to capitalize the name of each article:
@article.name.capitalize

6.3.2 Expressions

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

173

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:username@@example.com
mailto:@article.name
mailto:href="@controllers.routes.Articles.show
mailto:@article.name.toUpperCase
mailto:@article.name.capitalize
http://www.manning-sandbox.com/forum.jspa?forumID=810

Besides , offers many more methods that are verycapitalize StringOps

useful when writing templates.
Play also imports various things into scope of your templates. The following are

automatically imported by Play:

models._
controllers._
play.api.i18n._
play.api.mvc._
play.api.data._
views.%format%._

The models._ and controllers._ imports make sure that your models and
controllers are available in your templates. Play.api.i18n_ contains tools for
internationalization, which we will come to later. Play.api.mvc._ makes MVC
components available. Play.api.data_ contains tools for dealing with forms and
validation. Finally, the substring in views.%format%._ is replaced by%format%

the template format that you are using. When you’re writing HTML templates with
a file name that ends in .scala.html , the format is . This package has somehtml

tools that are specific for the template format. In the case of , it containshtml

helpers to generate form elements.

Collections are at the heart of many web applications: you’ll often find yourself
displaying collections of users, articles, products, categories or tags on your web
page. Just like in Scala, there are various ways to handle collections, which we will
show in this section. We will also show some other useful constructs to handle
collections in your templates.

We have already mentioned that Scala has a powerful collections library that we
can use in templates. For example, you can use to show the elements of amap

collection:

@articles.map { article =>
 @article.name
}

6.3.3 Displaying collections

COLLECTION BASICS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

174

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@articles.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

You can also use a , but with a slight difference from plainfor comprehension
Scala. The template compiler automatically adds the keyword, since that isyield

virtually always what you want in a template. Without the keyword, the foryield

comprehension would not produce any output, which doesn’t make much sense in
a template. So, in your templates, you have to omit the keyword and youyield

can use:

@for(article <- articles) {
 @article.name
}

Whether you should use or combinations of , for comprehensions filter map

and is a matter of personal preference.flatMap

If you are aware of Scala’s XML literals, you might be inclined to think that
they are what is being used here. It seems reasonable that the entire thing starting
with and ending in the closing curly brace at the end of the example isfor

processed as a Scala expression. That might have worked for this specific example,
but what about this one:

@for(article <- articles) {
 Article name: @article.name
}

Surely, is not a valid Scala expression,Article name: @article.name

but this will work fine in a template! How can that be? The reason is that this is not
the Scala XML literal syntax that was used in the earlier example. Instead, the
template parser first parses and then a .for(article <- articles) block

A is a template parser concept: it consists of block parameters and thenblock

several objects, where means everything that is allowed in amixed mixed

template, such as strings, template expressions and comments.
What this boils down to is that the body of a expression is a templatefor

itself. This is also the case for and expressions, and even for methodmatch case

calls where you use curly braces around a parameter list! This makes the boundary
between Scala code and template code very natural.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

175

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@article.name
mailto:@article.name
http://www.manning-sandbox.com/forum.jspa?forumID=810

TIP Check the source code
If you are interested in the details of the template engine, you can
take a look at the file ScalaTemplates.scala in the Play framework
source. This is where the template syntax is defined with parser
combinators.

Suppose that we want to list the best sellers in our application and for each one
indicate their rank, like this:

If you are familiar with Play 1.x, you may remember that the tag that#{list}

you use in Play 1.x to iterate over the elements of a list provides you with _index,
_isFirst, _isLast and _parity values that you can use in the body of the tag to
determine which element you are currently processing, whether it is the first or the
last one, and whether its index is even or odd. No such thing is provided in Play
2.0; we will use Scala methods to get the same functionality.

The first thing we need is to get an index value in the body of the loop. If we
have this, it is easy to determine if we’re processing the first or the last element,
and whether it is odd or even. Someone unfamiliar with Scala might try something
like the following example as an approach:

@{var index = 0}
@articles.map { article =>
 @{index = index + 1}
 @index: @article.name
}

Ignoring whether this is good style, it looks like it could work. That is not the
case however, because the template parser encloses all template expressions in
curly braces when outputting the resulting Scala file. This means that the index

ADDING THE INDEX OF THE ELEMENT

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

176

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@articles.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

variable that is defined in is only in scope in this@{var index = 0}

expression. This example will give an error on the line not found: value index
.@{index = i + 1}

Apart from this example not working, it is not considered good form to use
variables instead of values, or to use functions with side effects without a good
reason. In this case, the parameter to has a side effect, namely changing themap

value of external variable index.
The proper way to do this is to use Scala’s method. ThiszipWithIndex

method transforms a list into a new list where each element and its index in the list
are combined into a tuple. For example the code List("apple", "banana",

 would result in "pear").zipWithIndex List((apple,0),

. We can use this in our template:(banana,1), (pear,2))

@for((article, index) <- articles.zipWithIndex) {
 Best seller number @(index + 1): @article.name
}

Now that we have the index available, it is straightforward to derive the
remaining values:

@for((article, index) <- articles.zipWithIndex) {
 <li class="@if(index == 0){first}
 @if(index == articles.length - 1){last}">
 Best seller number @(index + 1): @article.name
}

Now suppose that we want to emphasize the first element in our list. After all, it is
the best seller in our web shop, so it deserves some extra attention. That would
change the code above to:

@for((article, index) <- articles.zipWithIndex) {
 <li class="@if(index == 0){first}
 @if(index == articles.length - 1){last}">
 @if(index == 0){}
 Best seller number @(index + 1): @article.name

FINDING THE FIRST AND LAST ELEMENT

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

177

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 @if(index == 0){}

}

This accomplishes our goal, but we have created a fair amount of code
duplication. The check is used three times. We can improve on thisindex == 0

by creating a value for it in the for comprehension:

@for((article, index) <- articles.zipWithIndex;
 rank = index + 1;
 first = index == 0;
 last = index == articles.length - 1) {
 <li class="@if(first){first} @if(last){last}">
 @if(first){}
 Best seller number @rank: @article.name
 @if(first){}

}

Now we have cleanly extracted the computations from the HTML and labeled
them. This simplifies the remaining Scala expressions in the HTML.

TIP Use CSS Selectors
Depending on the browsers that you need to support, it is often
possible to use CSS selectors like and :first-child

 to accomplish these and other selections from a:last-child

style sheet. This simplifies both your template and the HTML and
better separates the mark-up from the styling of your document.

Iterating over other iterables, like s, works similarly:Map

@for((articleCode, article) <- articlesMap) {
 Article code @articleCode: @article.name
}

The articlesMap is accessed as a sequence of key-value tuples.Map

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

178

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

An application developer must always keep security in mind, and when dealing
with templates, avoiding cross-site scripting vulnerabilities is especially relevant.
In this section we'll briefly explain what they are, and how Play helps you to avoid
them.

Suppose that you allow a visitor of your web application to post reviews on the
products that you sell, and that the comments are persisted in a database and then
shown on the product page. Now, if your application would display the comments
as-is, a visitor could inject HTML code into your web site.

HTML injection could lead to minor annoyances, like broken markup and
invalid HTML documents, but much more serious problems arise when a malicious
user inserts scripts in your web page. These scripts could, for example, steal other
visitors’ cookies when they use your application, and send these cookies to a server
under the attacker’s control. These problems are known as cross-site scripting
vulnerabilities, often abbreviated as XSS. Figure 6.4 shows an example of an XSS
attack.

6.3.4 Security and escaping

CROSS-SITE SCRIPTING VULNERABILITIES

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

179

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 6.3 Cross Site Scripting attack

It is vital that you prevent untrusted users from adding unescaped HTML to
your pages. Luckily, Play’s template engine prevents XSS vulnerabilities by
default.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

180

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

To Play’s template engine, not all values are equal. Suppose that we have Scala
 . If we want to output this string in an HTMLString banana

document, we have to decide whether this is a snippet of HTML, or if it is a regular
string containing text. If this is a snippet of HTML, it should be written to the
output as . If it is not a snippet of HTML, but a regular string ofbanana

text, then we should escape the and characters, since they are special< >

characters in HTML. So in that case, we must output
, because is the HTML entity for andbanana < <

 is the one for . After a browser has rendered that, it again looks like > >

 for the person viewing it.banana

If you or Play gets confused about whether a contains HTML orString

regular text, a potential XSS vulnerability is born. Luckily, Play deals with this in a
sane and simple way.

Everything that you write literally in a template, is considered HTML by Play,
and output unescaped. This HTML is always written by the template author, so it is
considered safe. Play keeps track of this and outputs the literal parts of the
templates , meaning that they are not escaped. All Scala expressions areraw
escaped. So suppose that we have the following template:

@(review: Review)

<h1>Review</h1>
<p>By: @review.author</p>
<p>@review.content</p>

And we render it as follows:

val review = Review("John Doe", "This article is awesome!")
Ok(views.html.basicconstructs.escaping(review))

Then the output will be:

ESCAPING

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

181

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 6.4 shows how the template compiler escapes the various parts of the
template:

Figure 6.4 Escaping in templates

So, even if you don’t think about escaping, you will be fine. The template
engine lets the HTML that you write be HTML, and everything else is escaped.

Play’s behaviour of automatically escaping does pose a problem, however, for the
rare occasions that you are positive that you do want to output a value as HTML,
without escaping. This can happen for example when you have trusted HTML in a
database, or if you use a piece of Scala code outside a template to generate a
complex HTML structure. Let’s imagine that for some of the products in our web
shop, we want to embed a promotional video. We could do this by storing an
embed code in our database. A typical YouTube embed code looks like:

<iframe width="560" height="315"
 src="http://www.youtube.com/embed/someid" frameborder="0"
 allowfullscreen></iframe>

If we have a embeddedVideo of type on our Option[String] Product

class, we could do something like this in the template:

OUTPUTTING RAW HTML

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

182

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.youtube.com/embed/someid
http://www.manning-sandbox.com/forum.jspa?forumID=810

@article.embeddedVideo.map { embedCode =>
 <h3>Product video</h3>
 @embedCode
}

As you should expect by now, this would give the output as in figure 6.5:

Figure 6.5 Escaped output

To fix this, we must indicate to the template engine that embedCode is not just
regular text, but that it contains HTML. For that, we wrap it in an instance:Html

@article.embeddedVideo.map { embedCode =>
 <h3>Product video</h3>
 @Html(embedCode)
}

Now the video embed is properly shown. You might recall from earlier in this
chapter that is also the return type of a template itself. That is why in aHtml

template you can include other templates without having to explicitly mark that
their content should not be escaped.

Of course, you can also choose to keep the information about the actual content
type in the object itself. So instead of having an embeddedVideo of type

, we could have one of type . In that case,Option[String] Option[Html]

we can just output it as in our template. In practice this is not@embeddedVideo

often useful; it is harder to work with in your Scala code, and not as easily mapped
to a database if you are persisting it, for example.

As we have shown before, you can use plain Scala if you create a block with @()

or . By default, the output is escaped. If you want to prevent this, wrap the@{}

result in an .Html

There is another way to construct HTML for your templates that is sometimes
useful: using Scala’s XML library. Any is also renderedscala.xml.NodeSeq

6.3.5 Using plain Scala

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

183

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@article.embeddedVideo.map
mailto:@article.embeddedVideo.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

unescaped. So you can use the following code:

@{
 hello
}

Here, the will not be escaped.hello

Sometimes you need to evaluate an expensive or just really long expression, the
result of which you want to use multiple times in your template:

<h3>This article has been reviewed @(article.countReviews()) times</h3>
<p>@(article.countPositiveReviews()) out of these
 @(article.countReviews()) reviews were positive!</p>

If you want to avoid having to call twice, youarticle.countReviews()

can make a local definition of it, with :@defining

@defining(article.countReview()) { total =>
 <h3>This article has been reviewed @total times</h3>
 <p>@(article.countPositiveReviews()) out of these
 @total reviews were positive!</p>
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

184

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

SIDEBAR How it works
Play’s template engine uses Scala’s parser combinator library to parse
each template and compile it into a regular Scala source file with a
Scala object inside that represents the template. The Scala source file
is stored in the Play project’s managed_src directory. Like all Scala
source files, the source file is compiled to bytecode by Play. This makes
the template object available for the Scala code in your application. This
object has an method with the parameter list copied from theapply

parameter declaration from the template. As Scala allows you to call an
object that has an method directly, omitting the methodapply apply

name, you can call this template object as if it were a method.
All template objects are in a sub-package of the views package.
Templates are grouped into packages first by their extension, and then
by the parts of their file name. For example a template file
views/main.scala.html gets compiled into the object views.html.main. A
template views/robots.scala.txt gets compiled into an object

 and a templateviews.txt.robots

views/users/profilepage/avatar.scala.html gets compiled into the object
.views.html.users.profilepage.avatar

Just like your regular code, your pages are compositions of smaller pieces that are
in turn often composed of even smaller pieces. Many of these pieces are reusable
on other pages; some are used on all of your pages while some are specific to a
particular page. There is nothing special about these pieces, they are just templates
by themselves. In this section we will show you how to construct pages using
reusable smaller templates.

So far, we’ve only shown you snippets of HTML, and never a full page. Let’s add
the remaining code to create a proper HTML document for the catalog page, that
lists the products that we have in our catalog, like in figure 6.6.

6.4 Structuring pages: template composition

6.4.1 Includes

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

185

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 6.6 Our web shop catalog

We could create an action in our controller:catalog Products

def catalog() = Action {
 val products = ProductDAO.list
 Ok(views.html.shop.catalog(products))
}

We can also create a template file in app/views/products/catalog.scala.html like
in listing 6.6:

Listing 6.6 Full HTML for the catalog page

@(products: Seq[Product])
<!DOCTYPE html>
<html>
 <head>
 <title>paperclips.example.com</title>
 <link href="@routes.Assets.at("stylesheets/main.css")"
 rel="stylesheet">
 </head>
 <body>
 <div id="header">
 <h1>Product catalog</h1>
 </div>
 <div id="navigation">

 Home
 Products
 Contact

 </div>
 <div id="content">
 <h2>Products</h2>
 <ul class="products">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

186

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href="@routes.Assets.at
mailto:href="@routes.Application.home
mailto:href="@routes.Shop.catalog
mailto:href="@routes.Application.contact
http://www.manning-sandbox.com/forum.jspa?forumID=810

 @for(product <- products) {

 <h3>@product.name</h3>
 <p class="description">@product.description</p>

 }

 </div>
 <footer>
 <p>Copyright ©2012 paperclips.example.com</p>
 </footer>
 </body>
</html>

Now we have a proper HTML document that lists the products in our catalog,
but we did add a lot of mark-up that isn’t the responsibility of the catalog

action. The action does not need to know what the navigation menucatalog

looks. Modularity has suffered here, and reusability as well.
In general, the action method that is invoked for the request is only responsible

for part of the content of the resulting page. On many web sites, the page header,
the footer and the navigation are shared between pages, as shown in the wire-frame
in figure 6.7:

Figure 6.7 Composition of a web page

Here, the boxes Header, Navigation and Footer will hardly change, if at all,
between pages on this web site. On the other hand, the content box in the middle
will be different for every page.

In this section and the next, we will show you some techniques that you can use
to break up your templates into more maintainable, reusable pieces.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

187

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The HTML fragment that renders the navigation area lends itself well to being
extracted from the main template, and into a separate template file. From the main
template then, we include this navigation template. We start with creating a file
views/navigation.scala.html

@()
<div id="navigation">

 Home
 Catalog
 Contact

</div>

Now we can simply include this template from the main template:
views/navigation.scala.html, and include it with . Since it@navigation()

lives in the same package views.html as the template, we can use just themain

name of the template and omit the qualifier:views.html

Listing 6.7 Catalog page with navigation extracted

@(products: Seq[Product])
<!DOCTYPE html>
<html>
 <head>
 <title>paperclips.example.com</title>
 <link href="@routes.Assets.at("stylesheets/main.css")"
 rel="stylesheet">
 </head>
 <body>
 <div id="header">
 <h1>Products</h1>
 </div>
 @navigation()
 <div id="content">
 <h2>Products</h2>
 <ul class="products">
 @for(product <- products) {

 <h3>@product.name</h3>
 <p class="description">@product.description</p>

 }

 </div>
 <footer>
 <p>Copyright ©2012 paperclips.example.com</p>
 </footer>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

188

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href="@routes.Application.home
mailto:href="@routes.Shop.catalog
mailto:href="@routes.Application.contact
mailto:href="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

 </body>
</html>

This makes our template better, because the template now no longercatalog

needs to know how to render the navigation. This pattern of extracting parts of a
template into a separate template that is reusable is called , where theincludes
extracted template is called the .include

The include that we used in the previous section made our template better, but it is
not very good yet. As it stands, the catalog page still renders a whole lot of HTML
that it should not need to, such as the HTML DOCTYPE declaration, the ,head

the header and the footer, which are on every page.
In fact, in code sample 6.37, only the part inside the <div id="content">

is the responsibility of the action:catalog

<h2>Products</h2>
<ul class="products">
@for(product <- products) {

 <h3>@product.name</h3>
 <p class="description">@product.description</p>

}

Everything else should be factored out of the template for the action.catalog

We could of course use the technique, but it is not ideal here since weincludes
need to extract some HTML that is above the content, and some HTML that is
below the content. If we use , we would need extract two new templates.includes
One would hold all HTML before the content, the other one everything after the
content. This is not good, because that HTML belongs together. We want to avoid
having an HTML start tag in one template and the corresponding end tag in another
template. That would break coherence in our template.

Luckily, using the compositional power of Scala, Play allows us to extract all
this code into a single, coherent template. From the catalog.scala.html template, we
extract all HTML that should not be the responsibility of the template,catalog

like in figure 6.8:

Listing 6.8 Extracted page layout

6.4.2 Layouts

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

189

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

<!DOCTYPE html>
<html>
 <head>
 <title>paperclips.example.com</title>
 <link href="@routes.Assets.at("stylesheets/main.css")"
 rel="stylesheet">
 </head>
 <body>
 <div id="header">
 <h1>Products</h1>
 </div>
 @navigation()
 <div id="content">
 // Content here
 </div>
 <footer>
 <p>Copyright ©2012 paperclips.example.com</p>
 </footer>
 </body>
</html>

What we extracted is a fragment of HTML that just needs the body of the <div

 to become a complete page. If that sounds exactly like aid="content">

template, it is because it is exactly like a regular template. What we do is make a
new template and store it in app/views/main.scala.html, with a single parameter
named of type , like in figure 6.9:content Html

Listing 6.9 The extracted main template

@(content: Html)
<!DOCTYPE html>
<html>
 <head>
 <title>paperclips.example.com</title>
 <link href="@routes.Assets.at("stylesheets/main.css")"
 rel="stylesheet">
 </head>
 <body>
 <div id="header">
 <h1>Products</h1>
 </div>
 @navigation
 <div id="content">
 @content
 </div>
 <footer>
 <p>Copyright ©2012 paperclips.example.com</p>
 </footer>
 </body>
</html>

Page content must
be inserted here

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

190

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href="@routes.Assets.at
mailto:href="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

Now we have a new template that we can call like
. At first, this may not seem very usable. Howviews.html.main(content)

would we call this from the template? We don’t have a content valuecatalog

available that we can just pass in. On the contrary, we intend to create the content
in that template. We can solve this problem use with a Scala trick: in Scala you can
also use curly braces for a parameter block, so this is also valid:

. With this, we can now return to theviews.html.main { content }

template for the action and update it to look like listing 6.10:catalog

Listing 6.10 Refactored catalog template

@(products: Seq[Product])
@main {
 <h2>Products</h2>
 <ul class="products">
 @for(product <- products) {

 <h3>@product.name</h3>
 <p class="description">@product.description</p>

 }

}

We wrapped all the HTML that this template constructed in a call to the main

template! Now, the single thing that this template does, is call the main template,
giving the proper content parameter. This is called the pattern in Play.layout

We can add more than just the content parameter to the main.scala.html
template, but we will add a new parameter list for the next parameter because you
can only use curly braces around a parameter list with a single parameter. Suppose
that we also want to make the title of the page a parameter. Then we could update
the first part of the main template from:

@(content: Html)
<html>
 <head>
 <title>Paper-clip web shop</title>

to:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

191

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

@(title: String)(content: Html)
<html>
 <head>
 <title>@title</title>

Now we can call this template from another template with:

@main("Products") {
 // content here
}

It is useful to give the title parameter of the main.scala.html a default value so
that we can optionally skip it when we call the method:

@(title="paperclips.example.com")(content: Html)

If we want to call this template and are happy with the default title, we can
simply call it using:

@main() {
 // Content here
}

Note that we still need the parentheses for the first parameter list; we can’t skip
it altogether.

If you have been using Play 1.x, you may wonder what happened to . Tags aretags
a way to write and use reusable components for view templates and they are a
cornerstone of Play 1.x’s Groovy template engine. In Play 2.0, tags are gone. Now
that templates are regular Scala functions, there is no need for anything special
anymore to allow reusing HTML, you can just write Scala functions that return

, or templates.Html

Let’s see an example, using our catalog page’s products list. It’s likely that we
will have many more pages that show products, so we can reuse the code that
renders the list of products if we extract it from the template. In Play 1,catalog

you would write a for this, but in Play 2, we just create another template. Let’stag
create a file views/products/tags/productlist.scala.html, and put the product list in
it:

6.4.3 Tags

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

192

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Listing 6.11 Extracted product list

@(products: Seq[Product])
<ul class="products">
@for(product <- products) {

 <h3>@product.name</h3>
 <p class="description">@product.description</p>

}

We can call it from our catalog.scala.html template using:

@(products: Seq[Product])
@main {
 <h2>Products</h2>
 @views.html.products.tags.productlist(products)
}

NOTE No special package name needed
We have put our template in a tags package. This is just for our
convenience, and has no special meaning. You can organize your
templates any way you like.

As you can see, with a little effort we can break large templates into more
maintainable, and reusable parts.

In this section we have assumed that the page header and footer are static; that
they are the same on all pages. In practice, there are often some dynamic elements
in these static parts of the site as well. In the next chapter we will see how you can
accomplish this.

We will continue with our web shop example. This time we assume that we want
to maintain a shopping cart on the website and in the top right corner of every
page, we want to show the number of items the visitor has in his shopping cart, like
in figure 6.8.

6.5 Reducing repetition with implicit parameters

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

193

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@views.html.products.tags.productlist
http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 6.8 Web shop catalog with cart item count in top right corner

Because we want to show this cart status on every page, we add it to the
main.scala.html template, as in listing 6.12.

Listing 6.12 Main template with cart summary

@(cart: Cart)(content: Html)
<html>
 <head>
 <title>Paper-clip web shop</title>
 <link href="@routes.Assets.at("stylesheets/main.css")"
 rel="stylesheet">
 </head>
 <body>
 <div id="header">
 <h1>Paper-clip web shop</h1>
 <div id="cartSummary">
 // TODO: Syntax of next line in Play 2.1
 <p>@defining(cart.productCount) { count => @count match {
 case 0 => {
 Your shopping cart is empty.
 }

 case n => {
 You have @n items in your shopping cart.
 }
 }}</p>
 </div>
 </div>
 @navigation()
 <div id="content">
 @content
 </div>
 <div id="footer">
 <p>Copyright Paper-Clip Company Inc.</p>
 </div>
 </body>
</html>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

194

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

This template now takes a parameter, which has a method Cart

. We use pattern matching to determine what we want to display,productCount

depending on the number of items in the cart.
Now that the template needs a parameter, we will have to pass onemain Cart

to it, which means adapting our template. But since this template alsocatalog

does not have a reference to object, it will need to take one as a parameter asCart

well:

@(products: Seq[Product], cart: Cart)

@main(cart) {

 <h2>Catalog</h2>
 @views.html.products.tags.productlist(products)

}

And we’ll have to pass a from the action:Cart

def catalog() = Action { request =>
 val products = ProductDAO.list
 Ok(views.html.shop.catalog(products, cart(request)))
}

def cart(request: Request) = {
 // Get cart from session
}

Here we assume that we have a method that will retrieve a cart Cart

instance for us from a .Request

Of course, since the template now needs a parameter, we’ll havemain Cart

to changing every action method in our web application to pass this parameter.
This gets tedious very quickly. Luckily, we can overcome this by using Scala’s
implicit parameters.

We can use an implicit parameter to change the method signature of our
 template to:catalog

@(products: Seq[Product])(implicit cart: Cart)

We have moved the parameter to a second parameter list and made itCart

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

195

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@views.html.products.tags.productlist
http://www.manning-sandbox.com/forum.jspa?forumID=810

implicit, so we can apply this template and omit the second parameter list if an
implicit is available on the calling side. Now we can change our controller toCart

provide just that:

def catalog() = Action { implicit request =>
 val products = ProductDAO.list
 Ok(views.html.shop.catalog(products))
 }

 implicit def cart(implicit request: Request) = {
 // Get cart from session
 }

Now we have declared the method as implicit. In addition, we havecart

declared the parameter of both our action and the method asRequest cart

implicit. If we now call the template and omitviews.html.shop.catalog

the parameter, the Scala compiler will look for an implicit in scope. ItCart Cart

will find the method, which requires a parameter that is alsocart Request

declared implicit, but that is also available.
We can make our newly created method reusable, by moving it into acart

trait:

trait WithCart {
 implicit def getCart() = {
 // Get cart from session
 }
}

We can now mix this trait into every controller where we need access to our
implicit .Cart

TIP Implicit conversions in Controllers
If you have an implicit in scope in your controller, youRequest

also have an implicit , and in scope, sinceSession Flash Lang

the trait defines implicit conversions for these types.Controller

It is often necessary to pass multiple values from your controller into your main
template. Even with implicit parameters it would be a hassle to have to add another
one each time, since you would still have to add the implicit parameter to all of the

Request parameter
marked as implicit
Calling template
without second
parameter list
Implicit cart
method with
implicit Request
parameter

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

196

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

template definitions. One straightforward solution to that is to create a single class
that contains all the objects that you need in your template, and pass an instance of
that. If you want to add a value to it, you only need to adapt the template where
you use it, and the method that constructs it.

It's quite common to pass the to templates, like we'll see in sectionRequest

6.7.2. Play provides a class, which wraps a andWrappedRequest Request

implements the interface itself as well, so it is usable as if it were a regular
. However, by extending , you can add other fields:Request WrappedRequest

case class UserDataRequest[A](val user: User, val cart: Cart,
 request: Request[A]) extends WrappedRequest(request)

If you pass an instance of this to your template, you haveUserDataRequest

a reference to the , and .Request User Cart

Browsers process HTML with CSS and JavaScript. So your web application must
output these formats for browsers to understand them. These languages are not
always the choice of developers, however. Many developers prefer technologies
like LESS and CoffeeScript over CSS and JavaScript. LESS is a style sheet
language that is transformed to CSS by a LESS interpreter or compiler, while
CoffeeScript is a scripting language that is transformed into JavaScript by a
CoffeeScript compiler.

Play integrates LESS and CoffeeScript compilers. While we won’t teach you
these technologies, we will show you how you can use them in a Play application.

LESS gives you many advantages over plain CSS. LESS supports variables,
mixins, nesting and some other constructs that make a web developer’s life easier.
Consider the following example of plain CSS, where we set the background color
of a header and a footer element to a green color. Additionally, we use a bold font
for link elements in the footer:

.header {
 background-color: #0b5c20;
}

.footer {
 background-color: #0b5c20;

6.6 Using LESS and CoffeeScript: the asset pipeline

6.6.1 LESS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

197

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

}

.footer a {
 font-weight: bold;
}

This example shows some of the weaknesses of CSS. We have to repeat the
color code and we have to repeat the selector if we want to select an .footer a

element inside a footer. With LESS, you can write the following instead:

@green: #0b5c20;

.header {
 background-color: @green;
}

.footer {
 background-color: @green;

 a {
 font-weight: bold;
 }

}

We have declared a variable to hold the color using a descriptive name, so the
value can now be changed in one place. We have also used nesting for the

 selector by moving the selector inside the selector. This.footer a a .footer

makes the code easier to read and maintain.

CoffeeScript is a language that compiles to JavaScript, consisting mainly of
syntactic improvements over JavaScript. Instead of curly braces, CoffeeScript uses
indentation and has a very short function literal notation. Consider the following
example in JavaScript:

math = {
 root: Math.sqrt,
 square: square,
 cube: function(x) {
 return x * square(x);
 }
};

In CoffeeScript, you would write this as:

6.6.2 CoffeeScript

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

198

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

math =
 root: Math.sqrt
 square: square
 cube: (x) -> x * square x

No curly braces are used around the object, and the function definition is more
concise.

There are various ways to use CoffeeScript or LESS. For both languages,
command-line tools are available that transform files to their regular JavaScript or
CSS equivalents. For both there are also JavaScript interpreters that allow you to
use these files in a browser directly.

Play supports automatic build-time CoffeeScript and LESS compilation, and
shows compilation errors in the familiar Play error page. This highlights the
offending lines of code when you have syntactical errors in your CoffeeScript or
LESS code.

Using LESS or CoffeeScript is trivial. You simply place the files in the
app/assets directory, or a subdirectory of that. Give CoffeeScript files a .coffee
extension and LESS files a .less extension, and Play will automatically compile
them to JavaScript and CSS files, and make them available in the public folder.

For example, if you place a CoffeeScript file in
app/assets/javascript/application.coffee, you can reference it from a template using:

<script src="@routes.Assets.at("javascripts/application.js")"></script>

You can also use an automatically-generated minified version of your
JavaScript file by changing application.js to application.min.js.

NOTE Compiled file location
While you can reference the compiled files as if they reside in the
public directory, Play actually keeps them in the
resources_managed directory in the target directory. The assets
controller will look there too when it receives a request for a file.

Apart from LESS and CoffeeScript, Play has also support for the Google
Closure Compiler. This is a JavaScript compiler that compiles JavaScript to better,

6.6.3 The asset pipeline

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

199

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:src="@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810

faster JavaScript. Any file that ends in .js is automatically compiled by the Closure
Compiler.

There are occasions when you don’t want a file to be automatically compiled.
Suppose that you have a LESS file a.less that defines a variable @x and includes
b.less, that references the variable. On its own, b.less will not compile, since @x is
undefined. Even though you never intended to call b.less directly, Play tries to
compile it and throws an error. To avoid this, rename b.less to _b.less. Any .less,
.coffee or .js file that starts with an underscore is not compiled.

TIP Configure compilation includes and excludes
Sometimes it is not convenient to only exclude files that start with
an underscore. For example when you use an existing LESS library
that is not designed that way. Luckily, it is possible to configure the
behaviour of Play regarding which files it should compile. See the
Play documentation for more details.

Now that we have shown you how to use the asset pipeline, we will continue in
the next section with adapting your application for multiple languages.

Users of your application may come from different countries and use different
languages, as well as different rules for properly formatting numbers, dates and
times. The combination of language and formatting rules is called a locale. The
adaptation of a program to different locales is called internationalisation and
localisation. Because these words are so insanely long and often used together
which makes it even worse, they are often abbreviated as ‘I18N’ and ‘L10N’
respectively, where the number between the first and last letter is the number of
replaced letters. In this section, we’ll demonstrate the tools Play provides to help
you with internationalization.

SIDEBAR Internationalization vs localization
Although it’s easy to mix them up, internationalization and localization
are two different things. Internationalization is a to removerefactoring
locale-specific code from your application. Localization is making a
locale-specific version of an application. In an internationalized web
application, this means having one or more selectable locale-specific
versions. In practice, the two steps go together: you usually both
internationalize and localize one part of an application at a time.

6.7 Internationalization

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

200

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

In this section we only discuss internationalizing the static parts of your
application — things that you would normally hard-code in your templates or your
error messages, for example. We will not cover internationalizing your dynamic
content, so having the content of your web application in multiple languages is not
included.

Building an localized application in Play is mostly about text and involves writing
 files. Instead of putting literal strings like ‘Log in’, ‘Thank you for yourmessage

order’ or ‘E-mail is required’ in your application, you create a file where message
keys are mapped to these strings.

For each language that your application supports, write a messages file that
looks like this:

welcome = Welcome!
users.login = Log in
shop.thanks = Thank you for your order
validation.required = {0} is required

Here you see how the message keys are mapped to the actual messages. In the
last example, there is a placeholder, that will be replaced by a value when this
message is used. The dots in the keys have no meaning, but you can use them for
logical grouping.

To get started, you must configure Play so that it knows which languages are
supported. In the application.conf file, list the languages that you support:

application.langs="en,en-US,nl"

This is a comma-separated list of languages, where each language consists of an
ISO 639-2 language code, optionally followed by a hyphen and an ISO 3166-1
alpha-2 country code.

Then, for each of these languages, you must create a messages file in the conf
directory, with the filename messages.LANG, where should be replaced byLANG

the language. So a French messages file would be stored in conf/messages.fr, with
the following content:

welcome=Bienvenue!

6.7.1 Configuration and message files

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

201

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Additionally, you can create a messages file without an extension, which serves
as the default and fallback language. If a message is not translated in the message
file for the language you are using, the message from this messages file will be
used.

To deal with messages in your application, it is recommended that you start
with a messages file and make sure that it is complete. If you later decide to add
more languages, you can easily create additional message files. When you forget to
add a key to another language’s message file, or when you don’t have the
translation for that message then the default message file will be used instead.

To use messages in your application, you can use the method on the apply

 object:Messages

Messages("users.login")(Lang("en"))

This method has two parameter lists, the first one takes the message and
message parameters, the second one takes a value. This value isLang Lang

implicit, and Play provides an implicit by default, based on the locale of theLang

machine that Play is running on.
Play provides an implicit conversion from a to a , which isRequest Lang

more useful: if you have an implicit in scope, then there will also be anRequest

implicit available, based on the header in the request.Lang Accept-Language

So suppose that you have the following action method:

def welcome() = Action { implicit request =>
 Ok(Messages("welcome"))
}

Here the language is determined by Play from the request header. If the header
says it accepts multiple languages, they are tried in order; the first one to be
supported by the Play application is used.

If no language from the header matches a language of the application, the first
language as configured by the setting in application.confapplication.langs

is used.
Of course, you can use messages from your templates the same way:

6.7.2 Using messages in your application

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

202

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

@()

<h1>@Messages("welcome")</h1>

Just be aware that if you want to use the automatic from the request, youLang

have to add an implicit request to the template parameter:

@(implicit request: Request)

<h1>@Messages("welcome")</h1>

Messages are not just simple strings, they are patterns formatted using
. This means that you can use parameters in yourjava.text.MessageFormat

messages:

validation.required={0} is required

You can substitute these by specifying more parameters to the call to
:Messages

Messages("validation.required", "email")

This will result in the string . email is required MessageFormat

gives you more options. Suppose that we want to vary our message slightly,
depending on the parameters. Suppose that we are showing the number of items in
our shopping cart, and we want to display either ‘Your cart is empty’, ‘Your cart
has one item’ or ‘Your cart has 42 items’, depending on the number of items in the
cart. We can use the following pattern for that:

shop.basketcount=Your cart {0,choice,0#is empty|1#has one item
 |1< has {0} items}.

Now, if we use the following in a template:

<p>@Messages("shop.basketcount", 0)</p>
<p>@Messages("shop.basketcount", 1)</p>
<p>@Messages("shop.basketcount", 10)</p>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

203

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

we get the following output:

Your cart is empty.
Your cart has one item.
Your cart has 10 items.

Using this, you can achieve advanced formatting that can be different for each
language, decoupled from your application logic. For more possibilities with

, consult the Java SE API documentation.MessageFormat

Play’s internationalization tools are basic, but are sufficient for many
applications. Message files help you to easily translate an application to a different
language, and decouple presentation logic from your application logic.

In this chapter, we’ve seen that Play ships a type-safe template engine, based on
Scala. This type-safe template engine helps you write more robust templates that
give you more confidence that everything will still work as intended after you
refactor. On top of that, the template engine is faster than conventional non
type-safe alternatives.

The template syntax is very concise, the -character is the only special@

character. Because the values that you add to templates are plain Scala values, you
can call all Scala methods on them. Similarly, you can use Scala’s collections
library to process collections in templates. By default, Play replaces dangerous
characters in templates with their equivalent HTML entities, so you are protected
against cross-site scripting attacks.

Templates are compiled to Scala functions, and we have seen how to compose
complex pages from reusable smaller pieces, by leveraging function composition.
Implicit parameters and methods help us prevent a lot of boilerplate code.

With the asset pipeline, we can effortlessly use Less and CoffeeScript instead of
CSS and JavaScript, and it can also compile JavaScript into better JavaScript with
the Google Closure compiler.

Finally, while the internationalization functionality of Play is basic, it is quite
powerful and often sufficient to make your application available in multiple
languages.

6.8 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

204

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

7
This chapter covers

The main concepts of Play's forms API

How to process HTML form submits

Generating HTML forms

Parsing advanced types and build custom validations

A serious test of any web framework is the way it handles data thrown at it by
clients. Clients can send data as a part of the URL (notably the query string), as
HTTP request headers or in the body of an HTTP request. In the latter case, there
are various ways to encode the data, the most usual being submitting HTML forms
and sending JSON data.

When this data is received, you can not trust it to be what you want or expect it
to be. After all, the person using your application can shape a request any way he
likes, and insert bogus or malicious data. What’s more, all (client) software is
buggy. Before you can use the data, you need to validate it.

The data you received is often not of the appropriate type. If a user submits an
HTML form, you get a map of key/value pairs, where both the keys and values are
strings. This is far from the rich typing that you want to use in your Scala
application.

Play provides the so called api. The term ‘form’ is not just about HTMLforms
forms in a Play application, it's a more general concept. The forms API helps you
to validate data, manage validation errors and to map this data to richer data
structures. In this chapter we will show you how to leverage this form API in your

Validating and processing input with the
forms API

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

205

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

application and in the next chapter you'll be able to re-use the concepts from this
chapter for dealing with JSON.

In Play 2, HTML form processing is fundamentally different to how Play 1.x
handles user data. In this section, we will quickly review the Play 1.x approach and
then explain some issues with that method and how Play 2 is different. If you're not
interested in this comparison with Play 1.x you can safely skip this section and
continue at section 7.2.

In Play 1.x, the framework helps you a great deal with converting HTML form data
to model classes. Play 1 inspects your classes, and can automatically convert
submitted form data. Suppose that you are building a form that allows you to add
new users to your application. You could model your user as follows in Java:

public class User {
 public String username;
 public String realname;
 public String email;
}

The actual HTML form where the user details can be entered, would look
similar to listing 7.1:

Listing 7.1 Play 1.x example: User creation HTML form

<form action="/users/create" method="POST">
 <p>
 <label for="username">Username</label>
 <input id="username" name="user.username" type="text" />
 </p>
 <p>
 <label for="realname">Real name</label>
 <input id="realname" name="user.realname" type="text" />
 </p>
 <p>
 <label for="email">Email</label>
 <input id="email" name="user.email" type="text" />
 </p>
</form>

Suppose this HTML form posts the data to the following Play 1.x action

7.1 Forms - the concept

7.1.1 Play 1.x forms reviewed

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

206

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

method:

public static void createUser(User user) {
 render(user);
}

Here, you specify that this action method takes a parameter, and PlayUser

will automatically instantiate a object and copy the fields user.username andUser

user.email from the HTTP request into the username and email fields of this User

instance. If you want to add validation, the standard way is to add these to the
model class:

public class User extends Model {

 @Required @MinLength(8)
 public String username;
 public String realname;
 @Required @Email
 public String email;
}

These annotations indicate that the username field is required and must be at
least eight characters long and that the email field must contain an email address.
You can now validate a by annotating the action method’s user parameterUser

and using the object that is provided by Play:validation

public static void createUser(@Valid User user) {
 if(validation.hasErrors()) {
 // Show and error page
 } else {
 // Save the user and show success page
 }
}

While this method is concise and works well in many cases, there are some
drawbacks. Using this method of validation, you can only have a single set of
validation settings per class. In practice, validation requirements regularly differ
depending on the context. For example, if a user signs up, he is required to enter
his real name, but when an administrator creates a user account, the real name may
be omitted.

There is a difference between the hard constraints on the model as defined by

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

207

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

the application, and the constraints on what the users of your application are
allowed to submit and the latter ones can vary between contexts.

Another problem is that you are forced to have a default constructor with no
parameter, so that Play 1.x can bind the HTTP request directly to the object. In
many cases, this can result in objects that are in an illegal state. If a user submits an
HTTP form that has no user.username field, the resulting object’s usernameUser

field will be . This is likely to be illegal in your application.null

While you can prevent this from causing havoc in your application by
consistently using the validation framework to prevent these illegal instances from
floating through your application or being persisted, it is still better to avoid the
construction of objects in an illegal state altogether.

In the next section we'll see how the approach to forms in Play 2 avoids these
problems.

In Play 2, HTTP form data is never directly bound to your model classes. Instead,
you use an instance of .play.api.data.Form

Listing 7.2 contains an example of an action method and a that you canForm

use to validate and process the user creation HTML form we've seen in listing 7.1.
This example might seem daunting, but in the next section we will take it apart and
see what's going on. Again, we need a model class for a user, and in Scala it could
look like:

case class User(
 username: String,
 realname: Option[String],
 email: String)

We can construct a form for this and an action method that uses this form as
follows:

Listing 7.2 Play 2 Form to validate a request from the HTML form of listing 7.1

val userForm = Form(
 mapping(
 "username" -> nonEmptyText(8),
 "realname" -> optional(text),
 "email" -> email)(User.apply)(User.unapply))

def createUser() = Action { implicit request =>

7.1.2 The Play 2 approach to forms

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

208

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 userForm.bindFromRequest.fold(
 formWithErrors => BadRequest,
 user => Ok("User OK!"))
}

This is a form that requires the username property to be not empty, and to be at
least 8 characters. The realname property may be omitted or empty, and the email
property is required and must contain an email address. The final two parameters

, and are two methods to construct andUser.apply User.unapply

deconstruct the values.
In the next section we'll take a look at all the components of forms.

Play’s Forms are powerful, but are built on a few simple ideas. In this section we
will explore how forms are created and used in Play. We'll start with , asmappings
they are at the heart of how forms work and are crucial to understanding how they
work.

A is an object that can construct something from the data in an HTTPMapping

request. This process is called . The type of object it can construct, isbinding
specified as a type parameter. So a can construct a Mapping[User] User

instance and a can create an . If you have an HTML formMapping[Int] Int

with a input tag and submit it, a <input type="text" name="age" />

 can convert that age value, which is submitted as a string, into aMapping[Int]

Scala .Int

The data from the HTTP request is transformed into a Map[String,

, and this is what the operates on. But a can notString] Mapping Mapping

just construct an object from a map of data, but it can also do the reverse operation
of deconstructing an object into a map of data. This process is called, as you might
have guessed, . Unbinding is useful if you want to show a form that hasunbinding
some values prefilled. Suppose that you are creating an edit form, that lets you
change some details of an existing user. This would involve fetching the existing
user from the database and rendering an HTML form where each input element is
populated with the current value. In order to do this, Play needs to know how a

 object is deconstructed into separate fields, which is exactly what a User input

 is capable of.Mapping[User]

Finally, a mapping can also contain , and give error messages whenconstraints

7.2 Forms basics

7.2.1 Mappings

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

209

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

the data does not conform to the constraints.
To generalize this, a mapping is an object of type that can take aMapping[T]

, and use it construct an object of type , as well asMap[String, String] T

take an object of type and use it to construct a .T Map[String, String]

Play provides a number of basic mappings out of the box. For example,
 is a mapping of type , while isForms.number Mapping[Int] Forms.text

a mapping of type . There is also , which isMapping[String] Forms.email

also of type , but it also contains a constraint that the stringMapping[String]

must be an email address. But Play also allows you to create your own mappings,
from scratch or by composing existing mappings into more complex mappings.

We will start with a few basic definitions to get acquinted with how formsForm

are generally used. Before using real user input data from an HTTP request, we
will start with a plain old with keys and values. Since request data isMap String

also put into a with a similar structure, this is very close to the real thing. WeMap

will mimic the data of a request to create a new product in our database:

val data = Map(
 "name" -> "Box of paper clips",
 "ean" -> "1234567890123",
 "pieces" -> "300"
)

All values in this map are strings, because that is how values arrive from an
HTTP request. In our Scala code however, we want pieces to be an . WeInteger

will use a form to validate whether the pieces value resembles a number, and to do
the actual conversion from to . Later in this section, we'll alsoString Integer

use a form to verify that the keys name and ean exist.
We have seen a couple of simple mappings, like and Forms.number

 in section 7.2.1. These simple mappings can be composed intoForms.string

more complex mappings, that construct much richer data structures than a single
 or . One way to compose mappings is as follows:Int String

val mapping = Forms.tuple(
 "name" -> Forms.text,
 "ean" -> Forms.text,
 "pieces" -> Forms.number)

7.2.2 Creating a Form

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

210

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We've constructed a value mapping with the method. The type oftuple

mapping is . Theplay.api.data.Mapping[(String, String, Int)]

type parameter, in this case a three-tuple of a , a and an ,String String Int

indicates the type of objects that this mapping can construct.
The method doesn't create mappings from scratch, but lets youForms.tuple

compose existing mappings into larger structures. You can use the following
Play-provided basic mappings to start composing more complex mappings:

boolean: Mapping[Boolean]

checked(msg: String): Mapping[Boolean]

date: Mapping[Date]

email: Mapping[String]

ignored[A](value: A): Mapping[A]

longNumber: Mapping[Long]

nonEmptyText: Mapping[String]

number: Mapping[Int]

sqlDate: Mapping[java.sql.Date]

text: Mapping[String]

So far, we've been fiddling a bit with mappings, but we haven't tried to actually
use a mapping for its prime purpose: to create an object! To actually use a mapping
to bind data, we need to do two things. First, we need to wrap the mapping in a

, and second we have to apply the to our data. Like , Form Form Mapping Form

has a single type parameter, and it has the same meaning. But a form does not only
wrap a , it can also contain data. It is easily constructed using our Mapping

:Mapping

val productForm = Form(mapping)

This form is of type . This typeForm[(String, String, Int)]

parameter means that if we put our data into this form and it validates, we will be
able to retrieve a tuple from it.(String, String, Int)

The process of putting your data in the form is called 'binding', and the bind

method is used for it:

val processedForm = productForm.bind(data)

7.2.3 Processing data with a form

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

211

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Forms are immutable data structures, and the method does not actuallybind

put the data inside the form. Instead, it returns a new — a copy of theForm

original form populated with the data. To check whether our data conforms to the
validation rules, we could use the method. Any errors can behasErrors

retrieved with the method.errors

If there are no errors, you can get the concrete value out of the form with the
 method. Knowing this, you might be inclined to structure form handlingget

similar to:

if(!processedForm.hasErrors) {
 val productTuple = processedForm.get // Do something with the product
} else {
 val errors = processedForm.getErrors // Do something with the errors
}

This will work fine, but there are nicer ways to do this. If you take a better look
at the processedForm value, you figure out that it can be one of two things. It can
either be a form without errors, or a form with errors. Generally, you want to do
completely different things to the form, depending on which of these two states it
is in. This is very similar to Scala's type, which also holds one of twoEither

possible types (see sidebar 7.1). Like , has a method to unifyEither Form fold

the two possible states into a single result type. This is the idiomatic way of
dealing with forms in Play 2.

Form.fold takes two parameters, where the first one is a function that

accepts the 'failure' result, and the second accepts the 'success' result as the single
parameter. In the case of , the 'failure' result is again a , fromForm[T] Form[T]

which the validation errors can be retrieved with . The success valuegetErrors

is the object that the form constructs when validation is succesful. So, using fold

on our example form, could look like:

val processedForm = productForm.bind(data)

processedForm.fold(
 formWithErrors => BadRequest,
 productTuple => {
 // Code to save the product omitted
 Ok(views.html.product.show(product))
 })

Error function
Success function

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

212

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

If the form has errors, the function passed as the first parameter to , isfold

called. If the form has no errors, the function passed as the second parameter is
called.

Here, the result type of the method is fold

, which is the common ancestor of play.api.mvc.SimpleResult

 and .BadRequest Ok

SIDEBAR Scala's typeEither

Like many other functional programming languages, Scala has an
 type to express disjoint types. It is often used to handle missingEither

values, like , but with the difference that while the "missing"Option

value of is always , in this can be anything. ThisOption None Either

is very useful to convey information about why a value is missing. For
example, suppose that we are trying to retrieve an object of type

 from a service, and that the service could either return anProduct

instance of , or a with a message that explains why itProduct String

failed. The retrieval method could have a signature:

def getProduct(): Either[String, Product]

Now, is an abstract type, and there are two concrete classesEither

that inherit from it: , and . If the that you get backLeft Right Either

from this method is an instance of , it contains a , and if it'sLeft String

a , it will contain a . You can test whether you have a Right Product

, or with , and branch your code for each of theLeft Right isLeft

possibilities. But generally, at some point you want to unify these
branches, and return a single return type. For example, in a Play
controller you can do what you want, but in the end you need to return a

. The idomatic way to do this is to use the play.api.mvc.Result

 method. The method of an hasEither.fold fold Either[A, B]

the following signature:

def fold[C](fa: (A) => C, fb: (B) => C): C

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

213

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

fold takes two parameters, the first one a function of type (A) => C,
the second one a function of type (B) => C. If the is a ,Either Left

the first method will be applied to the value, and if it is a , theRight

second method will be applied. In both cases, this will return a . InC

practice, application of an could look like this:Either

def getProduct(): Either[String, Product] = { … }

def showProduct() = Action {
 getProduct().fold(

 failureReason => InternalServerError(failureReason),
 product => Ok(views.html.product.show(product))

)
}

Here, returns an , and in the getProduct Either showProduct

action method, we fold the into a .Either Result

By convention, is used for the 'failure' state, while is usedLeft Right

for the 'success' value. If you want to produce an yourself, youEither

can use these case classes yourself:

def getProduct(): Either[String, Product] = {
 if(validation.hasError) {
 Left(validation.error)
 } else {
 Right(Product())
 }
}

In practice, you will probably run into the need for an in thoseEither

cases where an doesn't really suffice anymore because youOption

want to differentiate between various failures.

In the previous sections, we've only worked with tuple-mappings: mappings that
result in a tuple upon successful data processing. It is also possible to construct
objects of other types with mappings. You will have to provide the mapping with a
function to construct the value. This is extremely easy for case classes, since they
come with such a function out of the box. Suppose that we have the case class

, with the following definition:Product

7.2.4 Object mappings

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

214

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

case class Product(
 name: String,
 ean: String,
 pieces: Int)

We can create a mapping that constructs instances of as follows.Product

import play.api.data.Forms._

val productMapping = mapping(
 "name" -> text,
 "ean" -> text,
 "pieces" -> number)(Product.apply)(Product.unapply)

We are using the method on the object,mapping play.api.data.Forms

to create the mapping. Note that we've imported play.api.data.Forms._ here, so we
don't have to prefix the mapping builders with . Compared with Forms

 the method takes two extra parameters. The first oneForms.tuple, mapping

is a function to construct the object. Here, it needs to be a function that takes three
parameters, with types , , , because those are the types thatString String Int

this mapping processes. We use the method of the case class asapply Product

this function, because it does exactly what we need: it takes the three parameters of
the proper type, and constructs a object from them. This makes the typeProduct

of this mapping .Mapping[Product]

The second extra parameter, so the third parameter of , needs to be amapping

function that deconstructs the value type. For case classes, this method is provided
by the method, which, for our has the type signature unapply Product

.Product => Option[(String, String, Int)] 1

Footnote 1mYou may wonder why the signature of is unapply Option[(String, String, Int)]

instead of just , since it seems plausible that unapplying will always work.(String, String, Int)

While this is true for a case class, the method is used widely in other applications as well, whereunapply

unapplying may not work.

Using our , we can now easily create a Mapping[Product]

:Form[Product]

val productForm = Form(productMapping)

If we now use on one of these forms, the success value is a :fold Product

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

215

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

productForm.bind(data).fold(
 formWithErrors => ...,
 product => ...
)

This is the standard way in Play 2 to convert string typed HTTP request data
into typed objects.

So far, we've used a simple manually constructed asMap[String, String]

data source for our form. In practice, it's not exactly trivial to get such a map from
an HTTP request, since the method to construct it depends on the body type of the
request. Luckily, has a method that takes a Form bindFromRequest

 parameter and extracts the data in the proper way:Request[_]

def processForm() = Action { request =>
 productForm.bindFromRequest()(request).fold(
 ...
)
}

As the request parameter to is declared implicit, you canbindFromRequest

also leave it off if there is an implicit in scope:Request

def processForm() = Action { implicit request =>
 productForm.bindFromRequest.fold(
 ...
)
}

The method tries to extract the data from the body of thebindFromRequest

request, and appends the data from the query string. Of course, body data can come
in different formats. Browsers submit HTTP bodies with either

 or application/x-www-form-urlencoded multipart/form-data

content type, depending on the form, and it is also quite common to send JSON
over the wire. The method uses the bindFromRequest Content-Type

header to determine a suitable decoder for the body.
Now that you are familiar with the basics of creating forms and binding data to

forms, we are ready to start working with real HTML forms in the next section.

product is of type
Product

7.2.5 Mapping HTTP request data

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

216

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

So far, we haven't shown any HTML in the Play 2 examples. In this section we'll
show you how to build the forms front-end. As in many other parts of the
framework, Play doesn't force you to create HTML forms in one particular way.

You're free to construct the HTML by hand. Play also provides helpers that
generate forms and take the tediousness out of showing validation and error
messages in the appropriate places.

In this section, we'll show you how to write your own HTML for a form, and
then we will demonstrate Play's .form helpers

We are going to create a form to add a product to our catalog, as shown in figure
7.1:

Figure 7.1 ‘Add Product’ form

The form contains text inputs for the product’s name and EAN code, a text area
for the description, a smaller text input for the number of pieces that a single
package contains and a checkbox that indicates whether the product is currently
being sold. Finally, there is a button that submits the form.

Here is the model class:

case class Product(
 ean: Long,

7.3 Creating and processing HTML forms

7.3.1 Writing HTML forms manually

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

217

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 name: String,
 description: String,
 pieces: Int,
 active: Boolean)

The HTML page template is written as follows:

Listing 7.3 "Add Product" form simplified HTML

@()

@main("Product Form"){

 <form action="@routes.Products.create()" method="post">
 <div>
 <label for="name">Product name</label>
 <input type="text" name="name" id="name" />
 </div>
 <div>
 <label for="description">Description</label>
 <textarea id="description" name="description"></textarea>
 </div>
 <div>
 <label for="ean">EAN Code</label>
 <input type="text" name="ean" id="ean" />
 </div>
 <div>
 <label for="pieces">Pieces</label>
 <input type="text" name="pieces" id="pieces" class="quantity" />
 </div>
 <div>
 <label for="active">Active</label>
 <input type="checkbox" name="active" value="true" />
 </div>
 <div class="buttons">
 <button type="submit">Create Product</button>
 </div>
 </form>
}

This is a simplified version of the real HTML for the form in figure 7.1,
excluding mark-up used to make it easier to style. But the important elements, the

 and elements, are the same. Now, we need a :Form input Form

val productForm = Form(mapping(
 "ean" -> longNumber,
 "name" -> nonEmptyText,
 "description" -> text,
 "pieces" -> number,
 "active" -> boolean)(Product.apply)(Product.unapply))

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

218

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:action="@routes.Products.create
http://www.manning-sandbox.com/forum.jspa?forumID=810

The action method for displaying the form renders the template:

def createForm() = Action {
 Ok(views.html.products.form())
}

Listing 7.4 shows the action method that handles form submissions:

Listing 7.4 Action method , which tries to bind the form from the request.create

 def create() = Action { implicit request =>
 productForm.bindFromRequest.fold(
 formWithErrors => BadRequest("Oh noes, invalid submission!"),
 value => Ok("created: " + value)
)
}

This is all we need! If we submit the form, our browser will send it to the server
with a Content-Type of . Playapplication/x-www-form-urlencoded

will decode the request body, and populate a that our Map[String, String]

 object knows how to handle, as we saw in the previous section.Form

This serves fine as an illustration of processing manually created HTML forms,
but writing forms this way is not very convenient. The first part is easy: just write
the input elements and you are done. In a real application though, much more is
involved.

We also need to indicate which fields are required, and if the user makes a
mistake, we want to re-display the form, including the values that the user
submitted. For each field that failed validation, we want to show an error messages,
ideally near that field. This can also be done manually, but it involves lots of
boilerplate code in the view template.

Play provides , template snippets that can render a form field for you,helpers
including extra information like an indication when the value is required and an
error message if the field has an invalid value. The helpers are in the
views.template package.

Using the appropriate helpers, we can rewrite our product form as in listing 7.5:

Listing 7.5 Template that uses form helpers to generate an HTML form

7.3.2 Generating HTML forms

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

219

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

@(productForm: Form[Product])

@main("Product Form") {
 @helper.form(action = routes.GeneratedForm.create) {

 @helper.inputText(productForm("name"))
 @helper.textarea(productForm("description"))
 @helper.inputText(productForm("ean"))
 @helper.inputText(productForm("pieces"))
 @helper.checkbox(productForm("active"))

 <div class="form-actions">
 <button type="submit" class="btn btn-primary">
 Create Product
 </button>
 </div>
 }
}

We created the form with the helper, and in the form we usehelper.form

more helpers to generate input fields, a textarea and a checkbox. These form
helpers will generate the appropriate HTML. We have to change our action method
to add the productForm as a parameter to the template:

def createForm() = Action {
 Ok(views.html.products.form(productForm))
}

With this form, the template will output the HTML from listing 7.6:

Listing 7.6 HTML generated by form helpers for the product form

<form action="/generatedform/create" method="POST">

 <dl class="" id="name_field">
 <dt><label for="name">name</label></dt>
 <dd><input type="text" id="name" name="name" value=""></dd>
 <dd class="info">Required</dd>
 </dl>

 <dl class="" id="description_field">
 <dt><label for="description">description</label></dt>
 <dd><textarea id="description" name="description"></textarea></dd>
 </dl>

 <dl class="" id="ean_field">
 <dt><label for="ean">ean</label></dt>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

220

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.textarea
mailto:@helper.inputText
mailto:@helper.inputText
mailto:@helper.checkbox
http://www.manning-sandbox.com/forum.jspa?forumID=810

 <dd><input type="text" id="ean" name="ean" value="123"></dd>
 <dd class="info">Numeric</dd>
 </dl>

 <dl class="" id="pieces_field">
 <dt><label for="pieces">pieces</label></dt>
 <dd><input type="text" id="pieces" name="pieces" value=""></dd>
 <dd class="info">Numeric</dd>
 </dl>

 <dl class="" id="active_field">
 <dt><label for="active">active</label></dt>
 <dd>
 <input type="checkbox" id="active" name="active" value="true"
 checked>
 </dd> TODO // These extra spans are a bug?
 <dd class="info">format.boolean</dd> TODO // This is a bug?
 </dl>

 <div class="form-actions">
 <button type="submit" class="btn btn-primary">
 Create Product
 </button>
 </div>

</form>

The helpers generated appropriate inputs for the fields in our form, and even
added extra info for some fields; ‘Required’ for the required name field and
‘Numeric’ for the fields that require a number. This extra information is deduced
from the definition, where we defined the required field asproductForm

nonEmptyText and the numeric fields as number or longNumber.
Not only does this save us a lot of typing, it also makes sure that the

information we display for each field is always in sync with what we actually
declared in our code.

Finally, we can reuse the exact same template to redisplay the form in case of
validation errors. Recall that in the method of , we get the form back,fold Form

but with the errors field populated. We can apply this template to this
form-with-errors to show the form again with the previously entered values, except
for the fields where validation failed; there the validation message is shown. To do
so, we update our action to show the same template when validation fails:

def create() = Action { implicit request =>
 productForm.bindFromRequest.fold(
 formWithErrors => Ok(views.html.products.form(formWithErrors)),
 value => Ok("created: " + value)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

221

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

)
}

Suppose that we completely fill out the form, but we give a non-numeric value
for the EAN code. This will cause validation to fail, and the form to re-render.
Listing 7.7 shows the HTML:

Listing 7.7 Product form with validation errors and old values

<form action="/generatedform/create" method="POST">

 <dl class="" id="name_field">
 <dt><label for="name">name</label></dt>
 <dd><input type="text" id="name" name="name"
 value="Blue Coated Paper Clips"></dd>
 <dd class="info">Required</dd>
 </dl>

 <dl class="" id="description_field">
 <dt><label for="description">description</label></dt>
 <dd><textarea id="description" name="description">
 Bucket of small blue coated paper clips.</textarea></dd>
 </dl>

 <dl class="error" id="ean_field">
 <dt><label for="ean">ean</label></dt>
 <dd><input type="text" id="ean" name="ean" value=""></dd>
 <dd class="error">Numeric value expected</dd>
 <dd class="info">Numeric</dd>
 </dl>

 <dl class="" id="pieces_field">
 <dt><label for="pieces">pieces</label></dt>
 <dd><input type="text" id="pieces" name="pieces" value="500"></dd>
 <dd class="info">Numeric</dd>
 </dl>

 <dl class="" id="active_field">
 <dt><label for="active">active</label></dt>
 <dd><input type="checkbox" id="active" name="active" value="true"
 checked>
 </dd> // TODO, extra spans a bug?
 <dd class="info">format.boolean</dd> TODO // This is a bug?
 </dl>

 <div class="form-actions">
 <button type="submit" class="btn btn-primary">
 Create Product
 </button>
 </div>

</form>

Value prefilled

Error class
appeared

Error appeared

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

222

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

As you can see in the source, the form is re-rendered with the previous values
prefilled . Also, the EAN field has an additional 'error' class , and an additional
html element indicating the error .

Of course, this ability to show a form again, with values prefilled is useful in
another scenario as well. If you are creating an edit page for your object, you can
use this to display a form with the current values prefilled. To preload a form

 with an existing object, you can use the method orForm[T] fill(value: T)

the . The latter differs from the former in thatfillAndValidate(value: T)

it also performs validation.

Play ships predefined helpers for the most common input types:

inputDate — generates an tag with type dateinput

inputPassword — generates an tag with type passwordinput

inputFile — generates an tag with type fileinput

inputText —, generates an tag with type textinput

select — generates a tagselect

inputRadioGroup — generates a set of tags with type radioinput

checkbox — generates an tag with type checkboxinput

textarea — generates a element.textarea

input — creates a custom input. We'll see more of that in section 7.3.4.

All these helpers share some extra parameters that you can use to influence
their behaviour: they take extra parameters of type . For(Symbol, Any)

example, you can write:

@helper.inputText(productForm("name"), '_class -> "important",
 'size -> 40)

The notation creates a named '_class', and similarly '_class Symbol 'size

creates a named 'size'. By convention in the helpers, symbols that startSymbol

7.3.3 Input helpers

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

223

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

with an underscore are used by the helper to modify some aspect of the generated
HTML, while all symbols that do not start with an underscore simply end up as
extra attributes of the input element. This snippet renders the HTML in listing 7.8:

Listing 7.8 Field with custom class and attribute

<dl class="important" id="name_field">
 <dt><label for="name">name</label></dt>
 <dd><input type="text" id="name" name="name"
 value="" size="40"></dd>
 <dd class="info">Required</dd>
</dl>

The extra symbols with underscores that you can use are

_label, to set a custom label.

_id, to set the id of the element.dl

_help, to show a custom help text.

_showConstraints, set to false to hide the constraints on this field.

_error, set to a instance to show a custom error.Some[FormError]

_showErrors, set to false to hide the errors on this field.

The HTML Play generates may not be what you — or your team’s front-end
developer — had in mind. Play allows you to customize the generated HTML, in
two ways. First, you can customize which input element is generated, in case you
need some special input type. Second, you can customize the HTML elements
around that input element.

To create a custom input element, you can use the helper. Suppose thatinput

we want to create an input with type datetime (which is valid in HTML 5 although
poorly supported by browsers at the time of writing, as of mid-2012) we can do:

@helper.input(myForm("mydatetime")) { (id, name, value, args) =>
 <input type="datetime" name="@name"
 id="@id" value="@value" @toHtmlArgs(args) />
}

"important" class
added

"size" attribute
added

7.3.4 Customizing generated HTML

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

224

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.input
http://www.manning-sandbox.com/forum.jspa?forumID=810

Here, myForm is the name of the instance. We call the Form helper.input

view with two parameters: the first parameter is the that we want to createField

the input for, the second parameter is a function of type (String, String,

. The Option[String], Map[Symbol,Any]) => Html

 method will invoke this function that you pass to it, with thehelper.input

proper parameters. We use the method to construct additionaltoHtmlArgs

attributes from the args map.
Previously, we've only used the first parameter block of the input helpers. But

they have an additional parameter block, that takes an implicit
 and a . It is this that isFieldConstructor Lang FieldConstructor

responsible for generating the HTML around the input element.
 is a trait with a single method that takes a FieldConstructor apply

 object and returns . Play provides aFieldElements Html

defaultFieldConstructor that generates the HTML that we saw earlier, but you can
of course implement your own if you want differentFieldConstructor

HTML.
A common case is that you are using an HTML/CSS framework that forces you

to use specific markup, such as Twitter Bootstrap 2. For example, one of the
Bootstrap styles requires the following HTML around an input element:

<div class="control-group">
 <label class="control-label" for="name_field">Name</label>
 <div class="controls">
 <input type="text" id="name_field">
 Required
 </div>
</div>

Additionally, the outer div gets an extra class 'error', when the field is in an
error state. We can do this with a custom . The easiest wayFieldConstructor

to return is to use a template:Html

Listing 7.9 app/views/helper/FieldElements.html.scala - FieldConstructor for
Twitter Bootstrap

@(elements: views.html.helper.FieldElements)

@import play.api.i18n._
@import views.html.helper._

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

225

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

<div class="control-group @elements.args.get('_class)
 @if(elements.hasErrors) {error}"
 id="@elements.args.get('_id).getOrElse(elements.id + "_field")" >
 <label class="control-label" for="@elements.id">
 @elements.label(elements.lang)
 </label>
 <div class="controls">
 @elements.input

 @if(elements.errors(elements.lang).nonEmpty) {
 @elements.errors(elements.lang).mkString(", ")
 } else {
 @elements.infos(elements.lang).mkString(", ")
 }

 </div>
</div>

Here, we extract various bits of information from the FieldElements

object, and insert them in proper places in the template.
Unfortunately, even though this template takes a parameterFieldElements

and returns an instance, it does not explicitly extend the Html

 trait, so we can't directly use the template as a FieldConstructor

. Since there is no way in Play to make a template extend aFieldConstructor

trait, we'll have to create a wrapper that does extend , andFieldConstructor

whose method calls the template. Additionally, we can make that wrapperapply

an implicit value, so that we can simply import it to use it automatically
everywhere a form helper is used. We create a package object that contains the
wrapper like in listing 7.10:

Listing 7.10 /app/views/helper/bootstrap/package.scala - The bootstrap package
object with an implicit FieldConstructor

package views.html.helper

package object bootstrap {
 implicit val fieldConstructor = new FieldConstructor {
 def apply(elements: FieldElements) =
 bootstrap.bootstrapFieldConstructor(elements)
 }
}

In our template, we only need to import the members of this package object,
and our template will use the newly created field constructor like in listing 7.11:

Supply implicit
FieldConstructor
Render template

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

226

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:control-group@elements.args.get('_class
mailto:id="@elements.args.get('_id).getOrElse
mailto:for="@elements.id
mailto:@elements.label
mailto:@elements.input
mailto:@elements.errors
mailto:@elements.infos
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:for="@elements.id

Listing 7.11 Product form using custom FieldConstructor

@(productForm: Form[Product])

@import views.html.helper.bootstrap._

@main("Product Form") {
 @helper.form(action = routes.GeneratedForm.create) {

 @helper.inputText(productForm("name"))
 @helper.textarea(productForm("description"))
 @helper.inputText(productForm("ean"))
 @helper.inputText(productForm("pieces"))
 @helper.checkbox(productForm("active"))

 <div class="form-actions">
 <button type="submit" class="btn btn-primary">
 Create Product
 </button>
 </div>
 }
}

So far we have only been using the built-in validation for mappings like
, which kicks in when we submit something that doesn't look likeForms.number

a number. In this section we'll see how we can add our own validations.
Additionally, we'll see how we can create our own mappings, for when we want to
bind things that don't have a predefined mapping.

Mappings contain a collection of constraints and when a value is bound, it is
checked against each of the constraints. Some of Play's predefined mappings come
with a constraint out of the box: for example the mapping has a constraintemail

that verifies that the value resembles an email address. Some mappings have
optional parameters that you can use to add constraints: the mapping has atext

variant that takes parameters: text(minLength: Int = 0, maxLength:

. This can be used to create a mapping that constrainsInt = Int.MaxValue)

the value’s length.
For other validations, we'll have to add constraints to the mapping ourselves. A

 is immutable, so we can't really add constraints to existing mappingsMapping

but we can easily create a new mapping from an existing one plus a new constraint.
A has the method Mapping[T] verifying(constraints:

7.4 Validation and advanced mappings

7.4.1 Basic validation

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

227

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.textarea
mailto:@helper.inputText
mailto:@helper.inputText
mailto:@helper.checkbox
http://www.manning-sandbox.com/forum.jspa?forumID=810

, which copies the mapping and adds the constraints. PlayConstraint[T]*)

provides a small number of constraints, on the
 object:play.api.data.validation.Constraints

min(maxValue: Int): Constraint[Int], a minimum value for an mapping.Int

max(maxValue: Int): Constraint[Int], a maximum value for an mapping.Int

minLength(length: Int): Constraint[String], a minimum length for a String
mapping.
maxLength(length: Int): Constraint[String], a maximum length for a String
mapping.
nonEmpty: Constraint[String], require a not empty string.
pattern(regex: Regex, name: String, error: String): Constraint[String], a
constraint that uses a regular expression to validate a .String

These are also the constraints that Play uses when you utilize one of mappings
with built-in validations, like .nonEmptyText

Using these constraints with the method looks like this:verifying

"name" -> text.verifying(Constraints.nonEmpty)

In practice, you often want to perform a more advanced validation on user input
than the standard validation that Play offers. To do this, you need to know how to
create custom validations.

In our product form, we would like to check whether a product with the same EAN
code does not already exist in our database. Obviously, Play has no built-in
validator for EAN codes, and because Play is persistence layer agnostic, it cannot
even provide a generic 'unique' validator. We will have to code the validator
ourselves.

Creating a custom manually is a bit clunky, but luckily Play's Constraint

 method on makes it easy. All you need to add a customverifying Mapping

constraint to a , is a function , a function that takesMapping[T] T => Boolean

the bound object, and returns either true if it validates or false if it doesn't.
So, if we want to add a validation to the mapping for the EAN number, which is

of type , that verifies that the ean number does not exist in ourMapping[Int]

database yet, we can define a method :eanExists

7.4.2 Custom Validation

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

228

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

def eanExists(ean: Long) = Product.findByEan(ean).isEmpty

and use to add it to our mapping:verifying

"ean" -> longNumber.verifying(eanExists(_))

This copies our mapping into a new mapping and adds a new constraint.text

The constraint itself checks whether we get a from the None

 method, which indicates that no product yet exists withProduct.findByEan

this EAN. Of course, we can use an anonymous function so we don't have to define
:eanExists

"ean" -> longNumber.verifying(ean => Product.findByEan(ean).isEmpty)

And this can be made even more concise with the following notation:

"ean" -> longNumber.verifying(Product.findByEan(_).isEmpty)

If this validation fails, the error will be 'error.unknown', which is not
particularly helpful for your users. You can add a custom validation message to a
constraint that you build with by giving a as the firstverifying String

parameter:

"ean" -> longNumber.verifying("This product already exists.",
 Product.findByEan(_).isEmpty)

As this error string is passed through the messages system, you can also use a
message key here, and write the error message itself in your messages file.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

229

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

So far we have seen how to validate a single field. What if we want to validate a
combination of multiple fields? For example, in our product form, we might want
to allow people to add new products to the database without a description, but not
to make it 'active' if there is no description. This would allow an administrator to
start adding new products even when no description has been written yet, but
would prevent putting up those products for sale without a description. The
validation rule here depends both on the value of the description, and that of the
'active' boolean, which means we cannot simply use on either ofverifying

those.
Luckily, the mapping for the entire form that we composed with or tuple

 is also just a , but with being a tuple or an object! Somapping Mapping[T] T

this composed mapping also has a method, which takes a methodverifying

with the entire tuple or object as a parameter. We can use this to implement our
new validation rule, as in listing 7.12:

Listing 7.12 Form with validation on multiple fields

val productForm = Form(mapping(
 "ean" -> longNumber.verifying("This product already exists!",
 Product.findByEan(_).isEmpty),
 "name" -> nonEmptyText,
 "description" -> text,
 "pieces" -> number,
 "active" -> boolean)(Product.apply)(Product.unapply).verifying(
 "Product can not be active if the description is empty",
 product =>
 !product.active || product.description.nonEmpty))

This works as intended, but there is one caveat: the validation error is never
displayed in the HTML form. The top-level mapping does not have a key, and the
error has an empty string as key. If this top level mapping causes an error, it is
called the 'global error', and you can retrieve with the method on globalError

. It returns an . So to display this error, if it exists, in ourForm Option[Error]

form, we must add something like the following snippet to our template that
renders the form:

@productForm.globalError.map { error =>
 @error.message
}

map the error into
HTML

7.4.3 Validating multiple fields

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

230

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@productForm.globalError.map
http://www.manning-sandbox.com/forum.jspa?forumID=810

If you submit an HTML form with an empty input element, the browser will not
omit the element, but send it with an empty value. Now, if you bind such a field
with a mapping, you will get an empty string. In Scala, it's more likely thattext

you want an , with a value if the user left an inputOption[String] None

empty. For these situations, Play provides the method, whichForms.optional

transforms a into a . So you can use thatMapping[A] Mapping[Option[A]]

to create mappings like these:

case class Person(name: String, age: Option[Int])

val personMapping = mapping(
 "name" -> nonEmptyText,
 "age" -> optional(number)
)(Person.apply)(Person.unapply)

Another common requirement is to bind a list of values. For example, adding a
collection of tags to an object is very common. If you have multiple inputs with
names like tag[0], tag[1], etc, you can bind them as follows:

"tags" -> list(text)

This would require HTML input tag names like:

<input type="text" name="tags[0]" />
<input type="text" name="tags[1]" />
<input type="text" name="tags[2]" />

This method transforms a into a .list Mapping[A] Mapping[List[A]]

Alternatively, you can use the method which transforms to a seq

.Mapping[Seq[A]]

To display these repeated mappings with form helpers, you can use the
 helper:@helper.repeat

@helper.repeat(form("tags"), min = 3) { tagField =>

age is an
Option[Int]

Transform
mapping with
optional

7.4.4 Optional mappings

7.4.5 Repeated mappings

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

231

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.repeat
mailto:@helper.repeat
http://www.manning-sandbox.com/forum.jspa?forumID=810

 @helper.inputText(tagField, '_label -> "Tag")
}

This repeat helper will output an input field for each element in the list, in the
case that you're displaying a form that is prefilled. The min parameter can be used
to specify the minimum number of inputs that should be displayed, in this case
three. It defaults to one, so you will see one input element for an empty form if you
don't specify it.

Suppose that you are building a form, where you ask a person for three contacts: A
main contact, a technical contact and an administrative contact; each consisting of
a name and an email address. You could come up with a form like this:

val contactsForm = Form(tuple(
 "main_contact_name" -> text.,
 "main_contact_email" -> email,
 "technical_contact_name -> text,
 "technical_contact_email -> email,
 "administrative_contact_name -> text,
 "administrative_contact_email -> email))

Of course this will work, but there is a lot of repetition. All contacts have the
same mapping, but we're writing out in full three times. This is a good place to
exploit the fact that a composition of mappings is in itself a mapping, so they can
be nested! We could rewrite this form as follows:

val contactMapping = tuple(
 "name" -> text,
 "email" -> email)

val contactsForm = Form(tuple(
 "main_contact" -> contactMapping,
 "technical_contact" -> contactMapping,
 "administrative_contact" -> contactMapping))

The keys of the data that you bind to this form are of the form
main_contact.name, main_contact.email, etcetera. So starting from the root
mapping, the keys are concatenated with dots. This is also the way you retrieve
them when you display the form in the template:

@helper.inputText(form("main_contact.name"))

7.4.6 Nested mappings

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

232

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.inputText
mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

@helper.inputText(form("main_contact.email"))

Of course, you don't have to give the nested mapping a name, you can also put
it inline. Listing 7.13 shows an example of a mapping composed from nested tuple
and object mappings:

Listing 7.13 Inline nested forms

val appointmentMapping = tuple(
 "location" -> text,
 "start" -> tuple(
 "date" -> date,
 "time" -> text),
 "attendees" -> list(mapping(
 "name" -> text,
 "email" -> email)(Person.apply)(Person.unapply)))

This mapping has type Mapping[(String, (Date, String),

.List[Person])]

Nesting is useful to cut a large, flat mappings into richer structures that are
more easy to manipulate and to reuse. But there is also a more mundane reason to
nest mappings if you have big forms. And that is that both the and tuple

 methods take a maximum of 18 parameters. Contrary to what you mightmapping

think at first sight, they do not have a variable length argument list, but they are
overloaded for up to 18 parameters, with each their own type. This is how Play can
keep everything type-safe. Every method has a type parameter for eachtuple

regular parameter. You never see them, because they are inferred by the compiler,
but they are there. So writing:

tuple(
 "name" -> text,
 "age" -> number,
 "email" -> email)

is exactly the same as writing:

tuple[String, Int, String](
 "name" -> text,
 "age" -> number,
 "email" -> email)

Field name
'start.date'

Field names
'attendees[0].name',
'attendees[1].name'
etc.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

233

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

If you ever run into problems with this limit, you can probably work around it
by structuring your forms into nested components. The limit of 18 fields is just for
a single or , if you nest you can process an arbitary amount oftuple mapping

parameters.

TIP Working around the 18 field limit in other ways
If it is impossible for you to restructure your input, for example
because the form that submits the data is not under your control,
you could write multiple form mappings, that each capture part of
the data. This will make processing somewhat harder, because
you'll have to check each one for validation errors and it's much
more cumbersome to create objects out of it, but it is possible.
Alternatively, you could choose another method altogether to
process the request data, you are not forced to use Play's default
method of dealing with forms.

So far, we've seen how to use the simple mappings that Play provides, like
 and . We have also seen how we can composeForms.number Forms.text

these mappings into more advanced mappings that can create tuples or construct
objects. But what if we want to bind simple things for which no mapping exists?

For example, we might have a datepicker in our HTML form, that we want to
bind to a Joda Time , which is basically a date without timezoneLocalDate

information. The user enters the date as a string, for example , and2005-04-01

we want to bind that into a instance. There is no way to get this doneLocalDate

by composition of the built-in mappings only. But, of course, Play allows us to
create our own mappings as well.

There are two ways to create a custom mapping: you can either transform an
existing mapping, or implement a new mapping from scratch. The first one is by
far the easier method, but has its limitations. We'll start with a transformation, and
later in this section we'll see how to implement a whole new mapping.

Transforming a mapping is a kind of post-processing. You can imagine that if
you have a and you also have a function ,Mapping[String] String => T

that you can combine these to create a . That is exactly what the Mapping[T]

 method on a does, with the caveat that you also need totransform Mapping

7.4.7 Custom mappings

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

234

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

provide a reverse function , since mapping is a two-way process.T => String

So we can create a , by transforming a Mapping[LocalDate]

 as follows:Mapping[String]

val localDateMapping = text.transform(
 (dateString: String) =>
 LocalDate.parse(dateString),
 (localDate: LocalDate) =>
 localDate.toString)

Here we use the method to create a function LocalDate.parse String

 and the method to create a function => LocalDate LocalDate.toString

. The method uses these to transform a LocalDate => String transform

 into a .Mapping[String] Mapping[LocalDate]

While this is quite powerful and works fine in many cases, you can already see
a flaw in the way we use it here to transform to a . The problem isLocalDate

that if we use , we have no way of indicating an error. The transform

 method will throw an exception if we feed it an invalidLocalDate.parse

input, and we have no nice way of converting that into a proper validation error of
the mapping.

The method is therefore best used for transformations that aretransform

guaranteed to work. When that is not the case, you can use the second, more
powerful, method of creating your own which is also how Play's built-inMapping

mappings are created.
This involves creat ing a mapping from a

, which is a trait with the followingplay.api.data.format.Formatter

definition:

Listing 7.14 Definition of Play’s traitFormatter

trait Formatter[T] {
 def bind(key: String, data: Map[String, String]):
 Either[Seq[FormError], T]

 def unbind(key: String, value: T): Map[String, String]

 val format: Option[(String, Seq[Any])] = None
}

String to LocalDate
transformation
LocalDate to String
transformation

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

235

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Play’s trait has two abstract methods, and , whichFormatter bind unbind

we have to implement. Additionally, it has an optional format value, which we can
override if we want. It is probably clear what the intention of the and bind

 methods is, but their signatures are quite advanced. Binding is not simplyunbind

going from a to a : we start with both the key and the map that containsString T

the data that we are trying to bind. We do not simply return a either: we eitherT

return a sequence of errors, or a .T

This return type solves the problem of passing error messages to the mapping
when parsing of a fails. For the unbinding process, we can not passLocalDate

any error messages, a is supposed to be able to unbind anyFormatter[T]

instance of .T

Let us reimplement the mapper using a LocalDate

:Formatter[LocalDate]

Listing 7.15 formatterLocalDate

implicit val localDateFormatter = new Formatter[LocalDate] {
 def bind(key: String, data: Map[String, String]) = {
 data.get(key).toRight {
 Seq(FormError(key, "error.required", Nil))
 }.right.flatMap { string =>
 Exception.allCatch[LocalDate]
 .either(LocalDate.parse(string))
 .left.map { exception =>
 Seq(FormError(key, "error.date", Nil))
 }
 }
 }

 def unbind(key: String, ld: LocalDate) = Map(key -> ld.toString)

 override val format = Some(("date.format", Nil))
}

In the method, we extract the value from the , and transform the bind Map

 that we get into an . If the is a , we return anOption Either Option None

error . If the succesfully retrieved the value, we try to parse it and if that fails,
we return an error message .

We have used two messages here, that we have to add to our conf/messages
file:

Listing 7.16 Messages file

Get value from map
Return error if key
not found

Parse string to
LocalDate
Return error if
parsing failed

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

236

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

date.format=date.format=Date (YYYY-MM-DD)
error.date=Date formatted as YYYY-MM-DD expected

Now that we have a , we can easily construct a Formatter[LocalDate]

 using the method:Mapping[LocalDate] Forms.of

val localDateMapping = Forms.of(localDateFormatter)

Because the parameter of the method is implicit, and we have declared ourof

localDateFormatter implicit as well, we can leave it off, but we do have to specify
the type parameter then. Additionally, if we have imported, we canForms._

write:

val localDateMapping = of[LocalDate]

Now that we have a , we can use it in a form:Mapping[LocalDate]

val localDateForm = Form(single(
 "introductionDate" -> localDateMapping
))

The method is identical to the method, except it's the one yousingle tuple

need to use if you have only a single field.
And we can render the element in a template:

@helper.inputText(productForm("introductionDate"),
 '_label -> "Introduction Date")

This wil render as in figure 7.2:

Figure 7.2 Form with custom LocalDate mapper

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

237

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.inputText
http://www.manning-sandbox.com/forum.jspa?forumID=810

And if we try to submit it with improper data it will show like in figure 7.3:

Figure 7.3 Form with custom LocalDate mapper and invalid inputp

The fact that you get access to the complete ,Map[String, String]

makes custom mappings pretty powerful. This also allows you to create a mapping
that uses multiple fields. For example, you can create a mapping for a DateTime

class that uses separate fields for the date and the time. This is quite useful, since
on the front-end, date and time pickers are often separate widgets.

File uploads are a special case. Files are uploaded with an HTML form, although
their behaviour is quite different to other form fields. Where you can re-display a
form that doesn't validate with the previously filled in values to your user, you
cannot with a file input. With Play, uploaded files are not a part of a , butForm

handled separately using a body parser. In this section we'll quickly go over file
uploads.

To upload a file with an HTML form, you need a form with multipart/form-data
encoding, and an input with type file:

<form action="@routes.FileUpload.upload" method="post"
 enctype="multipart/form-data">
 <input type="file" name="image" />
 <input type="submit" />
</form>

This form can be processed using the parse.multipartFormData

bodyparser:

def upload() = Action(parse.multipartFormData) { request =>
 request.body.file("image").map { file =>
 file.ref.moveTo(new File("/tmp/image"))
 Ok("Retrieved file %s" format file.filename)
 }.getOrElse(BadRequest("File missing!"))
}

7.4.8 Dealing with file uploads

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

238

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:action="@routes.FileUpload.upload
http://www.manning-sandbox.com/forum.jspa?forumID=810

Here, request.body is of type .MultipartFormData[TemporaryFile]

You can extract a file by the name of the input field, 'image' in our case. This gives
you a , which has a ref property, a reference toFilePart[TemporaryFile]

the that contains the uploaded file. This TemporaryFile TemporaryFile

deletes its underlying file when it is garbage collected.
Even though you don't use forms for processing files, you can still use them for

generating inputs and reporting validation errors. You can use the ignored

mapping and a custom validation to validate file uploads with a form, as in listing
7.17:

Listing 7.17 Using the mapping and custom validation to validate a fileignored

uploads

def upload() = Action(parse.multipartFormData) { implicit request =>
 val form = Form(tuple(
 "description" -> text,
 "image" -> ignored(request.body.file("image")).
 verifying("File missing", _.isDefined)))

 form.bindFromRequest.fold(
 formWithErrors => {
 Ok(views.html.fileupload.uploadform(formWithErrors))
 },
 value => Ok
}

Here we used the mapping , which ignores the form data butignored

delivers its parameter as value, in this case the request.body.file("image") value.
This allows you to add some data to the constructed object that comes from some
other source. Then, we use a custom validation to verify whether the

 is defined. If not, there was no file uploaded. Of courseOption[FilePart]

you can add more advanced validations here as well.
The type of the has become pretty awkward now: Form Form[(String,

Option[play.api.mvc.MultipartFormData.FilePart[play.api.libs.Files.TemporaryFile]])]

which would make the parameter declaration of your template very long. Luckily,

in our template we don't use the type of the , so we can just declare it like:Form

@(form: Form[_])

ignored mapping
Custom validation

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

239

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Now, you can use the helper to generate an input. Don't forget toinputFile

also add the right enctype attribute to the form:

@helper.form(action = routes.FileUpload.upload,
 'enctype -> "multipart/form-data") {
 @helper.inputText(form("description"))
 @helper.inputFile(form("image"))
}

One problem that remains is how to create a page displaying the empty form?
As we've defined our inside the action, because it uses the Form upload

, we can't readily use it in another action that displays the empty form.Request

We can solve this issue in at least two ways. The first way is to extract the form
from the action and make a function that generates either an empty one,upload

or a prefilled on given a . This is cumbersome, with little gains.Request

The easier way, which exploits the fact that we've used a wildcard type in the
parameter declaration for our template, is to create a dummy form that we use to
pass to the template:

def showUploadForm() = Action {
 val dummyForm = Form(ignored("dummy"))
 Ok(views.html.fileupload.uploadform(dummyForm))
}

This form does nothing, but it will allow us to invoke the template, which will
nicely render an empty HTML form without errors. It is not super neat but it
works, and you will have to decide for yourself whether you want to do this in
order to be able to reuse form validation for forms with file uploads.

In the next section we'll see how to process JSON and how we can reuse the
forms API for more than just processing HTML forms.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

240

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:@helper.form
mailto:@helper.inputText
mailto:@helper.inputFile
http://www.manning-sandbox.com/forum.jspa?forumID=810

Play has a forms API that you can use to validate and process your application’s
user input. Data enters your application as values, and it needs to beString

transformed to your Scala model objects. The process of converting String

values to your model objects is called . With the forms api, data is notbinding
bound to a model object directly, but to a instance, which can validateForm[T]

the data and report errors, or construct a model object of type if the dataT

validates.
A is constructed using a . Play provides simpleForm[T] Mapping[T]

mappings for types like strings, numbers and Boolean values, and you can
compose these to make more complex mappings. Custom mappings can be created
by transforming existing mappings, or by implementing a . YouFormatter[T]

can add validations to mappings with the method.verifying

Play provides form helpers, which are small templates that help you generate
HTML forms from a definition. You can customize the generated HTML byForm

implementing a custom .FieldConstructor

7.5 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

241

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

III
Part 3 introduces various advanced concepts of Play, and shows how to combine
these with the knowledge from part 2 to build the next generation of web apps.

Advanced Concepts

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

242

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

8
This chapter covers

In this chapter, we are going to re-implement the part of the sample application
from chapter XREF ch02_chapter using a more modern JavaScript client
application architecture that you can use to make more responsive web applications
with richer and more interactive user-interfaces.

We are going to use Play to build the server for a JavaScript application that
runs in the browser. Instead of using view templates to generate HTML on the
server and send web pages to the browser, we are going to send raw data to the
web browser and use JavaScript to construct the web page.

Our goal is to re-implement the product list application, so that we can edit
product information in-place by editing the contents of an HTML table, and have
changes saved to the server automatically, without submitting a form.

Building a single-page JavaScript
application with JSON

Defining a RESTful web service

Sending JSON to the web browser

Parsing JSON from an HTTP request

Converting between JSON data and Scala objects

Validating JSON data

Authenticating JSON web service requests

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

243

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 8.1 Editing the first row of a table of products

Figure 8.1 shows a table of products that allows us to edit values by clicking
and typing, adding ‘uncoated’ to the first product’s description in this case.

To implement this, we need to use a combination of JavaScript to handle
user-interaction in the web browser, Ajax to interact with the server, and a server
that provides access to product data. There’s more than one way to do this, and
we’re going to implement it in a single-page application.

As JavaScript in the web browser has become more powerful, it is increasingly
common to implement a web application’s entire user-interface layer in a
JavaScript client application. This takes advantage of increasingly rich APIs and
improved JavaScript run-time performance, and reduces the amount of data that
has to be sent between client and server. When done well, this can result in web
applications with a richer and more responsive user-interface, and a better user
experience.

This is called a ‘single-page application’ architecture when the server only ever
provides one HTML document, together with JavaScript code that handles
interaction with the server and the user-interface. There are no links to other pages,
or form requests that would cause the page to be reloaded. Instead, the JavaScript
application modifies the contents of the initially-loaded page.

In a single-page application architecture, the server-side application only
provides a data access layer, which is accessible via a RESTful web service
interface. The JavaScript application that runs in the browser is then a web service
client.

8.1 Creating the single-page Play application

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

244

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 8.2 Single page JavaScript application architecture

In this architecture, the server application interacts with the client by
exchanging data in JSON (JavaScript Object Notation) format. Although it may at
first seem that Play does not provide any particular support for this architecture, it
turns out that the two key ingredients are there.

To build an effective web service, you need fine control over the HTTP
interface. As we already saw in chapter XREF ch04_chapter, Play provides
flexible control over URLs, request parameters and HTTP headers. Using these
features is a key part of the web service design and implementation.

The second thing you need is fine control over parsing and generating the JSON
data. Play includes a JSON library that provides a convenient way to do just that.

The combination of Play’s HTTP API and the JSON library makes
implementing the server-side interface for a JavaScript client application a
straightforward alternative to using server-side templates to generate HTML.

To get started, we are going to create a new Play application like we did in chapter
XREF ch02_chapter, and re-use some elements that we created earlier. As before,
start by creating a new ‘simple Scala application’:

play new json

Remove files that we’re not going to use:

cd json
rm app/views/main.scala.html
rm public/images/favicon.png

8.1.1 Getting started

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

245

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

You can also remove configuration cruft: edit conf/application.conf

and delete every line except the property, near the top.application.secret

Next, copy the Twitter Bootstrap CSS (see section XREF ch02_section_css):

cp ~/bootstrap-2.0.2/docs/assets/css/bootstrap.css public/stylesheets

Replace the contents of with Twitterpublic/stylesheets/main.css

Bootstrap overrides:

Listing 8.1 Custom style sheet to override Twitter Bootstrap —
public/stylesheets/main.css

body { color:black; }
body, p, label { font-size:15px; }
.screenshot { width: 800px; margin:20px; background-color:#D0E7EF; }
.navbar-fixed-top, .navbar-fixed-bottom { position:relative; }
.navbar-fixed-top .navbar-inner { padding-left:20px; }
.navbar .nav > li > a { color:#bbb; }
.screenshot > .container { width: 760px; padding: 20px; }
table { border-collapse: collapse; width:100%; position:relative; }
td { text-align:left; padding: 0.3em 0; border-bottom: 1px solid white;
 vertical-align:top; }
tr:hover td, tr:focus td { background-color:white; }
tr:focus { outline:0; }
td .label { position:absolute; right:0; }

This gives us the look-and-feel that you can see in this chapter’s screen shots.

As in section XREF ch02_section_model, we are going to use a simplified model
layer that contains static test data and does not use persistent storage. If you prefer,
you can use a persistent model based on the examples in chapter XREF
ch05_chapter.

Add the following model class and data access object to the package.models

Listing 8.2 The model — app/models/Product.scala

package models

case class Product(ean: Long, name: String, description: String)

object Product {

8.1.2 Adding style sheets

8.1.3 Adding a simple model

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

246

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 var products = Set(
 Product(5010255079763L, "Paperclips Large",
 "Large Plain Pack of 1000"),
 Product(5018206244666L, "Giant Paperclips",
 "Giant Plain 51mm 100 pack"),
 Product(5018306332812L, "Paperclip Giant Plain",
 "Giant Plain Pack of 10000"),
 Product(5018306312913L, "No Tear Paper Clip",
 "No Tear Extra Large Pack of 1000"),
 Product(5018206244611L, "Zebra Paperclips",
 "Zebra Length 28mm Assorted 150 Pack")
)

 def findAll = this.products.toList.sortBy(_.ean)

 def findByEan(ean: Long) = this.products.find(_.ean == ean)

 def save(product: Product) = {
 findByEan(product.ean).map(oldProduct =>
 this.products = this.products - oldProduct + product
).getOrElse(
 throw new IllegalArgumentException("Product not found")
)
 }
}

The only addition to the version in section XREF ch02_section_model is the
 method, which takes a product instance as a parameter and replaces thesave

product that has the same unique EAN code. Note that this means that you cannot
save a product with a modified EAN code: attempting this will either result in a
‘Product not found’ error or replace one of the other entries.

The last step in creating our single page application is to add its page template.
This is a slightly simplified version of the layout template from section XREF
ch02_section_layout, without any template parameters.

Listing 8.3 The application’s single page template — app/views/index.scala.html

<!DOCTYPE html>
<html>
<head>
 <title>Products</title>
 <link rel='stylesheet' type='text/css'
 href='@routes.Assets.at("stylesheets/bootstrap.css")'>
 <link rel='stylesheet' type='text/css'
 href="@routes.Assets.at("stylesheets/main.css")">
 <script src='@routes.Assets.at("javascripts/jquery-1.7.1.min.js")'
 type='text/javascript'></script>

8.1.4 Page template

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

247

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:src='@routes.Assets.at
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:href='@routes.Assets.at
mailto:href="@routes.Assets.at
mailto:src='@routes.Assets.at

 <script src='@routes.Assets.at("javascripts/products.js")'
 type='text/javascript'></script>
</head>
<body>
<div class="screenshot">

 <div class="navbar navbar-fixed-top">
 <div class="navbar-inner">
 <div class="container">

 Product catalog

 <ul class="nav">
 </div>
 </div>
 </div>

 <div class="container">

 </div>
</div>
</body>
</html>

The addition to the earlier template is an HTML element for ourscript

application’s client-side script. This refers to a file, which weproducts.js

haven’t created yet.
We have the same ‘container’ element as before, which is where we arediv

going to put the page content.

Teaching client-side JavaScript programming is not the goal of this chapter, so the
implementation is going to be as simple as possible. To keep the code short, we’re
going to use CoffeeScript, which Play will compile to JavaScript when the
application is compiled.

F o r n o w , j u s t c r e a t e a n e m p t y
 file. We’ll add to this fileapp/assets/javascripts/products.coffee

as we build the application: let’s continue and add some data from the server.

In this section, we will add dynamic data from the server to our web page: a table
of products that just shows each product’s EAN code.

8.1.5 Client-side script

8.2 Serving data to a JavaScript client

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

248

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:src='@routes.Assets.at
mailto:href="@routes.Application.index
http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 8.3 A list of product EAN codes fetched from a web service URL and rendered in
JavaScript

Architecturally speaking, this means implementing a RESTful web service that
serves the product data to the JavaScript client. We’re using ‘RESTful’ in a loose
sense here, mostly to emphasise that we are not talking about a web service
implemented using SOAP. In particular, instead of sending data wrapped in XML,
we send JSON data.

JSON is data format of choice for many modern web applications, whether it is
used for external web services or communicating between browser and server in
your own application. JSON is a simple format and all common programming
languages and frameworks have tools to help you both generate and parse JSON.
Play is no exception. Play comes with a simple but useful JSON library that
simplifies some JSON tasks for you.

Our first task is to implement an HTTP resource that returns a list of product EAN
codes. In JSON format, this is an array of numbers, which will look like this:

[5010255079763,5018206244611,5018206244666,5018306312913,5018306332812]

To do this, create a new controller that defines a method.list

Listing 8.4 Controller whose action returns a JSON array — list

app/controllers/Products.scala

package controllers

import play.api.mvc.{Action, Controller}
import models.Product
import play.api.libs.json.Json

8.2.1 Constructing JSON data value objects

SERVING A JSON RESPONSE

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

249

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

object Products extends Controller {

 def list = Action {
 val productCodes = Product.findAll.map(_.ean)

 Ok(Json.toJson(productCodes))
 }
}

There isn’t much code here because we cheated. We used Play’s built-in JSON
library to serialise the list of numbers to its default JSON representation. Instead of
formatting the numbers as a string ourselves, we used the method totoJson

format the list. This formats each number as a string, and formats the list with
commas and square brackets.

Also, because we return a result, Play will automatically add a JsValue

 HTTP response header.Content-Type: application/json

Before we can see the result, we must define an HTTP route by replacing the
 file, to add a URL that we can send an HTTPconf/routes /products

request to.

Listing 8.5 HTTP routes configuration — conf/routes

GET / controllers.Application.index

GET /products controllers.Products.list

GET /assets/*file controllers.Assets.at(path="/public", file)

To test this, let’s use cURL (see section XREF ch04_debugging) on the
command-line to see the raw output:

$ curl --include http://localhost:9000/products
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 71

[5010255079763,5018206244611,5018206244666,5018306312913,5018306332812]

As you can see, Play has automatically set the response content type to
. This works because we converted the list of EAN codesapplication/json

DEFINING THE WEB SERVICE INTERFACE

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

250

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products
http://www.manning-sandbox.com/forum.jspa?forumID=810

using the method, which returns a toJson play.api.libs.json.JsValue

. When you construct a response, Play sets the content type according to the type of
the object used for the response, as we saw in section XREF
ch04_section_content_type.

The type represents any kind of JSONplay.api.libs.json.JsValue

value. However, JSON is made of different types. The JSON specification lists
strings, numbers, Booleans, objects, arrays and nulls as possible values. Play’s
JSON library is located in , and it contains case classesplay.api.libs.json

for each of JSON’s types:

JsString

JsNumber

JsBoolean

JsObject

JsArray

JsNull.

Each of these classes is a subtype of . They have sensibleJsValue

constructors: A takes a as a parameter and a JsString String JsNumber

takes a . Since Scala provides implicit conversions for , , BigDecimal Long Int

 and , you can just create one from whatever number you have. Double Float

 takes a , and takes a . Finally,JsBoolean Boolean JsArray Seq[JsValue]

a can be constructed from a sequence of key-value tuples: JsObject

.Seq[(String, JsValue)]

You can construct complex JSON structures by combining these case classes.
When you’re done, you can convert to a JSON string representation using the

 method we saw earlier.toJson

You can easily construct simple JSON object structures:

val category = JsString("paperclips")
val quantity = JsNumber(42)

JsObject and take sequences of as parameters, so youJsList JsValue

can also construct large, nested JSON objects, as in listing 8.6:

Listing 8.6 Nested JSON structure constructed from JSON library case classes

WORKING WITH THE JSON OBJECTS IN SCALA

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

251

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

val product = JsObject(List(
 "name" -> JsString("Blue Paper clips"),
 "ean" -> JsString("12345432123"),
 "description" -> JsString("Big box of paper clips"),
 "pieces" -> JsNumber(500),
 "manufacturer" -> JsObject(List(
 "name" -> JsString("Paperclipfactory Inc."),
 "contact_details" -> JsObject(List(
 "email" -> JsString("contact@paperclipfactory.example.com"),
 "fax" -> JsNull,
 "phone" -> JsString("+12345654321")
))
)),
 "tags" -> JsArray(List(
 JsString("paperclip"),
 JsString("coated")
)),
 "active" -> JsBoolean(true)
))

Remember, constructs the tuple , so we’re really passing aa -> b (a, b)

list of tuples to and JsObject JsArray.

When you return JSON from a controller action, you just pass the to theJsValue

result directly. Sometimes you just want to end up with a that containsString

JSON that you can send to the client. However, values are hard toString

manipulate and it is not convenient to construct JSON instancesString

manually, so you need another approach.
You can get the representation using the method String Json.stringify

as follows:

val productJsonString = Json.stringify(product)

Now is a with the following contentsproductJsonString String

(except for the white space we’ve added for readability):

{
 "name" : "Blue Paper clips",
 "ean" : "12345432123",
 "description" : "Big box of paper clips",
 "pieces" : 500,
 "manufacturer" : {
 "name" : "Paperclipfactory Inc.",
 "contact_details" : {

GENERATING STRINGS FROM JSON VALUES

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

252

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:contact@paperclipfactory.example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810

 "email" : "contact@paperclipfactory.example.com",
 "fax" : null,
 "phone" : "+12345654321"
 }
 },
 "tags" : [
 "paperclip",
 "coated"
],
 "active" : true
}

Play also overrides the method with one that calls toString

, so alternatively you can just use toJson.stringify product.toString

get a string representation of your JSON.
If you have an value in your Scala code, it’s not obvious how it shouldOption

be serialized to JSON. A common practice is to serialize to if the isnull Option

empty, and to the inner value’s serialization if it is defined. For example, you could
serialize an optional description of type as:Option[String]

description.map(JsString(_)).getOrElse(JsNull)

To continue with our example, we now need to update our client to populate the
empty page with the JSON data that the controllers.Products.list

action returns.
First, we’re going to add an element to our HTML page that we will use as a

placeholder for the data from the server. Replace the ‘container’ element withdiv

the following.

Listing 8.7 HTML element data placeholder — table app/views/index.scala.html

<div class="container">
 <table data-list="@routes.Products.list">
 </table>
</div>

To fetch the data from the server-side ‘product list’ resource, the client-side
JavaScript will need to know the product list’s URL. In this example, we are using
reverse routing to generate the URL () from the action name and store/products

Table element with
generated URLs in
a data attribute

FETCHING JSON DATA FROM THE CLIENT

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

253

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:contact@paperclipfactory.example.com
mailto:data-list="@routes.Products.list
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:contact@paperclipfactory.example.com

it in the an HTML5 data attribute in the generated view template.
We could insert the data directly into the ‘container’ element, creating thediv

table dynamically, but then we would have to hard-code the product list URL. That
would also be a good approach, if you prefer to create a greater separation between
client server, and use a documented HTTP API between the two. However,
defining a public API is not strictly necessary if there is precisely one server and
one client.

The next step is to add the missing JavaScript, which we’re writing as
CoffeeScript. Don’t worry if you don’t know CoffeeScript: there isn’t much of it
and it looks a bit like Scala sometimes.

Edit the empty fileapp/assets/javascripts/products.coffee

you created earlier, and add the following contents.

Listing 8.8 Client application to load data from the server —
app/assets/javascripts/products.coffee

jQuery ($) ->

 $table = $('.container table')
 productListUrl = $table.data('list')

 $.get productListUrl, (products) ->
 $.each products, (index, eanCode) ->
 row = $('<tr/>').append $('<td/>').text(eanCode)
 $table.append row

This code uses jQuery to run when the page has loaded and send an Ajax GET
request to the resource (the product list). The second parameter to the/products

jQuery function is a callback function that will be called when the request$.get

is complete. This loops over the resulting array of EAN codes, andproducts

adds a table row for one.
The result is a table with five rows and one column of EAN codes.

The product list
URL
Ajax GET request

Append a table row
for each product

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

254

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 8.4 A table that consists of a single column of EAN codes

The next step in our example is to fill in the table columns the products’ names and
descriptions. This will allow us to show the complete product table, shown in
figure 8.5.

Figure 8.5 Product details fetched by one additional GET request per table row

In the previous example, we only fetched a list of numbers from the server, in
JSON format. This time we will need to format instances of our

 case class as JSON.models.Product

This also illustrates a common technique in single page application
architecture: the first JSON request does not fetch all of the data used on the page.
Instead, the JavaScript first requests an outline of the product list and will then use
this data to request additional information for each product, with one request per
product.

This may seem inefficient for this small example, with so little data, but this is a
useful technique for progressively loading a large amount of data for a more
complex application.

Each row will be populated with data from a new product details resource, which
will return details of a single product in JSON format, such as the following.

{
 "ean" : 5010255079763,
 "name" : "Paperclips Large",
 "description" : "Large Plain Pack of 1000"
}

In the file, add the route definition after the product list route:conf/routes

8.2.2 Converting model objects to JSON objects

RETURNING A MODEL OBJECT IN JSON FORMAT IN HTTP RESPONSE

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

255

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

GET /products/:ean controllers.Products.details(ean: Long)

Add the corresponding action method in the controller.

Listing 8.9 Controller action to output product details in JSON format —
app/controllers/Products.scala

def details(ean: Long) = Action {
 Product.findByEan(ean).map { product =>

 Ok(Json.toJson(product))
 }.getOrElse(NotFound)
}

The idea is that this gets an from the model, returns aOption[Product]

response with the product in JSON format, or a error response if thereNotFound

is no such product.
Unfortunately, this doesn’t work, because Play’s JSON library doesn’t know

how to convert our product type into JSON.
We could use the earlier approach of creating a structure using theJsValue

various JSON type constructors, but it’s a lot of work to wrap every string that you
are outputting as JSON into a and every number into a .JsString JsNumber

Working with values is especially cumbersome. Luckily, there is betterOption

way: we need a JSON formatter.

As you have already seen, Play’s class has a method that canJson toJson

automatically serialize many objects to JSON:

val jsonString = Json.toJson("Johnny")
val jsonNumber = Json.toJson(Some(42))
val jsonObject = Json.toJson(
 Map("first_name" -> "Johnny", "last_name" -> "Johnson")
)

Here, we use on a , on an and even on a toJson String Option[Int]

.Map[String, String]

So how does this work? Surely, the method is not some huge methodtoJson

that has serialization implementations for an immense range of types. Indeed it
does not. What’s really going on here, is that the type signature of the toJson

Find the product
with the given EAN
Output the product
in JSON format
(doesn’t work yet)

JSON FORMATTERS

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

256

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

method looks like this:

def toJson[T](object: T)(implicit writes: Writes[T]): JsValue

The function takes the object that you’re serializing as its firsttoJson

parameter. It also has a second, implicit, parameter of type , where Writes[T] T

is the type of the object that you’re serializing. is a trait with a singleWrites[T]

method, , which converts an object of somewrites(object: T): JsValue

type to a . Play provides implementations of for many basicJsValue Writes

types, such as , and .String Int Boolean

Play also provides implicit conversions from a to Writes[T]

, and .Writes[List[T]] Writes[Set[T]] Writes[Map[String, T]]

This means that if there is a implementation available for a type, they areWrites

also automatically available for lists and sets of that type, and maps from strings to
that type.

For the simple types, the implementations are very simple. ForWrites

example, this is the one for :Writes[String]

implicit object StringWrites extends Writes[String] {
 def writes(o: String) = JsString(o)
}

Of course, we can also write implementations for our classes.Writes

Our example uses the following class:Product

case class Product(ean: Long, name: String, description: String)

We can create a implementation that constructs a Writes[Product] Map

from the instance and converts it to a :Product JsValue

Listing 8.10 implementationWrites[Product]

implicit object ProductWrites extends Writes[Product] {
 def writes(p: Product) = Json.toJson(
 Map(
 "ean" -> Json.toJson(p.ean),

ADDING A CUSTOM JSON FORMATTER

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

257

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 "name" -> Json.toJson(p.name),
 "description" -> Json.toJson(p.description)
)
)
}

We have created an object that extends the trait for the type Writes

, with a method that uses for each property.Product writes Json.toJson

We made the object , so that it can be used as an implicit parameterimplicit

to the method when we try to serialize a instance. ThisJson.toJson Product

means that with this implementation in scope, it’s trivial to serialize a Writes

 instance.Product

One nice property of using separate implementations for serializationWrites

is that it decouples the object from its JSON representation. With some other
serialization methods, certain annotations are added to the class that you want to
serialize, which defines the way objects of that type are serialized.

With Play’s approach, you can define multiple JSON representations for a type,
and pick one according to your needs. This is useful when you have properties,
such as a product’s cost price, that you don’t want to expose in an external API.
You can simply choose to omit properties from the JSON serialization.

If you are also building an administrative interface that should show all of the
product properties, then you can create another JSON representation of the same

 model class, including a new property of type .Product price BigDecimal

This would be another implementation:Writes

Listing 8.11 Alternative implementation that exposes Writes[Product]

purchase_price

import Json._

object AdminProductWrites extends Writes[Product] {
 def writes(p: Product) = toJson(
 Map(
 "ean" -> toJson(p.ean),
 "name" -> toJson(p.name),
 "description" -> toJson(p.description),
 "price" -> JsNumber(p.price)
)
)
}

This implementation is very similar to the one in listing 8.10, but thisWrites

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

258

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

time with the property added. Here, we did not make the object price

, since that would cause ambiguity with the other implicit

 implementation. We can use this one by specifying itWrites[Product]

explicitly:

val json = Json.toJson(product)(AdminProductWrites)

Now that we have a custom formatter, we can use it in our controller to format
 objects as JSON.Product

Add the whole definition (listingimplicit object ProductWrites

8.10) to the control ler c lass (Products

) as a class member, between theapp/controllers/Products.scala

action methods. Now the call to in the Json.toJson(product) details

action will work, and you can view the JSON output at
.http://localhost:9000/products/5010255079763

We need to construct this URL in our example, so add another data attribute to
the table element in the view template. We’ll use 0 as the placeholder for the EAN
code, and replace it later.

Listing 8.12 HTML element data placeholder — table app/views/index.scala.html

<table data-list="@routes.Products.list"
 data-details="@routes.Products.details(0)">
</table>

Finally, add some more CoffeeScript to send an additional GET request for
each EAN code, to fetch product details and add two more cells to each table row.

Listing 8.13 Client that add product details to each row —
app/assets/javascripts/products.coffee

jQuery ($) ->

 $table = $('.container table')
 productListUrl = $table.data('list')

 loadProductTable = ->
 $.get productListUrl, (products) ->
 $.each products, (index, eanCode) ->

Details URL for
EAN code 0

USING A CUSTOM FORMATTER

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

259

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products/5010255079763
mailto:data-list="@routes.Products.list
mailto:data-details="@routes.Products.details
http://www.manning-sandbox.com/forum.jspa?forumID=810

 row = $('<tr/>').append $('<td/>').text(eanCode)
 row.attr 'contenteditable', true
 $table.append row
 loadProductDetails row

 productDetailsUrl = (eanCode) ->
 $table.data('details').replace '0', eanCode

 loadProductDetails = (tableRow) ->
 eanCode = tableRow.text()

 $.get productDetailsUrl(eanCode), (product) ->
 tableRow.append $('<td/>').text(product.name)
 tableRow.append $('<td/>').text(product.description)

 loadProductTable()

Now we can reload the page and see the full table, which is the result of six
Ajax requests for JSON data: one for the list of EAN codes and one for each of the
five products.

Figure 8.6 Complete product details table

Now that we’ve populated our table, let’s make it editable by using Ajax to
send JSON data back to the server.

So far, we’ve looked at how to use JSON to get data from the server on a web
page, but we didn’t make it editable yet. We wrote a Play application that serves
data in JSON format to a JavaScript client that renders the data as HTML. In this
section we will work in the opposite direction and send edited data back to the
server.

To do this, we will make minimal changes to our client application and focus
on the server-side HTTP interface.

Load additional
details for this row
Construct a
product details
URL, replacing the
EAN code
EAN code from the
first column
Fetch details for
this EAN

8.3 Sending JSON data to the server

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

260

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The usual way to make data editable on a web page is to use an HTML form that
submits form-encoded data to the server. For this example, we are going to cheat
by using the HTML5 attribute to make the table cellscontenteditable

directly editable.
When an HTML5 element has the attribute, you can justcontenteditable

click the element to give it focus and start editing its text content. Figure 8.7 shows
what happens if you click the first row and type ‘uncoated’ at the end of the
description: CSS styling that sets the background color to white and there is a text
caret at the insertion point.

Figure 8.7 Editing a table cell’s contents using the HTML5 contenteditable attribute

This way, we don’t need to make any changes to the page’s HTML structure,
and can use client-side JavaScript to encode and send the data to the server.

To edit data in the web page and submit the changes to the server, we have to
add some more code to our CoffeeScript file to handle changes to editable content.

Listing 8.14 Client code to make the table editable and send updates to the server
— app/assets/javascripts/products.coffee

jQuery ($) ->

 $table = $('.container table')
 productListUrl = $table.data('list')

 loadProductTable = ->
 $.get productListUrl, (products) ->
 $.each products, (index, eanCode) ->
 row = $('<tr/>').append $('<td/>').text(eanCode)
 row.attr 'contenteditable', true
 $table.append row
 loadProductDetails row

 productDetailsUrl = (eanCode) ->

Make the table row
editable

8.3.1 Editing and sending client data

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

261

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

1.

2.
3.

4.

 $table.data('details').replace '0', eanCode

 loadProductDetails = (tableRow) ->
 eanCode = tableRow.text()
 $.get productDetailsUrl(eanCode), (product) ->
 tableRow.append $('<td/>').text(product.name)
 tableRow.append $('<td/>').text(product.description)
 tableRow.append $('<td/>')

 loadProductTable()

 saveRow = ($row) ->

 [ean, name, description] = $row.children().map -> $(this).text()
 product =
 ean: parseInt(ean)
 name: name
 description: description
 jqxhr = $.ajax
 type: "PUT"
 url: productDetailsUrl(ean)
 contentType: "application/json"
 data: JSON.stringify product
 jqxhr.done (response) ->
 $label = $('').addClass('label label-success')
 $row.children().last().append $label.text(response)
 $label.delay(3000).fadeOut()
 jqxhr.fail (data) ->
 $label = $('').addClass('label label-important')
 message = data.responseText || data.statusText
 $row.children().last().append $label.text(message)

 $('[contenteditable]').live 'blur', ->
 saveRow $(this)

There is only one change in the first half of this example, up to the call to
 — we add the HTML attributeloadProductTable() contenteditable

to each HTML element as we create it.tr

The second-half of the code saves the contents of a table row to the server, in a
 function that we attach to the element’s event, which happenssaveRow tr blur

when the table row loses focus.
There are four things in the function that are important for thesaveRow

server-side HTTP interface.

The URL is the same as the URL we fetch one product’s details from, e.g.
http://localhost:9000/products/5010255079763.
The HTTP request method is .PUT

A response with an HTTP success status contains a message in the response body.

Send data to the
server

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

262

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/products/5010255079763
http://www.manning-sandbox.com/forum.jspa?forumID=810

4. An HTTP failure response contains a message in the response body or status text.

As you would expect, we can implement this API specification in our Play
application, in a similar way to how we built the application so far. This time,
however, we are starting from the HTTP interface.

The first step in consuming JSON in our application is to receive it from the client
in an incoming HTTP request. First, this means adding a new route configuration.
Add the following line to the file, after the other products routes:conf/routes

PUT /products/:ean controllers.Products.save(ean: Long)

Add the corresponding action method in the controller.

Listing 8.15 Controller action to output product details in JSON format —
app/controllers/Products.scala

def save(ean: Long) = Action(parse.json) { request =>
 val productJson = request.body
 val product = productJson.as[Product]

 try {
 Product.save(product)
 Ok("Saved")
 }
 catch {
 case e:IllegalArgumentException =>
 BadRequest("Product not found")
 }
}

This action method is like the action we saw earlier, but insave details

reverse. This time we start with a product in JSON format, which the HTTP PUT
request contains in the request body, and we parse the JSON into a

 instance.models.Product

As before, Play’s JSON library doesn’t know how to convert JSON to our
product type, so we have to add a custom parser. This means adding an
implementation of the trait to go with the Reads[Product]

 implementation we have already added.Writes[Product]

Add the following implementation (listing 8.16) to the Reads[Product]

Parse the product
in JSON format
(doesn’t work yet)
Save the product
Return an success
response

Return an error
response

8.3.2 Consuming JSON

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

263

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 controller class (), rightProducts app/controllers/Products.scala

after .ProductWrites

Listing 8.16 implementationReads[Product]

implicit object ProductReads extends Reads[Product] {
 def reads(json: JsValue) = Product(
 (json \ "ean").as[Long],
 (json \ "name").as[String],
 (json \ "description").as[String]
)
}

Now the call to in the action will work. AsJsValue.as[Product] save

with , this parser is declared , so it will be usedProductWrites implicit

automatically. Also, you can see how the implementation uses the caseProduct

class constructor to extract specific fields from the JSON data. Other
 implementations could use different constructors and fields.Reads[Product]

Now if you edit a product description, as shown in figure 8.7, the updated
product details will be sent to the server, the action method will save thesave

product and return a plain text response with the body ‘Saved’, and the
CoffeeScript client’s callback will add a success label to the page,jqxhr.done

as shown in figure 8.8.

Figure 8.8 Displaying a label to indicate a successful Ajax request

We also have to handle errors. You may recall that the model’s functionsave

throws an exception if the given product’s ID is not found:

def save(product: Product) = {
 findByEan(product.ean).map(oldProduct =>
 this.products = this.products - oldProduct + product
).getOrElse(
 throw new IllegalArgumentException("Product not found")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

264

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

)
}

When this happens, the controller action returns a Products.save

 result, and the client’s BadRequest("Product not found")

 callback will adds an error label to the page, as shown in figure 8.9.jqxhr.fail

Figure 8.9 Displaying a label to indicate a server-side error

Now that we’ve seen one way to consume JSON in our example single-page
application, let’s take a step back and see what the alternatives are.

When you build your own web service, use a third-party web service, or build a
rich user-interface that interacts with your server using JSON, you will have to
consume JSON.

With Play, there are two main ways to consume JSON. The first is to use the
JSON library that we saw in action in section 8.2. The second is to use the forms
API, as we discussed earlier.

The main difference is that with the forms API it is easy to validate the JSON
that you are consuming, and generate sensible validation messages if it’s not what
you expect. The JSON API approach is a better choice when you’re not interested
in validation, and just want to transform known JSON structures into objects.

In this subsection, we’ll show you how you can use the JSON API, and in
section 8.4 we’ll demonstrate how to use the forms API for consuming and
validating JSON.

Consuming JSON is a two-step process. The first step is going from a JSON
string to objects. This is the easiest step; you do it with the JsValue

 method:Json.parse

val jsValue: JsValue = Json.parse("""{ "name" : "Johnny" }""")

8.3.3 Different approaches to consuming JSON

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

265

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Often, you don’t even need to manually perform this step. If a request has a
JSON body and a header with value ,Content-Type application/json

Play will do this for you automatically. Then you can immediately get a JsValue

object from the request:

def postProduct() = Action { request =>
 val jsValueOption = request.body.asJson
 jsValueOption.map { json =>
 // Do something with the json
 }.getOrElse {
 // Not a JSON body
 }
}

This example uses the default body parser, the parser. ThisAnyContent

parser will look at the header, and parse the body accordingly,Content-Type

The method returns an , and it isrequest.body asJson Option[JsValue]

a when the request has or as requestSome application/json text/json

content type. In this case, we’ll have to deal with the case of a different content
type ourselves. If you’re only willing to accept JSON for an action, which is pretty
common, you can use the body parser:parse.json

def postProduct2() = Action(parse.json) { request =>
 val jsValue = request.body
 // Do something with the JSON
}

This body parser will also check for a JSON content-type, but it will return a
HTTP status if the content type is wrong. If the content type400 Bad Request

is right, and parsing succeeds, the value is of type request.body JsValue

and you can use it immediately.
Sometimes you have to deal with misbehaving clients that send JSON without

proper headers. In that case, you can use the Content-Type

 body parser, which does not check the header, but justparse.tolerantJson

tries to parse the body as JSON.
Now that we have a in hand, we can extract data from it. JsValue JsValue

has the and methods, to convert the value into an object ofas[T] asOpt[T]

type or respectively:T Option[T]

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

266

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

val jsValue = JsString("Johnny")
val name = jsValue.as[String]

Here, we try to extract a type out of a , which works,String JsValue

because the is in fact a . But if we try to extract an JsValue JsString Int

from the same , it fails:JsValue

val age = jsValue.as[Int] // Throws java.lang.RuntimeException

If we’re unsure about the content of our , we can use instead.JsValue asOpt

This will return a if de-serializing the value causes an exception:None

val age: Option[Int] = jsValue.asOpt[Int]
val name: Option[String] = jsValue.asOpt[String]

Of course, often you’ll be dealing with more complex JSON structures. There
are three methods to traverse a tree:JsValue

\ — selects an element in a , returning a JsObject JsValue

\\ — selects an element in the entire tree, returning a Seq[JsValue]

apply — selects an element in a , returning a JsArray JsValue

The and methods each have a single parameter to select by\ \\ String

property name in a , the method has a parameter to selectJsObject apply Int

an element from a . So with the following JSON structure:JsArray

Listing 8.17 Sample JSON structure for a person.

import Json._
val json: JsValue = toJson(Map(
 "name" -> toJson("Johnny"),
 "age" -> toJson(42),
 "tags" -> toJson(List("constructor", "builder")),
 "company" -> toJson(Map(
 "name" -> toJson("Constructors Inc.")))))

You can extract data with a combination of , , , and :\ \\ apply as asOpt

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

267

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

val name = (json \ "name").as[String]
val age = (json \ "age").asOpt[Int]
val companyName = (json \ "company" \ "name").as[String]
val firstTag = (json \ "tags")(0).as[String]
val allNames = (json \\ "name").map(_.as[String])

Here, we extract elements from the top-level object as or String

 . We can traverse deeper in the object by using the methodOption[Int] \

multiple times . We use the method, we can just use for that, toapply ()

extract an element from a list . Finally, we use the method and to get a\\ map

list of s from multiple locations in the JSON structure . This last oneString

will both contain "Johnny" and "Constructors Inc.".
If you try to select a value that doesn’t exist in a with the JsObject \

method, or if you use it on a non- , or if you use the methodJsObject apply

with an index larger than the largest index in the array, no exception will be
thrown. Instead, an instance of will be returned. This class is aJsUndefined

subtype of , and trying to extract any value out of it with willJsValue asOpt

return a . This means you can safely use large expressions on a ,None JsValue

and as long as you use at the end to extract the value, no exception will beasOpt

thrown, even if elements early in the expression don’t exist. For example, we can
do the following on the value from listing 8.17:json

(json \ "company" \ "address" \ "zipcode").asOpt[String]

Even though the property does not exist, we can still call address

 on it without getting an exception.\("zipcode")

Of course, you can also use pattern matching to extract values from a
:JsValue

(json \ "name") match {
 case JsString(name) => println(name)
 case JsUndefined(error) => println(error)
 case _ => println("Invalid type!")
}

If the is a , the content will be printed. If it is a JsValue JsString

, an error will be printed (for example: JsUndefined 'name' is

, if is a without a undefined on object: {"age":42} json JsObject

Name as String
Age as Option[Int]

First tag
Seq[String]

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

268

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 property), and on any other type, a generic error will be printed.name

In section 8.2.2 we saw how Play uses the trait to reuse JSONWrites[T]

serialization definitions and how the method takes one of these Json.toJson

 implementations as an implicit parameter to serialize an object ofWrites[T]

type . A similar trait exists for the reverse operation.T

The trait has a single method, Reads[T] reads(json: JsValue): T

that de-serializes JSON into an object of type and the and T JsValue.as[T]

 methods take a implementation as an implicitJsValue.asOpt[T] Reads[T]

parameter. The signatures of and are:as asOpt

def as[T](implicit reads: Reads[T]): T
def asOpt[T](implicit reads: Reads[T]): Option[T]

Again, Play provides a variety of implementations. So the followingReads

expression:

jsValue.as[String]

… has the same value as:

jsValue.as[String](play.api.libs.json.Reads.StringReads)

Again, similarly to , Play provides implicit conversions from a Writes

 to a , , Reads[T] Reads[Seq[T]] Reads[Set[T]]

 and a couple others.Reads[Map[String, T]]

Of course, you can also implement yourself. Let’s go back to ourReads

simple class:Product

case class Product(
 name: String,
 description: Option[String],
 purchasePrice: BigDecimal,
 sellingPrice: BigDecimal)

Now suppose that we have the following JSON structure that we want to

8.3.4 Reusable consumers

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

269

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

de-serialize into such a :Product

val productJsonString = """{
 "name": "Sample name",
 "description": "Sample description",
 "purchase_price" : 20,
 "selling_price": 35
}"""

We can write an object that implements :Reads[Product]

implicit object ProductReads extends Reads[Product] {
 def reads(json: JsValue) = Product(
 (json \ "name").as[String],
 (json \ "description").asOpt[String],
 (json \ "purchase_price").as[BigDecimal],
 (json \ "selling_price").as[BigDecimal])
}

We have made the object implicit so we can use it as an implicit parameter to
the method. Now, we can use to de-serialize a into a JsValue.as as JsValue

:Product

val productJsValue = Json.parse(productJsonString)
val product = productJsValue.as[Product]

It is common to both serialize and de-serialize a type to and from JSON. Of
course, you can create a single class or object that implements both Reads[T]

and . Play even provides a shortcut for that: the trait Writes[T] Formats[T]

extends both and . Do not confuse this Reads[T] Writes[T] Formats[T]

trait, used for JSON serialization and de-serialization with the Formatter[T]

trait that we saw in section 8.2.3, which is used to create custom s.Mapping

One thing that you might have noticed already, and that you would certainly
notice if you start implementing some JSON de-serializers yourself, is that the

 trait has no nice failure method. The method doesn’t return,Reads[T] reads

for example, , where you could return a with anEither[String, T] Left

error on failure, but just , so it has to return an instance of . If your T T reads

implementation discovers that the JSON structure is invalid, there is no other
option than throwing an exception. This makes the trait unsuitable forReads

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

270

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

processing JSON that may be invalid, like user-entered provided JSON. Luckily, if
that is the case, we can use the forms API to process JSON.

Now that we have a server-side HTTP interface that can receive and parse the
data the client sends, we are going to need to validate that data. In the same way
that we validated HTML form data in chapter XREF ch07_chapter, we now need
to validate JSON data.

Suppose that you are building a JSON REST API that is accessible to the public.
Even though you document and publish the JSON representations that you expect
to receive, it’s still better to give your users detailed error messages if the JSON is
not what you expect, instead of a generic error message.

If you want to do advanced JSON validation and error reporting, you can use
Play’s forms API. As mentioned earlier, the forms API is not just for HTML form
processing; it can also process other data structures, including JSON.

Creating a for a given JSON structure is almost a trivial task. ForMapping

example, a is mapped with a like .JsString Mapping[String] Json.text

This may be best illustrated with an example. Suppose that you have the JSON
structure in listing 8.18:

Listing 8.18 Sample product JSON structure

{
 "name": "Blue Paper clips",
 "ean": "12345432123",
 "description": "Big box of paper clips",
 "pieces": 500,
 "manufacturer": {
 "name": "Paperclipfactory Inc.",
 "contact_details": {
 "email": "contact@paperclipfactory.example.com",
 "fax": null,
 "phone": "+12345654321"
 }
 },
 "tags": [
 "paperclip",
 "coated"
],
 "active": true
}

8.4 Validating JSON

8.4.1 Validating using the Play forms API

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

271

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:contact@paperclipfactory.example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810

A mapping for this structure is shown in listing 8.19:

Listing 8.19 Sample tuple mapping for JSON structure of listing XREF
ch7-sample-json-product-structure

val productMapping = tuple(
 "name" -> text,
 "ean" -> text,
 "description" -> optional(text),
 "pieces" -> optional(number),
 "manufacturer" -> tuple(
 "name" -> text,
 "contact_details" -> tuple(
 "email" -> optional(email),
 "fax" -> optional(text),
 "phone" -> optional(text))),
 "tags" -> list(text),
 "active" -> boolean)

Here we’ve used many of the mappings we’ve seen before, like . Wetext

use the transformation to extract optional values, nested mappings optional

, and the method to create a mapping for extracting the list of tags list List

.
Now we can use the same tools that we’ve seen in earlier sections. For

example, a typical action method would use the method on a :fold Form

def createProduct() = Action { implicit request =>
 val productForm = Form(productMapping)
 productForm.bindFromRequest.fold(
 formWithErrors => BadRequest(formWithErrors.errorsAsJson),
 value => Created(Json.toJson(value))
)
}

Here, we use the method to get a JSON representation of theerrorsAsJson

form errors. If send an HTTP request against this action with a JSON body that is
missing the property, we would get the following response body:ean

{
 "ean": [
 "This field is required"
]
}

simple String
mapping
optional mapping

nested mapping

list mapping

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

272

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Internally, if you pass a to the forms API with or JsValue bind

, it will convert the JSON structure into a bindFromRequest Map[String,

. For example, the following JSON structure:String]

{
 "name" : "Johnny",
 "age" : 42,
 "contact_details" : {
 "email" : "johnny@example.com",
 "phone" : "+123454321",
 "fax" : null
 },
 "tags" : [
 "constructor",
 "builder"
]
}

will be transformed into the following :Map

Map("name" -> "Johnny",
 "age" -> "42",
 "contact_details.email" -> "johnny@example.com",
 "contact_details.phone" -> "+123454321",
 "tags[0]" -> "constructor",
 "tags[1]" -> "builder")

As shown here, all values are transformed to s, nested keys areString

concatenated with a dot in between, null values are not put in the map and values
in arrays are indexed. After these transformations, the looks exactly like youMap

would construct it in an HTML form.
There is a caveat here. By its nature, JSON is a richer structure than HTML

form data. Some of that structure is lost in the Forms API, because internally all
types are converted into strings before they are processed by the s. ForMapping

example, from the view of the Forms API, there is no difference between the
following two JSON objects:

{
 "field1" : 1.5,
 "field2" : null
}

8.4.2 Implementing the forms API for JSON

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

273

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:johnny@example.com
mailto:johnny@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810
mailto:johnny@example.com

{
 "field1" : "1.5"
}

The field is a JSON number in the first object, and a JSON string infield1

the second object. This distinction is lost; they are s in the forms API.String

This is not often a problem, since with the mapping you can naturallynumber

parse it into a number type again in Scala. For however, we lose thefield2

distinction between a value and the field missing from the JSON altogether.null

This is a bigger issue, since the meaning of these two can be quite different.
For example, in a REST API setting the value to could mean ‘Removenull

the existing value’, while leaving the field off could mean ‘Keep the existing value
of this setting’. This problem cannot be overcome by writing a different ,Mapping

because the distinction between these two situations is lost when the JSON

structure is transformed into the internal representation in the forms API, which is
a .Map[String, String]

If you do need to make the distinction, you can lookup the value in the original
 structure. For example:JsValue

(json \ "field2") match {
 case JsNull => // Value is null
 case JsUndefined => // Field is not set
 case _ => // Value is set
}

These limitations are not inherent in the forms API, but are merely a result of
the current implementation. This means that it is quite possible that these
limitations will be removed in future versions of Play.

Now you know all that you need to start dealing with JSON in your Play
application. Of course, it’s possible that you don’t like this approach to JSON with
type classes, and prefer JSON libraries that do more for you, such as JSON
libraries that are based on reflection. Most of these libraries can automatically
serialize and de-serialize objects, without the need for explicit implementations of

 and traits, at the cost of coupling a single JSON representation toWrites Reads

a class. In practice, this is often not flexible enough and introduces the need for
‘intermediate’ classes — data transfer objects whose structure resembles the JSON

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

274

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

that you want to serialize or de-serialize, which in turn creates the need to write
code that converts between these value objects and your real domain objects. One
such a library is Jerkson, which is the library that Play’s own JSON library is built
on. It is possible to use Jerkson directly, or you can use any other JSON library that
you like.

So far we have covered a lot more about JSON than about the HTTP API that
our application’s JSON web service provides, mainly because it is not that
different to previous chapters. Now it’s time to return to a specific aspect of the
HTTP API.

The previous sections show how to use Play to build a stateless web service that
sends and receives JSON data instead of HTML documents and form data.
Although this is everything you need to build a JavaScript-based single-page web
application, there is one special case that deserves consideration: authenticating
web service requests.

Authentication means identifying the ‘user’ who is sending the request, by
requiring and checking valid credentials, usually user name and password.
Authentication is usually used for authorisation—restricting access to resources
depending on the authenticated user.

In a conventional web application, authentication is usually implemented by
using an HTML log in form to submit credentials to a server application, which
then maintains a ‘session’ state that future requests from the same user are
associated with. In our JSON web service architecture, there are no HTML forms,
so we use different methods to associated authentication credentials with requests.

NOTE Authentication is not built-in
Web service authentication is an example of something that is not
implemented for you in Play—there are no included libraries to
handle authentication for you. This is partly because there is more
than one way to add authentication to an HTTP API, and different
APIs and clients will have different requirements. Also,
implementing authentication directly in your application does not
require much code, as you will see in this chapter.

8.5 Authenticating JSON web service requests

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

275

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

The simplest approach to perform authentication for every HTTP request, before
returning the usual response or an HTTP error that indicates that the client is not
authorized to access the requested resource. This means that our application
remains stateless, but also that every HTTP request must include valid credentials.

To perform authentication for every request, we want to a way to add this
additional behaviour to every action method in our controller class. A good way to
do this is to use action composition.

You may recall from chapter XREF ch04_chapter that an action method returns
a , which is a wrapper for a function from a request toplay.api.mvc.Action

a result.

def action = Action { request =>
 Ok("Response…")
}

Note that this, and the code listings that follow, are all helper methods in a
controller class. Create a new Play Scala application and add them to the file

.app/controllers/Application.scala

We can add authentication using basic action composition that replaces the
standard generator with our own version. This means defining an Action

 function that returns a new action to performAuthenticatedAction

authentication, and which behaves like a normal action if authentication succeeds.

def index = AuthenticatedAction { request =>
 Ok("Authenticated response…")
}

The outline of the is to use the request to call aAuthenticatedAction

Boolean function and delegate to the wrapped action ifauthenticate

authentication succeeds, or return an HTTP ‘not authorized’ result otherwise.

Listing 8.20 Action helper that performs authentication

def AuthenticatedAction(f: Request[AnyContent] => Result):
 Action[AnyContent] = {

Parameter: the
action to

8.5.1 Adding authentication to action methods

COMPOSING ACTIONS TO ADD BEHAVIOUR

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

276

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 Action { request =>
 if (authenticate(request)) {
 f(request)
 }
 else {
 Unauthorized
 }
 }
}

We can test this using cURL (see section XREF ch04_debugging) on the
command-line. If the method returns , we get the expectedauthenticate true

success HTTP response:

$ curl --include http://localhost:9000/
HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 25

Authenticated response…

If the method returns , we get the ‘not authorized’authenticate false

HTTP error response:

$ curl --include http://localhost:9000/
HTTP/1.1 401 Unauthorized
Content-Length: 0

This works, but if authentication fails we have no way of adding a useful error
message to the HTTP ‘unauthorized’ response, because we won’t know whether
the credentials were missing or the password was just wrong.

The previous example supposed that the authentication method would take a
 parameter, extract the credentials and performplay.api.mvc.Request

authentication. It is better to separate these steps, so we can report errors in
different steps separately.

First, we’ll extract the code to get user name and password credentials from the
request, so we can extract that from our action helper.

Listing 8.21 Helper function to extract credentials from a request query string

authenticate
Return an action

Authenticated:
execute the action
to generate a result
Not authenticated:
generate an HTTP
error result

EXTRACTING CREDENTIALS FROM THE REQUEST

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

277

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/
http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

def readQueryString(request: Request[_]):
 Option[Either[Result, (String, String)]] = {

 request.queryString.get("user").map { user =>
 request.queryString.get("password").map { password =>
 Right((user.head, password.head))
 }.getOrElse {
 Left(BadRequest("Password not specified"))
 }
 }
}

What this helper function does is pretty simple, but it has a complicated return
type that nests an inside an , because there are several cases.Either Option

If the query string does not contain a parameter, the function returns (nouser None

credentials).
If the query string contains both and parameters, the function returns auser password

pair (the credentials).
If the query string contains a parameter but no password, the function returns a user

 (HTTP error).BadRequest

This approach means that we can add proper error handling to
, without using lots of statements.AuthenticatedAction if

Listing 8.22 Updated action helper that extracts credentials before authentication

def AuthenticatedAction(f: Request[AnyContent] => Result):
 Action[AnyContent] = {

 Action {
 request =>
 val maybeCredentials = readQueryString(request)

 maybeCredentials.map { resultOrCredentials =>

 resultOrCredentials match {

 case Left(errorResult) => errorResult

 case Right(credentials) => {
 val (user, password) = credentials
 if (authenticate(user, password)) {
 f(request)
 }
 else {
 Unauthorized("Invalid user name or password")
 }
 }
 }

Optionally return
an error or a
credentials

Return an HTTP
error result

Use pattern
matching on the
credentials

Error reading
credentials

Authenticate using
credentials

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

278

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 }.getOrElse {
 Unauthorized("No user name and password provided")
 }
 }
}

The action helper now handles several cases, which we can now demonstrate.
First, we can add credentials to our request.

$ curl --include "http://localhost:9000/?user=peter&password=secret"
HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 25

Authenticated response…

If the password is missing we get an error message from the
 function (listing 8.21).readQueryString

$ curl --include "http://localhost:9000/?user=peter"
HTTP/1.1 400 Bad Request
Content-Type: text/plain; charset=utf-8
Content-Length: 22

Password not specified

If the credentials are missing entirely we get a different error message from the
action helper (listing 8.22).

$ curl --include http://localhost:9000/
HTTP/1.1 401 Unauthorized
Content-Type: text/plain; charset=utf-8
Content-Length: 34

No user name and password provided

As well as better error messages, another advantage of our updated action
helper is that we changed the method to use user name andauthenticate

password parameters, making it independent of how these credentials are retrieved
from the request. This means we can add another approach to reading credentials.

No credentials read

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

279

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/?user=peter&password=secret
http://localhost:9000/?user=peter
http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

A more standard way to send authentication credentials with an HTTP request is to
use HTTP basic authentication, which sends credentials in an HTTP header.

SIDEBAR How HTTP basic authentication works
HTTP basic authentication is a simple way for web services to request
authentication for clients, and for clients to provide credentials with
HTTP requests.
A server requests basic authentication by sending an HTTP 401 ‘Not
Authorized’ response with an additional header.WWW-Authenticate

The header has a value like .Basic realm="Product catalog"

This specifies the required authentication type and names the protected
resource.
The client then sends a new request with an headerAuthorization

with credentials encoded in the value. The header value is the result of
joining a user name and a password into a single string with a colon,
and encoding the result using Base64 to generate an ASCII string. For
example, a user name ‘peter’ and password ‘secret’ are combined to
make , which is encoded to . Thispeter:secret cGV0ZXI6c2VjcmV0

process is then reversed on the server.
Basic authentication should only be used on trusted networks or via an
encrypted HTTPS connection is used, because otherwise the
credentials can be intercepted.

To add basic authentication to our example, we need a helper function that
returns the same combination of errors or credentials as the readQueryString

function (listing 8.21), so we can use it the same way. This version is longer,
because as well as reading the HTTP header, we have to decode the
Base64-encoded header value.

Listing 8.23 Helper function to extract credentials from basic authentication
headers

def readBasicAuthentication(headers: Headers):
 Option[Either[Result, (String, String)]] = {

 headers.get(Http.HeaderNames.AUTHORIZATION).map { header =>

 val BasicHeader = "Basic (.*)".r
 header match {
 case BasicHeader(base64) => {
 try {

‘Authorization’
header
Regular expression
to parse the header

8.5.2 Using basic authentication

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

280

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 import org.apache.commons.codec.binary.Base64
 val decodedBytes =
 Base64.decodeBase64(base64.getBytes)
 val credentials =
 new String(decodedBytes).split(":", 2)
 if (credentials.length != 2) {
 Left(BadRequest("Invalid basic authentication"))
 } else {
 val (user, password) = (credentials(0), credentials(1))
 Right((user, password))
 }
 }
 }
 case _ => Left(BadRequest("Bad Authorization header"))
 }
 }
}

To use the new helper, we can just add it to the line in our
 helper (listing 8.22) that gets credentials from theAuthenticatedAction

request, so that it gets used if the attempt to read credentials from the query string
returns .None

val maybeCredentials = readQueryString(request) orElse
 readBasicAuthentication(request.headers)

Now we can use basic authentication in our request:

$ curl --include --user peter:secret http://localhost:9000/
HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 25

Authenticated response…

If we send an invalid basic authentication header, with an instead of a base-64x

encoded user name and password pair, then we get a sensible error message.

$ curl -i --header "Authorization: Basic x" http://localhost:9000/
HTTP/1.1 400 Bad Request
Content-Type: text/plain; charset=utf-8
Content-Length: 28

Invalid basic authentication

Decode Base64

Extract user name
and password

Extraction failed

Return credentials

No regular
expression match

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

281

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/
http://localhost:9000/HTTP/1.1400BadRequestContent-Type:text/plain
http://localhost:9000/HTTP/1.1400BadRequestContent-Type:text/plain
http://localhost:9000/HTTP/1.1400BadRequestContent-Type:text/plain
http://www.manning-sandbox.com/forum.jspa?forumID=810

Finally, we can improve the error response when there are no credentials, by
adding a response header that indicates that basic authentication is expected. In the

 helper (listing 8.22), replace the line AuthenticatedAction

 with anUnauthorized("No user name and password provided")

error that includes a response header:WWW-Authenticate

val authenticate = (HeaderNames.WWW_AUTHENTICATE, "Basic")
Unauthorized.withHeaders(authenticate)

The response now includes a header when we don’tWWW-Authenticate

provide any credentials:

$ curl --include http://localhost:9000/
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic
Content-Length: 0

Using query string parameters or basic authentication to send authentication
credentials to the server is a start, but not necessarily what we want to use for all
requests. Web services often use one of two alternatives.

Token-based authentication — providing a signed ‘API key’ that clients can send with
requests, either in a custom HTTP header or query string parameter
Session-based authentication — using one method to authenticate, and then providing a
session identifier that clients can send, either in an HTTP cookie or a HTTP header.

Both approaches are similar: a previously-authenticated user is provided a
token that can be used instead of a user name and password, when making web
service requests.

The API key in the first option is usually provided in advance as part of
registering for the service, instead of being served by the web service itself. The
key remains valid for some time, typically months.

Session-based authentication is different in that the token (i.e. the session ID) is
obtained by logging in to an authentication web service that maintains the session
on the server. The session is only temporary, and typically expires after some
minutes.

In a Play application, you can implement both approaches in the same way that

8.5.3 Other authentication methods

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

282

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://localhost:9000/
http://www.manning-sandbox.com/forum.jspa?forumID=810

we implemented authentication in the previous section. All you need is an
additional method, in each case, that reads the credentials — the authentication
token — from the HTTP request. You can then use this either to look-up user name
and password for authentication, or to indicate that authentication has already
succeeded.

In this chapter, we saw how to define the RESTful web service that a single-page
JavaScript web application interacts with by sending and receiving data in JSON
format.

This chapter showed how to send data in JSON format by converting domain
model objects to JSON format, to send to the client, and also to receive data from
the client by parsing the JSON data that the client sends back and converting the
result to Scala objects.

The finishing touches were to validate the JSON data that we receive from the
client, and authenticate requests.

Along the way, we also saw that Play’s support for JavaScript asset compilation
can be useful while implementing the client. Even more importantly, you can use

CoffeeScript — ‘JavaScript without the fail’ .1

Footnote 1 From the title of the presentation by Bodil Stokke - http://bodil.org/coffeescript/m

In the next chapter, we are going to look at how to structure Play applications
into modules.

8.6 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

283

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://bodil.org/coffeescript/
http://www.manning-sandbox.com/forum.jspa?forumID=810

10
This chapter covers

In the previous sections, we saw the elementary parts of a Play application. Your
toolkit now contains all the tools you need to start building your own real world
applications. There is more to Play, however. Many web applications share
similarities and Play bundles some libraries that make those things easier to build,
such as a cache, a library for doing web service requests, libraries for OpenID and
OAuth authentication and utilities for cryptography and file system access.

Play also lays the foundation for the next generation of web applications: with
live streams of data flowing between server and client and between multiple
servers. Pages with live updates, chat applications and large file uploads are
becoming more and more common. Play’s iteratee and WebSocket libraries give
you the concepts and tools to handle such streams of data.

Web services, iteratees and WebSockets

Accessing web services

Using the iteratee library to deal with large responses

Using WebSocket

Creating custom body parsers

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

284

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Many of today’s applications not only expose web services, but also consume
third-party web services. A large number of web applications and companies
expose some or all of their data through APIs. Arguably the most popular in recent
years are REST APIs that use JSON messages. For authentication, as well as
HTTP Basic Authentication, OAuth is very popular. In this section we’ll learn how
to use Play’s Web Service API to connect our application to remote web services.

As an example, we will connect our paper clip webshop to Twitter. We will build a
page where the latest tweets mentioning paper clips are shown, like in figure 10.1:

Figure 10.1 Page showing tweets mentioning paper clips

Twitter exposes a REST API that allows you to search for tweets. This search
API lives at and returns ahttp://search.twitter.com/search.json

JSON data structure containing tweets.
We need to convert each tweet in this JSON structure to a Scala object, so we’ll

create a new class for that. For this example, we are only interested in theTweet

name of the person tweeting and the contents, so we’ll stick to a very simple one:

We’ll also implement , so we can deserialize JSON into theseReads[Tweet]

objects:

10.1 Accessing web services

10.1.1 Basic requests

case class Tweet(from: String, text: String)

implicit object TweetReads extends Reads[Tweet] {
 def reads(json: JsValue): Tweet = Tweet(
 (json \ "from_user_name").as[String],
 (json \ "text").as[String])
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

285

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://search.twitter.com/search.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

The actual request to the Twitter API is performed using Play’s object. ThisWS

is shown in an action in listing 10.1:tweetList

Listing 10.1 Tweetlist action

Create request
Execute HTTP GET
Extract response

The WS.url method creates a object , which you canWSRequestHolder

use to create a request in a method chaining style. The method on get

 performs an HTTP GET request and returns a WSRequestHolder

. Using the value method we wait for it to be redeemedPromise[Response]

and with we extract the value .get

Finally, the tweets are rendered with the following template from listing 10.2:

Listing 10.2 Tweetlist template, app/views/twitterrest/tweetlist.scala.html

This renders the tweets like in figure 10.1.
In our action, in listing 10.1, we used tweetList

def tweetList() = Action {
 val results = 3
 val query = """paperclip OR "paper clip""""
 val responsePromise =

 WS.url("http://search.twitter.com/search.json")
 .withQueryString("q" -> query, "rpp" -> results.toString)

 .get

 val response = responsePromise.value.get
 val tweets = Json.parse(response.body).\("results").as[Seq[Tweet]]
 Ok(views.html.twitterrest.tweetlist(tweets))
}

@(tweets: Seq[Tweet])

@main("Tweets!") {
 <h1>Tweets:</h1>
 @tweets.map { tweet =>

 @tweet.from: @tweet.text

 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

286

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://search.twitter.com/search.json
mailto:@tweets.map
mailto:@tweet.text
http://www.manning-sandbox.com/forum.jspa?forumID=810

 to wait until the promise is redeemed andresponsePromise.value.get

then get the value out of it. However, using the blocking method isn’tvalue

idiomatic use of a , so in the next section we’ll see how to improve thePromise

code.

As we saw in chapter XREF ch03_chapter, we can return an asynchronous result in
the form of an . This is preferable to blocking, because it allowsAsyncResult

Play to handle the response when the promise is redeemed, instead of holding up
one of a finite amount of worker threads.

An can be constructed from a . ThisAsyncResult Promise[Result]

means that we don’t need to get the web service response out of the , butPromise

instead we can use the method to transform the intomap Promise[Response]

a . This is almost trivial, since we’ve already written thePromise[Result]

code that creates a from the we get from the Twitter API. AllResult Response

we need to do is move this into a call:map

Finally, we can use this to construct an :Promise[Result] AsyncResult

The method does nothing special; it just wraps the Async

 in an .Promise[Result] AsyncResult

It is common to not assign the to a variable, but to wrapPromise[Result]

the entire computation in an block instead, as in listing 10.3:Async{}

Listing 10.3 Completed Twitter API action method

10.1.2 Handling responses asynchronously

val resultPromise: Promise[Result] = responsePromise.map { response =>
 val tweets = Json.parse(response.body).\("results").as[Seq[Tweet]]
 Ok(views.html.twitterrest.tweetlist(tweets))
}

Async(resultPromise)

def tweetList() = Action {
 Async {
 val results = 3
 val query = """paperclip OR "paper clip""""

 val responsePromise =

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

287

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Looking at this code, you could be tempted to think that everything inside the
 block will be executed asynchronously, but that is not the case.Async{}

Remember, the does not actually asynchronously execute its parameter.Async

Instead, it just wraps its in an and nothing more. TheAsyncResult

asynchronous part here is done by the method that executes the HTTPget

request. Play’s WS library will perform the request asynchronously and returns a
 to us.Promise

In the next section we’ll see how we can use the cache to reuse the responses
from the WS library.

With our latest implementation of the method in listing 10.3, ourtweetList

application will call Twitter’s API every time this action method is executed. That
is not really necessary and not the best idea when thinking about performance. This
is why we’re going to implement caching for the Twitter results.

Play provides an almost minimalistic but useful, caching API, which is intended
as a common abstraction over different pluggable implementations. Play provides
an implementation based on Ehcache, a robust and scalable Java cache, but you
could easily the implement same API on top of another cache system.

For all cache methods, you need an implicit inplay.api.Application

scope. You can get one by importing . The play.api.Play.current

 is used by the caching API to retrieve the plug-in that provides theApplication

cache implementation.
The cache abstraction is a simple key/value store, you can put an object into the

cache with a string key, and optionally an expiration time, and get them out of the
cache again:

 WS.url("http://search.twitter.com/search.json")
 .withQueryString("q" -> query, "rpp" -> results.toString).get

 responsePromise.map { response =>
 val tweets = Json.parse(response.body).\("results").as[Seq[Tweet]]
 Ok(views.html.twitterrest.tweetlist(tweets))
 }
 }
}

10.1.3 Using the Cache

Cache.set("user-erik", User("Erik Bakker"))
val userOption: Option[User] = Cache.getAs[User]("user-erik")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

288

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://search.twitter.com/search.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

As you can see, the method returns an , which will be a getAs Option None

if there is no object with the given key in the cache, or if that object is not of the
type that you specified.

A common pattern is to look for a value in the cache, and if it is not in the
cache, to compute it and store it in the cache and return it as well. providesCache

a method that lets you do that in one go:getOrElse

This looks up the cached value for the key andproduct-bestseller

returns it if found. If not, it will compute andProduct.getBestSeller()

cache it for 1800 seconds as well as returning it. Note that with this method there
will always be a result available, either the cached or computed value, so the return
type is not an , but the type of the value that you compute and cache.Option

Play additionally allows you to cache entire s. Our Action tweetList

example lends itself well for that. You can simply use the object to wrapCached

an :Action

Listing 10.4

Keep in mind that using this method means you can’t use any dynamic request

val bestSellerProduct: Product =
 Cache.getOrElse("product-bestseller", 1800){
 Product.getBestSeller()
}

def tweetList() = Cached("action-tweets", 120) {
 Action {
 Async {
 val results = 3
 val query = """paperclip OR "paper clip""""

 val responsePromise =
 WS.url("http://search.twitter.com/search.json")
 .withQueryString("q" -> query, "rpp" -> results.toString).get

 responsePromise.map { response =>
 val tweets =
 Json.parse(response.body).\("results").as[Seq[Tweet]]
 Ok(views.html.twitterrest.tweetlist(tweets))
 }
 }
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

289

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://search.twitter.com/search.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

data like querystring parameters in your action method, since they would be cached
the first time, and subsequent requests to this action method with different
parameters would yield the cached results.

Luckily, instead of specifying a literal string as a key, Play also allows you to
specify a function that determines a key based on the of theRequestHeader

request. You can use this to cache multiple versions of an action, based on dynamic
data. For example, you can use this to cache a recommendations page for each user
id:

The userIdCacheKey method, given a prefix, generates a cache key based on
the user ID in the session. We use it to cache the output of the recommendations
method for a given user.

In the next section we will see some additional features of the WS library.

As well as GET requests, you can of course use the WS library to send PUT,
POST, DELETE and HEAD requests.

For PUT and POST requests, you must supply a body:

This will send the following HTTP request:

def userIdCacheKey(prefix: String) = { (header: RequestHeader) =>
 prefix + header.session.get("userId").getOrElse("anonymous")
}

def recommendations() =
 Cached(userIdCacheKey("recommendations-"), 120) {
 Action { request =>
 val recommendedProducts = RecommendationsEngine
 .recommendedProductsForUser(request.session.get("userId"))
 Ok(views.html.products.recommendations(recommendedProducts))
 }
}

10.1.4 Other request methods and headers

val newUser = Json.toJson(Map(
 "name" -> "John Doe",
 "email" -> "j.doe@example.com"))

val responsePromise =
 WS.url("http://api.example.com/users").post(newUser)

POST /users HTTP/1.1

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

290

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:j.doe@example.com
http://api.example.com/users").post
http://www.manning-sandbox.com/forum.jspa?forumID=810

Play has automatically serialized our JSON object, and also provided a proper
Content-Type header. So how exactly does Play determine how the body must be
serialized, and how does it determine the proper Content-Type header? By now,
you are probably not surprised that Play uses implicit type classes to accomplish
this.

The signature of the method is:post

That is, you can post a body of any type , as long as you also provide a T

 and a or they are implicitly available. A Writeable[T] ContentTypeOf[T]

 knows how to serialize a to an array of bytes, and a Writeable[T] T

 knows the proper value of the headerContentTypeOf[T] Content-Type

for a .T

Play provides and instances forWriteable[T] ContentTypeOf[T]

some common types, including . So that is how Play knows how to doJsValue

an HTTP POST request with a body.JsValue

Headers can be added to a request using the method:withHeaders

Instead of manually typing the name of headers, it is recommended to use the
predefined header names from instead:play.api.http.HeaderNames

Host: api.example.com
Content-Type: application/json; charset=utf-8
Connection: keep-alive
Accept: */*
User-Agent: NING/1.0
Content-Length: 47

{"name":"John Doe","email":"j.doe@example.com"}

post[T](body: T)(implicit wrt: Writeable[T], ct: ContentTypeOf[T]):
 Promise[Response]

WS.url("http://example.com").withHeaders(
 "Accept" -> "application/json")

import play.api.http.HeaderNames

WS.url("http://example.com").withHeaders(
 HeaderNames.ACCEPT -> "application/json")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

291

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:j.doe@example.com
http://example.com").withHeaders
http://example.com").withHeaders
http://www.manning-sandbox.com/forum.jspa?forumID=810

This prevents potential spelling mistakes.

So far, we’ve conveniently dodged the topic of authentication — the Twitter search
API works without it. In practice, though, you’ll often need to authenticate with
web services. Two common methods, other than sending a special query string
parameter or header, which we already know how to do from the previous sections,
are HTTP Basic authentication and OAuth. Play’s WS library makes both easy to
use.

We have seen that method returns a , a classWS.url WSRequestHolder

used to build requests. Methods like and withQueryString withHeaders

return a new . This allows chaining of these methods to buildWSRequestHolder

a request. The methods we’ll use to add authentication to our request work the
same way.

For HTTP Basic Authentication, use the method on withAuth

:WSRequestHolder

The method takes three parameters: a user name, a password andwithAuth

a n a u t h e n t i c a t i o n s c h e m e o f t y p e
. is a Javacom.ning.http.client.Realm.AuthScheme AuthScheme

interface in the Async HTTP Client, the HTTP client library that Play’s WS library
uses under the hood. This allows for pluggable authentication schemes, and HTTP
Basic is one of several provided schemes. The interface is prettyAuthScheme

big, because it allows for challenge/response type authentication methods, with
interactions between server and client.

A popular standard for authenticating web requests is OAuth — services like
Twitter and Facebook support OAuth authentication for their APIs. OAuth requests
are authenticated using a signature that is added to each request and this signature
is calculated using secret keys that are shared between server and consumer. Also,
OAuth defines a standard to acquire some of the required keys, and the flow that
allows end-users to grant access to protected resources.

For example, if you want to give a third-party web site access to your data on

10.1.5 Authentication mechanisms

import com.ning.http.client.Realm.AuthScheme

val requestHolder = WS.url("http://example.com")
 .withAuth("johndoe", "secret", AuthScheme.BASIC)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

292

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://example.com
http://www.manning-sandbox.com/forum.jspa?forumID=810

Facebook, the third party will redirect you to Facebook where you can grant
access, after which Facebook will redirect you back to the third party. During these
steps, secret keys are exchanged between the third party and Facebook. The third
party can then use these keys to sign requests to Facebook.

Signing requests is only one part of OAuth, but it is the only part we’ll be
discussing in this section. We will assume that you have acquired the necessary
keys from the web service you are trying to access manually.

Play has a generic mechanism to add signatures to requests, and — at the time
of writing — only one implementation, namely for OAuth. The

 can calculate signatures given a consumer key, a consumerOAuthCalculator

secret wrapped in a and an access token and token secret wrappedConsumerKey

in a .RequestToken

We will use these to post a new tweet to Twitter:

Listing 10.5 Posting a new tweet to Twitter with the web service library and OAuth
signature calculator

We create a from the tokens Twitter provided duringConsumerKey

registration of our application. We also create a from our accessRequestToken

token credentials.
The Twitter status update API expects a body of type

, which is the same body formatapplication/x-www-form-urlencoded

val consumerKey = ConsumerKey(
 "52xEY4sGbPlO1FCQRaiAg",
 "KpnmEeDM6XDwS59FDcAmVMQbui8mcceNASj7xFJc5WY")

val accessToken = RequestToken(
 "16905598-cIPuAsWUI47Fk78guCRTa7QX49G0nOQdwv2SA6Rjz",
 "yEKoKqqOjo4gtSQ6FSsQ9tbxQqQZNq7LB5NGsbyKU")

def postTweet() = Action {

 val message = "Hi! This is an automated tweet!"
 val data = Map(
 "status" -> Seq(message))

 val responsePromise =
 WS.url("http://api.twitter.com/1/statuses/update.json")
 .sign(OAuthCalculator(consumerKey, accessToken)).post(data)

 Async(responsePromise.map(response => Ok(response.body)))
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

293

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://api.twitter.com/1/statuses/update.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

that a browser submits on a regular form submit. Play has a and a Writeable

 that encode a body of type ContentTypeOf Map[String, Seq[String]]

as , so we construct our body as aapplication/x-www-form-urlencoded

.Map[String, Seq[String]]

We construct an and use that to sign the request. Finally,OAuthCalculator

we post the request and map the response body into a result. [TODO, this hits Play
bug 671 in Play 2.0.4]

Play’s iteratee library is in the play.api.libs.iteratee package. This library is
considered a corner stone of Play’s ‘reactive programming’ model. It contains an
abstraction for performing IO operations, called an . It is likely that youiteratee
have never before heard of these iteratee things. Don’t fret, in this section we will
slowly introduce what iteratees are, why and where Play uses them, and how you
can use them to solve real problems.

We will start with a somewhat contrived example. Twitter not only offers the
REST API that we’ve seen in the previous section, but also offers a streaming API.
Using this API starts out quite similar to the regular API: you construct an HTTP
request with some parameters that specify which tweets you want to retrieve.
Twitter will then start returning tweets. But unlile the REST API, this streaming
API will never stop serving the response. It will keep the HTTP connection open,
and will continue sending new tweets over it. This gives you the ability to retrieve
a live feed of tweets that match a particular search query.

The way we used the WS library in section 10.1.1 is shown in figure 10.2:

10.2 Dealing with streams using the iteratee library

10.2.1 Processing large web services responses with an iteratee

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

294

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 10.2 Using the WS library

If the web service sends the response in chunks, the WS library buffers these
chunks until it has the complete HTTP response. Only then will it give the HTTP
response to our application code. This works fine for regular sized HTTP
responses.

The buffering strategy breaks down when trying to use the Twitter API though.
The HTTP response is infitely long and we will get either a time-out from the
library or at some point it will run out of memory trying to buffer the response.
Either way, we won’t be able to do anything with the response if our strategy is to
wait until it is complete.

We need another approach, where we can start using parts of the response as
soon as they arrive in our application without the need to wait for the entire
response. And this is exactly what an iteratee can do. An iteratee is an object that
receives each individual chunk of data and can do something with that data. This is
shown in figure 10.3:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

295

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 10.3 Using the WS library with an iteratee to consume the response

If we use the WS library with an iteratee, the response chunks are not buffered
in a buffer that is outside our control. Instead, there is an iteratee that is a part of
our application code and fully under our control and that receives all the chunks.
The iteratee can do anything it wants with these chunks or, rather, we can construct
an iteratee and make it do whatever we want with the chunks.

When dealing with the Twitter streaming API, we would want to use an iteratee
that converts the HTTP response chunks into tweet objects, and send them to
another part of our application, for example to be stored in a database. When that
HTTP response chunk is dealt with, it can be discarded and no buffer will be filled
and run out of space eventually.

Iteratees are instances of the class, and they can most easily beIteratee

constructed using methods on the object. As a first and simpleIteratee

example, we’ll create an iteratee that simply logs every chunk to the console. The
 object contains many useful methods to create a simple .Iteratee Iteratee

We use the method:foreach

The method on the object takes a single parameter,foreach[A] Iteratee

a function that takes a chunk of type , and it returns an .A Iteratee[A, Unit]

When data is fed to this iteratee, the function we provided will be called for every

val loggingIteratee = Iteratee.foreach[Array[Byte]] { chunk =>
 val chunkString = new String(chunk, "UTF-8")
 println(chunkString)
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

296

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

chunk of data. In this case, we construct an iteratee that takes chunks of type
. For each chunk that is received, a string is constructed andArray[Byte]

printed.
The class has two type parameters. The first one indicates the typeIteratee

of the chunks that the iteratee accepts. In our loggingIteratee, the chunks are of
type .Array[Byte]

The second type parameter indicates the type of the final result that the iteratee
produces when it’s done. The doesn’t produce any finalloggingIteratee

result, so it’s second type parameter is . But you could imagine that we makeUnit

an iteratee that counts all the chunks that it receives, and produces this number at
the end. Or we could create an iteratee that concatenates all its chunks, like a
buffer.

To create an iteratee that produces a value, we need another method, since the
 method only constructs iteratees that produce nothing.Iteratee.foreach

We’ll see examples of value-producing iteratees later in this chapter.
If we want to connect to Twitter’s streaming API, we can use this

loggingIteratee to print every incoming chunk from Twitter to the console. Of
course, printing this to the console is generally not very useful in a web
application, but it serves as a good starting point for us.

One of the streaming API endpoints that Twitter provides emits a small sample
of a l l publ ic Tweets , and i t i s located a t

. We canhttps://stream.twitter.com/1/statuses/sample.json

request it and use our loggingIteratee to deal with the response as follows:

The Twitter response will never end, so once invoked, this piece of code will
continue logging all received chunks to the console. This means that we only have
to run it once. A natural place in a Play application for things that only need to run
once is in the object. In listing 10.6 we show a full example:Global

Listing 10.6 Using Twitter’s streaming API with a simple logging iteratee

WS.url("https://stream.twitter.com/1/statuses/sample.json")
 .sign(OAuthCalculator(consumerKey, accessToken))
 .get(_ => loggingIteratee)

import play.api._
import play.api.mvc._
import play.api.libs.oauth.{ ConsumerKey, OAuthCalculator,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

297

Licensed to Jeff Crilly <jlc@sbcglobal.net>

https://stream.twitter.com/1/statuses/sample.json
https://stream.twitter.com/1/statuses/sample.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

When running an application with this object, your console will beGlobal

flooded with a huge number of Twitter statuses.
The iteratee that we used is a special case, because it does not produce a value.

Something that doesn’t produce a value must have side effects in order to do
something useful. In this case, it is the method that has a side effect. Allprintln

iteratees created using must have a side effect in order toIteratee.foreach

do something, since they don’t produce a value. This is very similar to the
 method on collections.foreach

So far, we haven’t created an iteratee that actually produces something; we’ve
relied on side effects of the method we gave to only. In general though,foreach

an iteratee can produce a value when it’s done.
The object exposes more methods that we can use to createIteratee

iteratees. Suppose that we want to build an iteratee that accepts chunks, andInt

sums these chunks. We can do that as follows:

 RequestToken }
import play.api.libs.iteratee.Iteratee
import play.api.libs.ws.WS

object Global extends GlobalSettings {

 val consumerKey = ConsumerKey("52xEY4sGbpLO1FCQRaiAg",
 "KpnmEeDM6XDwS59FDcAmVMQbui8mcceNASj7xFJc5WY")
 val accessToken = RequestToken(
 "16905598-cIPuAsWUI47Fk78guCRTa7QX49G0nOQdwv2SA6Rjz",
 "yEKoKqqOjo4gtSQ6FSsQ9tbxQqQZNq7LB5NGsbyKU")

 val loggingIteratee = Iteratee.foreach[Array[Byte]] { chunk =>
 val chunkString = new String(chunk, "UTF-8")
 println(chunkString)
 }

 override def onStart(app: Application) {
 WS.url("https://stream.twitter.com/1/statuses/sample.json")
 .sign(OAuthCalculator(consumerKey, accessToken))
 .get(_ => loggingIteratee)
 }

}

10.2.2 Creating other iteratees and feeding them data

val summingIteratee = Iteratee.fold(0){ (sum: Int, chunk: Int) =>
 sum + chunk
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

298

Licensed to Jeff Crilly <jlc@sbcglobal.net>

https://stream.twitter.com/1/statuses/sample.json
http://www.manning-sandbox.com/forum.jspa?forumID=810

This works similar to the method on any Scala collection: it takes twofold

parameters: An initial value, in this case 0, and a function to compute a new value
from the previous value and a new chunk. The iteratee that it creates will contain
the value 0. When we feed it, say, a 5, it will compute a new value by summing its
old value and the new five, and then return a new iteratee with the value 5. If we
then feed that new iteratee a 3, it will again produce a new iteratee, now with value
8 etcetera.

Like the intLoggingIteratee that we saw before, the summingIteratee consumes
chunks of type . But unlike the intLoggingIteratee that didn’t produce values,Int

the summingIteratee does produce a value: the sum. So this is an iteratee of type
.Iteratee[Int, Int]

Now how could we test our ? Ideally, we would like to feed it someIteratee

chunks, and verify that the result is indeed the sum of the chunks. It turns out that
the class has a counterpart: . An enumerator is aIteratee Enumerator

producer of chunks. An can be to an , afterEnumerator applied Iteratee

which it will start feeding the chunks it produces to the . Obviously, theIteratee

type of the chunks that the enumerator produces must be the same as what the
iteratee consumes.

Let’s create an enumerator with a fixed number of chunks:

We first apply this iteratee to our enumerator, which will give us a promise of
the new iteratee. Remember that an iteratee is immutable. It won’t be changed by
feeding it a chunk. Instead, it will return a new iteratee with a new state. Or rather a
promise of a new iteratee, as computing the new state can be an expensive
operation and is performed asynchronously. With a regular , we would get a map

, but with , we get a].Promise[Promise[Int]] flatMap Promise[Int

Finally, we register a callback with , this callback will be invokedonRedeem

when the promise is redeemed, which is when the iteratee is done processing all
the input.

val intEnumerator = Enumerator(1,6,3,7,3,1,1,9)

val newIterateePromise: Promise[Iteratee[Int, Int]] =
 intEnumerator(summingIteratee)
val resultPromise: Promise[Int] = newIteratee.flatMap(_.run)
resultPromise.onRedeem(sum => println("The sum is %d" format sum))

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

299

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

There are a few more methods on the object that create iteratees,Iteratee

including some variants of that make it easier to work with functions thatfold

return a promise of a new state, instead of the new state immediately.
We constructed our intEnumerator with a fixed set of chunks. Of course, this

doesn’t lend itself well for enumerators that need to stream a lot of data, or when
the data is not fully known in advance. But there are more methods to construct an

, to be found on the object. We will run into a few ofEnumerator Enumerator

them in further sections.
Iteratees can also be transformed in various ways. For example using the

 method on an , the result of the iteratee can be transformed.mapDone Iteratee

Together with , this allows for creating versatile iteratees easily: you passfold

some initial state to an iteratee, define what needs to happen on every chunk of
data and when all data is processed you get a chance to construct a final result from
the last state. We will see an example of this in section 10.4.4.

As mentioned before, the iteratee library is designed to be immutable: operations
don’t change the iteratee that you perform it on, but they return a new iteratee. The
same holds for enumerators. Also, the methods on the object thatIteratee

create iteratees encourage writing immutable iteratees.
For example, the method lets you explicitly compute a new state, whichfold

is then used to create a new iteratee, leaving the old one unmodified. Immutable
iteratees can be safely reused; the iteratee that you start with is never changed, so
you can apply it to different enumerators as often as you like without problems.

Yhe fact that the library is designed for making immutable iteratees does not
mean that every iteratee is always immutable. For example, here are both an
immutable and a mutable iteratee that do the same thing: summing integers:

The first iteratee uses to explicitly compute a new state from the currentfold

state and a chunk. The second iteratee uses a captured variable, and the foreach

10.2.3 Iteratees and immutability

val immutableSumIteratee = Iteratee.fold(0){ (sum: Int, chunk: Int) =>
 sum + chunk
}

val mutableSumIteratee = {
 var sum = 0
 Iteratee.foreach[Int](sum += _).mapDone(_ => sum)
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

300

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

method that updates that captures variable as a side effect. Finally, the resultUnit

from the is mapped to the sum.foreach

If you apply these iteratees to an enumerator once, they will behave the same.
But afterwards, the mutableSumIteratee will contain a reference to the sum
variable, which will not be zero anymore. So if you apply mutableSumIteratee on
an enumerator a second time, the result will be wrong!

As for other Scala code, immutable iteratees are preferrable over mutable
iteratees, but like for other Scala code, performance reasons sometimes force us to
use a mutable implementation. And sometimes your iteratee interacts with external
resources which makes it next to impossible to make it immutable.

In the next section we will see how we can use both iteratees and enumerators
to do bidirectional communication with web browsers.

Until recently, the web only supported one-way communication: a browser
requests something from a server and the server can only send something in
response to such a request. The server had no way of pushing data to a client other
than as a response to a request.

For many applications however, this is problematic. The classic example is a
chat-application, where many people can broadcast messages to all other connected
people. This kind of broadcasting is problematic for a web application, because it
is an action that is initiated from the server, and not from the browser.

Various workarounds have been used in the past. The most basic approach is
polling: the browser sends a request to the server to ask for new data every second
or so. This is shown in figure 10.4.

10.3 WebSockets: Bidirectional communication with the browser

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

301

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 10.4 Bi-directional communication using polling

When polling, the browser sends a request to the server at a regular interval
requesting new messages. Often, the server will have nothing. When the browser
wants to send data to the server, a new request is sent as well. In this diagram, we
show the HTTP requests used between a client (Client A) and a server in a chat
with a single other participant. As you can see, many times a polling request is
answered with no new message. A total of 6 requests are needed for this scenario
with polling.

Polling requires a lot of resources: for a responsive feeling in a chat application,
the minimum poll frequency is about a second. Even with a modest amount of
active users this adds up to a large amount of requests to the server every second,
and the size of the http headers in every request and response add up to a fair
amount of bandwidth usage.

A more advanced workaround is Comet, which is a technique to allow the
server to push data to a client. With Comet, the browser starts a request and the
server keeps the connection open until it has something to send. So if the first
message is sent by the server after 10 seconds, only a single request is needed with
Comet, while 10 requests would have been used with polling. Comet
implementations vary in the details: the server can keep the connection open after

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

302

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

sending the first message, or it could close the connection after the response, in
which case the client will need to establish a new Comet connection. The first
variant is shown in figure 10.5.

Figure 10.5 Bi-directional communication using Comet

This figure shows the same scenario as figure 10.4, but with Comet instead of
polling. A single connection is made to the server that is used for all the messages
from the server to the client. A new request is made every time the client wants to
send something to the server. A total of three requests are needed for this scenario
with Comet.

Recently, web browsers started supporting a new standardized protocol for
bidirectional communication between browsers and servers called ‘WebSocket’.
Like a regular HTTP request, a WebSocket request is still initiated by the browser,
but is then kept open. While the connection is open, both the server and the
browser can send data through the connection whenever they want.

A WebSocket request starts as a regular HTTP request, but the request contains
some special headers requesting an upgrade of the protocol from HTTP to
WebSocket. This is nice for two reasons. The first one is that it works very well
through most firewalls, as the request starts out as a regular HTTP request. The
second reason is that a server can start interpreting the request as an HTTP request,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

303

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

and only later it needs to switch to WebSocket. This means that both protocols can
be served on a single port. Indeed, the standard port for WebSocket requests is 80,
the same as HTTP.

Using WebSocket, the chat application scenario looks as in figure 10.6

Figure 10.6 Bi-directional communication using WebSocket

This figure shows the same scenario as figures 10.4 and 10.5, but with
WebSockets. Here, only a single connection needs to be made. This connection is
upgraded from HTTP to WebSocket and can then be used by both the client and
the server to send data whenever they want. No additional requests are needed.

In the next section we’ll see how we can use WebSockets from Play.

Play has built in support for WebSockets. From the application’s perspective, a
WebSocket connection is essentially two independent streams of data: one stream
of data incoming from the client and a second stream of data to be sent to the
client. There is no request/response cycle within the WebSocket connection, both
parties can send something over the channel whenever they want. This far in this
chapter, you can probably guess what Play uses for these streams of data: the
iteratee library.

10.3.1 A real-time status page using WebSockets

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

304

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

To handle the incoming stream of data, you need to provide an iteratee. You
also provide an enumerator that is used to send data to the client. With an iteratee
and an enumerator you can construct a , which comes in the place ofWebSocket

an .Action

As an example, we will build a status page for our web application, showing the
real-time server load average. Load average is a very common but somewhat odd
measure of how busy a server is. In general one could say that if it’s below the
number of processors in your machine you’re good, and if it’s higher for longer
periods of time, it’s not so good.

Our status page will open a WebSocket connection to our Play application, and
every three seconds the Play application will send the current load average over the
connection. A message listener on the status page will then update the page to
show the new number. It will look like figure 10.7:

Figure 10.7 Status page showing load average

We’ll start with the client side part of it. The first thing we need is a regular
HTML page, served by a regular Play action. This page will use JavaScript to open
a WebSocket connection to the server. Opening a WebSocket connection with
JavaScript is trivial:

Here we hardcoded the URL, but it is better to use Play’s reverse routing. The
full page of HTML and JavaScript looks like this:

Listing 10.7 Status page HTML and JavaScript

var ws = new WebSocket("ws://localhost:9000/WebSockets/systemstatus");

@(implicit request: RequestHeader)

@main("Server Status") {
 <script type="text/javascript">

 $(function() {
 var ws = new WebSocket("@routes.WebSockets

 .statusFeed.webSocketURL()")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

305

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:WebSocket("@routes.WebSockets
http://www.manning-sandbox.com/forum.jspa?forumID=810

jQuery wrapper
Opening WebSocket
Registering message listener
Updating the page

We wrap all our script code in a call , which makes jQuery execute it after$

the full HTML page is loaded. A WebSocket connection is opened, using the
 method on the route to get the proper WebSocket URL . The webSocketURL

 callback is used to install a message listener . The message is anonmessage

instance of . These objects have a data field that contains the dataMessageEvent

from the server, in this case the string containing the current load average number.
We use jQuery to update the page .

On the server, we create a WebSocket action as follows:

Listing 10.8 WebSocket action that sends load average every three seconds

The method is used to create a WebSocket actionWebSocket.using

instead of a regular HTTP action. Its type parameter, , indicates that eachString

message that will be sent and received over this WebSocket connection is a
. Inside the method, we create an . Since we’re not interestedString Iteratee

in any incoming messages in this particular example, we create one that ignores all
messages . Next, we create an from a callback. This enumeratorEnumerator

calls the method (that we defined elsewhere) every threegetLoadAverage

seconds, creating a stream with a message every three seconds . Finally, we

 ws.onmessage = function(msg) {

 $('#load-average').text(msg.data)
 }
 })
 </script>
 <h1>System load average: </h1>
}

def statusFeed() = WebSocket.using[String] { implicit request =>
 val in = Iteratee.ignore[String]
 val out = Enumerator.fromCallback { () =>
 Promise.timeout(Some(getLoadAverage), 3 seconds)
 }

 (in, out)
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

306

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

return a tuple with the iteratee and the enumerator . Play will hook these up to
the client for us.

This WebSocket action is routed like a regular action in the routes file:

In the next section, we’ll use our new knowledge about WebSockets to build a
simple chat application.

WebSockets of a birectional communication channel, so we can also send
messages to the server. We’ll use this to build a very minimal chat application. Our
chat application has a single chat room that notifies users when someone joins or
leaves and allows users to send a message to everybody in the room. It is shown in
figure 10.8:

Figure 10.8 WebSockets chatroom

For the status page we made earlier, we used , to createIteratee.ignore

an iteratee that ignores all input. This time, we will need one that broadcasts
everything that the user says to all other users in the channel.

There are two new issues for us here. First, we must learn how to send
something to a user that is connected through a WebSocket. Second, we need to to
be able to send something to all the users that are in the room.

So far, we have seen two types of enumerators. In section XREF
ch10-enumerators-intro we saw enumerators with a fixed set of chunks, and in
listing 10.8 we saw enumerators that use a call back function in combination with a
timeout to produce a stream of chunks. In our chat application we need to add
chunks to enumerators after they are created. This is because we need to create an

GET /WebSockets/statusFeed controllers.WebSockets.statusFeed()

10.3.2 A simple chat application

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

307

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

enumerator when the user connects, so Play can hook it up to the users WebSocket
channel, but we want to send a message only when another user says something.

Play provides a enumerator that allows to do just this. A PushEnumerator

 extends , but it also has a method thatPushEnumerator Enumerator push

allows for manually pushing new chunks into it. This is exactly what we need. We
can create one using :Enumerator.imperative

This solves our first issue. The second issue was that we need to be able to send
something to all the users in the room. Now that we know about

, the solution to this issue is easy: we just need to keep aPushEnumerator

collection of all the s of all the users in the room and we willPushEnumerator

be able to send them messages.
You might be tempted to just create a map of usernames to push enumerators

on the controller, like in listing 10.9:

Listing 10.9 Unsafe: mutable state defined on the controller

This is not safe however. As multiple requests are executed concurrently, this
leads to a race condition: two concurrent requests can both update the users value
at the same time, causing a lost update.

The idiomatic way to solve this in Play is by using an Akka actor. An actor has
private state, which is only accessible from within the actor. An actor also has a
mailbox, a queue of messages to be processed and will process messages
sequentially. So even if two messages are sent to an actor at the same time, they
will be processed one after another by the actor. Furthermore, since the actor is the

val pushEnumerator = Enumerator.imperative[String]
pushEnumerator.push("Hello")
pushEnumerator.push("World")

object Chat extends Controller {
 var users = Map[String, PushEnumerator[String]]()

 def WebSocket(username: String) = WebSocket.using[String] { request =>
 val enumerator = Enumerator.imperative[String]()
 users += username -> enumerator

 ... // Create iteratee etc.
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

308

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

only one that accesses its private state, that state will never be concurrently
accessed.

We will model the chat room with an actor. We’ll also create three message
types: , for when a new user enters the room, , for when a user leaves,Join Leave

and , for when a user says something:Broadcast

Our actor will contain a collection of the users. This collection will never be
accessed from outside the actor, and the actor only processes one message at a
time, so no race condition can occur. The actor is also responsible for creating the
iteratee and enumerator that are needed to setup the WebSocket connection. Our
actor’s source code is shown in listing 10.10:

Listing 10.10 Chat application room actor

case class Join(nick: String)
case class Leave(nick: String)
case class Broadcast(message: String)

class ChatRoom extends Actor {
 var users = Map[String, PushEnumerator[String]]()

 def receive = {
 case Join(nick) => {
 if(!users.contains(nick)) {
 val enumerator = Enumerator.imperative[String]()
 val iteratee = Iteratee.foreach[String]{ message =>
 self ! Broadcast("%s: %s" format (nick, message))
 }.mapDone { _ =>
 self ! Leave(nick)
 }

 users += nick -> enumerator
 broadcast("User %s has joined the room, now %s users"
 format(nick, users.size))
 sender ! (iteratee, enumerator)
 } else {
 val enumerator = Enumerator(
 "Nickname %s is already in use." format nick)
 val iteratee = Iteratee.ignore
 sender ! (iteratee, enumerator)
 }
 }
 case Leave(nick) => {
 users -= nick
 broadcast("User %s has left the room, %s users left"
 format(nick, users.size))
 }

users in the room

actor message
handler

push enumerator

broadcast user
message
send leave
message on
disconnect
add user to
collection

return iteratee and
enumerator to
action

ignore user
messages

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

309

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Our actor contains a map with nick name keys and push enumerator values ,
and implements the method . This method defines how each messagereceive

is processed, and consists of a series of case statements that match the messages
this actor can handle. Our actor handles the three messages we defined earlier:

, and . When a message is processed, a Join Leave Broadcast Join

 is created . An that sends a PushEnumerator Iteratee Broadcast

message to the actor on every received message is created as well. When the
WebSocket is disconnected, a message is sent to the actor . The nickLeave

name and enumerator are added to the map of users and the iteratee and
enumerator are returned to the sender of the message . If a user with thisJoin

nick name was already in the room, we create an enumerator with an error message
and an iteratee that ignores any messages that the user sends

Now we need a controller that creates an instance of this actor, and sends the
appropriate message when a user tries to join the chat room, like in listing 10.11:

Listing 10.11 Chat controller

actor instantiation

 case Broadcast(msg: String) => broadcast(msg)
 }

 def broadcast(msg: String) = users.foreach { case (_, enumerator) =>
 enumerator.push(msg)
 }
}

object Chat extends Controller {

 implicit val timeout = Timeout(1 seconds)

 val room = Akka.system.actorOf(Props[ChatRoom])

 def showRoom(nick: String) = Action { implicit request =>
 Ok(views.html.chat.room(nick))
 }

 def chatSocket(nick: String) = WebSocket.async { request =>

 val channelsFuture = room ? Join(nick)
 channelsFuture.mapTo[(Iteratee[String, _], Enumerator[String])]

 .asPromise
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

310

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

HTTP action
WebSocket action
join room
map result

Our chat controller instantiates a chat room and has two controller actions.
The action serves an HTML page which shows the chat room and has theroom

JavaScript required to connect to the WebSocket action. The action chatsocket

 is a WebSocket action that sends a message to the room actor, using the Join ?

method. This method is called and the return type is . Thisask Future[Any]

future will contain what the actor sends back. We know that our actor returns a
tuple with an iteratee and an enumerator so we use on the mapTo Future[Any]

to create a new Future[(Iteratee[String, _],

. Then finally we use to transform theEnumerator[String]) asPromise

Akka future into a Play Promise, which is what expects.WebSocket.async

Let’s create some routes for our actions:

Finally, we need the HTML to show the chat room and the JavaScript that
connects to the WebSocket, sends data when the user submits the form and renders
any messages received through the WebSocket. This HTML page is shown in
listing 10.12:

Listing 10.12 Chat room HTML page

GET /room/:nick controllers.Chat.room(nick)
GET /room/socket/:nick controllers.Chat.chatSocket(nick)

@(nick: String)(implicit request: RequestHeader)

@main("Chatroom for " + nick) {
 <h1>Chatroom - You are @nick</h1>
 <form id="chatform">
 <input id="text" placeholder="Say something..." />
 <button type="submit">Say</button>
 </form>
 <ul id="messages">

 <script type="text/javascript">
 $(function() {

 ws = new WebSocket(

 "@routes.Chat.chatSocket(nick).webSocketURL()")

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

311

Licensed to Jeff Crilly <jlc@sbcglobal.net>

mailto:"@routes.Chat.chatSocket
http://www.manning-sandbox.com/forum.jspa?forumID=810

connect to WebSocket
listen to messages
send message

This HTML page shows the chat room and connects to the chatSocket

action via WebSocket . It listens to incoming messages and renders them .
When the user submits the form, the message is sent to the server over the
WebSocket connection .

Now that you have seen how to establish WebSocket connections and how to
work with iteratees and enumerators, you are ready to build highly interactive web
applications.

In the next section we’ll see how we can reuse our knowledge of iteratees in
another part of Play: body parsers.

HTTP requests are normally processed when they have been fully received by the
server. An action is only invoked when the request is complete, and when the body
parser is done parsing the body of the request. Sometimes, this is not the most
convenient approach. Suppose for example that you are building an API where
users can store files. Now suppose that a user is uploading a very large file that will
exceed his storage quota. It’s inconvenient for him if he has to upload the entire
file, after which your API will respond that it’s not allowed. It woudl be much
better to get a rejection as soon as he starts uploading.

This is not possible in an action, because it will only be invoked after the full
file is uploaded. You can do this in the body parser, however. In this section, we’ll
show how body parsers work, how you can use and compose existing body parsers
and finally how to build your own body parsers from scratch.

 ws.onmessage = function(msg) {
 $('').text(msg.data).appendTo('#messages')
 }

 $('#chatform').submit(function(){

 ws.send($('#text').val())
 $('#text').val("").focus()
 return false;
 })
 })
 </script>
}

10.4 Using body parsers to deal with HTTP request bodies

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

312

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

A body parser is the object that knows what to make of an HTTP request body. A
JSON body parser for example, knows how to construct a from theJsValue

body of an HTTP request that contains JSON data.
A body parser can also choose to return an error , for example whenResult

the user exceeded his storage quota, or when the HTTP request body doesn’t
conform to what the body parser expects, like a non-JSON body for a JSON body
parser.

A body parser that constructs a type can return either an , if succesful, or a A A

, in case of failure. This is why its return type is .Result Either[Result, A]

There is a slight mismatch however between what we informally call a body parser
and what the trait in Play is, though.BodyParser

BodyParser is a trait that extends (RequestHeader)

. So a isIteratee[Array[Byte], Either[Result, A]] BodyParser

a function with a parameter returning an iteratee. The iterateeRequestHeader

consumes chunks of type , and eventually produces either a Array[Byte]

 or an , which can be anything. It is this iteratee thatplay.api.mvc.Result A

does the actual parsing work. So in informal contexts it’s also common to call just
this iteratee the body parser.

An in Play does not only define the method that constructs a Action Result

from a , but it also contains the body parser that must be used forRequest[A]

requests that are routed to this action. That is usually not immediately visible,
because we often use an method on the object that doesn’t take aapply Action

bodyparser parameter. But the following two definitions construct theAction

same :Action

The type of the body parser determines the type of the request that you will
receive in the action method. The body parser is of type anyContent

, so your action will receive a BodyParser[AnyContent]

, which means that the body field of the isRequest[AnyContent] Request

10.4.1 Structure of a body parser

Action { // block }
Action(BodyParsers.parse.anyContent) { // block }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

313

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

of type . is a convenient one; it has the methods AnyContent AnyContent

, , etcetera which allow you to extract the actual body inasJson asText asXml

the action method itself.
Other body parsers have other types. For example the BodyParsers.parse.json

bodyparser will result in a , and then the field of the Request[JsValue] body

 is of type . If your action method is only supposed to acceptRequest JsValue

JSON data, you can use this body parser instead of the anyContent one. This has
the advantage that you don’t have to deal with the case of an invalid JSON body.

With the body parser, a BadRequest response is sent back to the clientjson

automatically when the body doesn’t contain valid JSON. If you use the
 body parser, you need to check whether the anyContent Option[JsValue]

that you get back from is empty or not.body.asJson

Figure 10.9 shows how Play uses body parsers in the request lifecycle.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

314

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Figure 10.9 Body parser in the request lifecycle

Play constructs a from an incoming HTTP request. TheRequestHeader

router selects the appropriate . The body parser is used to create an Action

 that is then fed the body of the HTTP request. When done, a Iteratee

 is constructed that is used to invoke the .Request Action

A body parser iteratee can also return a directly. This is used toResult

indicate a problem, for example when the json body parser encounters an invalid

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

315

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

 header or when the body is not actually JSON. When the bodyContent-Type

parser iteratee produces a , Play will not construct a and willResult Request

not invoke the , but instead return the from the body parserAction Result

iteratee to the client.

So far, most of our actions have been using the BodyParsers.parse.anyContent,
because that is the body parser that’s used when you don’t explicitly choose one. In
chapter XREF ch07_chapter and XREF ch08_chapter, we have already seen the

 and body parsers. The produce a multipartFormData json

 and respectively.MultipartFormData JsValue

Play has many more body parsers, all available on the Bodyparsers.parse

object. There are body parsers for text, XML and URL-encoded bodies, similar to
the JSON body parser we saw. All of them also allow to specify the maximum
body size:

This action will return an HTTP response when the bodyEntityTooLarge

is larger than 10000 bytes. If you don’t specify a maximum length, the text, JSON,
XML and URL-encoded body parsers default to a limit of 512 kilobytes. This can
be changed in :application.conf

Like the body parser, the , and urlFormEncoded body parsersjson xml text

use the request header to check that the request has a suitableContent-Type

content type. If not, they return an error result. If you don’t want to check the
header, that’s no problem. For all these body parsers, there are also body parsers
whose name start with that parse the same way, but don’t check thetolerant

header. For example, you can use BodyParsers.parse.tolerantJson to parse a body
as JSON regardless of the header.Content-Type

Suppose that you are building an API where people can upload a file. To store
the file, you can use the temporaryFile body parser. This is a body parser of type

10.4.2 Using built-in body parsers

def myAction = Action(parse.json(10000)) {
 // foo
}

parsers.text.maxLength = 1m

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

316

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

. The request body will be of type BodyParser[TemporaryFile]

. If you want to store the file to aplay.api.libs.Files.TemporaryFile

permanent location, you can use the method:moveTo

The built-in body parsers are fairly basic. It is possible, however, to compose these
basic body parsers into more complex ones that have more complex behaviour if
you need that. We’ll use that in this section to build some body parsers that handle
file uploads in various ways.

Play also has a file body parser, that takes a as a parameter:java.io.File

A limitation is that you can only use the parameters of the action method in
your file body parser. In this example, that is the filename parameter. The

 itself is not available; while you might want to use that toRequestHeader

verify that the file has the proper content type.
Luckily, body parsers are very simple and therefore easy to manipulate. The

 object has a few helper methods to compose existingBodyParsers.parse

body parsers, and the trait allows us to modify body parsers.BodyParser

Suppose that we want to make a body parser that works like the file body
parser, but only saves the file if the content type is is some given value. We can use
the method to construct a new body parser from aBodyParsers.parse.when

predicate, an existing body parser, and a function constructing a failure result:

def upload = Action(parse.temporaryFile) { request =>
 val destinationFile = Play.getFile("uploads/myfile")
 request.body.moveTo(destinationFile)
 Ok("File succesfully uploaded!")
}

10.4.3 Composing body parsers

def store(filename: String) = Action(
 parse.file(Play.getFile(filename))) { request =>
 Ok("Your file is saved!")
}

def fileWithContentType(filename: String, contentType: String) =
 parse.when(
 requestHeader => requestHeader.contentType == contentType,
 parse.file(Play.getFile(filename)),
 requestHeader => BadRequest(

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

317

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

We can use this body parser as follows:

In this case, we did something before we invoked an existing body parser. But
we can also use a body parser first, and then modify its result. Suppose that you
don’t want to store these files on the local disk, but in, say, a MongoDB cluster.

In that case, we can start with the temporaryFile body parser, to store the file on
disk, and then upload it to MongoDB. The final result of our body parser could
then be the object ID that MongoDB assigned to our file. Such a body parser can
be constructed using the method on an existing body parser:map

This ability to compose and adapt body parsers makes them really suitable for
reuse. One limitation, though, is that you can only adapt the final result of the body
parsing. You can not really change the actual processing of chunks of the HTTP
request. In our MongoDB example, this means that we must first buffer the entire
request into a file, before we can store it in MongoDB.

In the next section we’ll see how we can create a new body parser, which does
give us the opportunity to work with the chunks of data from the HTTP request,
and gives us even more flexibility in how to handle the request.

 "Expected a '%s' content type, but found %s".
 format(contentType, requestHeader.contentType)))

def savePdf(filename: String) = Action(
 fileWithContentType(filename, "application/pdf")) { request =>
 Ok("Your file is saved!")
}

def mongoDbStorageBodyParser(dbName: String) =
 parse.temporaryFile.map { temporaryFile =>
 // Here some code to store the file in MongoDB
 // and get an objectId
 objectId
}

val dbName = Play.configuration.getString("mongoDbName")
 .getOrElse("mydb")

def saveInMongo = Action(mongoDbStorageBodyParser(dbName)) {
 request =>
 Ok("Your file was saved with id %s" format request.body)
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

318

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Building a completely new body parser is not something that you’ll regularly have
to do. But it is a great capability of Play, and the underlying reactive iteratee
library is the reason that is possible and not very hard.

In this section we’ll build another body parser that allows a user to upload a
file. This time though, it will not be stored on disk or in MongoDB, but on
Amazon’s Simple Storage Service, better known as S3. Contrary to the MongoDB
example of the previous section, we will not buffer the full request before we send
it to S3. Instead, we’ll immediately forward chunks of data to S3, as soon as the
user sent them to us!

The strategy we employ is to build a new body parser which creates a custom
iteratee. The iteratee will forward every chunk it consumes to Amazon. This means
that we must be able to open a request to Amazon, even before we have all the
data, and push chunks of data into that request when they come available.

Unfortunately, Play’s WS library currently does not support pushing chunks of
data into a request body. We can imagine that in some future version of Play we’ll
be able to use an enumerator for this. However, for now we’ll need to use
something else. Luckily, the underlying library that Play uses, Async HTTP Client
(AHC) does support it. That library can in turn also use multiple implementations,
called providers, and the Grizzly provider has a ,FeedableBodyGenerator

which is somewhat similar to the that we have seen in Play,PushEnumerator

as it allows to push chunks into it after it is created. So we will use AHC with the
Grizzly provider and a .FeedableBodyGenerator

Play itself uses AHC with a different provider, so we’ll need to create our own
instance of . We’ll copy the rest of the Play configuration,AsyncHttpClient

though:

Amazon requires requests to be signed. When signing up for the service, you
get a key and a secret, and together with some request parameters these need to be
hashed. The hash is added to a request header, which allows Amazon to verify that
the request comes from you. The signing is not very complicated:

10.4.4 Building a new body parser

private lazy val client = {
 val playConfig = WS.client.getConfig
 new AsyncHttpClient(new GrizzlyAsyncHttpProvider(playConfig),
 playConfig);
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

319

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

Then we create a method , that constructs a request tobuildRequest

Amazon, and returns both this object and the Request

, that we’ll need to push chunks into the request:FeedableBodyGenerator

Listing 10.13 Amazon S3 uploading body parser, buildRequest method

def sign(method: String, path: String, secretKey: String,
 date: String, contentType: Option[String] = None,
 aclHeader: Option[String] = None) = {
 val message = List(method, "", contentType.getOrElse(""),
 date, aclHeader.map("x-amz-acl:" + _).getOrElse(""), path)
 .mkString("\n")

 // Play’s Crypto.sign method returns a Hex string,
 // instead of Base64, so we do hashing ourselves.
 val mac = Mac.getInstance("HmacSHA1")
 mac.init(new SecretKeySpec(secretKey.getBytes("UTF-8"), "HmacSHA1"))
 val codec = new Base64()
 new String(codec.encode(mac.doFinal(message.getBytes("UTF-8"))))
}

def buildRequest(bucket: String, objectId: String, key: String,
 secret: String, requestHeader: RequestHeader):
 (Request, FeedableBodyGenerator) = {

 val expires = dateFormat.format(new Date())
 val path = "/%s/%s" format (bucket, objectId)
 val acl = "public-read"
 val contentType = requestHeader.headers.get(HeaderNames.CONTENT_TYPE)
 .getOrElse("binary/octet-stream")
 val auth = "AWS %s:%s" format (key, sign("PUT", path, secret,
 expires, Some(contentType), Some(acl)))
 val url = "http://%s.s3.amazonaws.com/%s" format (bucket, objectId)

 val bodyGenerator = new FeedableBodyGenerator()

 val request = new RequestBuilder("PUT")
 .setUrl(url)
 .setHeader("Date", expires)
 .setHeader("x-amz-acl", acl)
 .setHeader("Content-Type", contentType)
 .setHeader("Authorization", auth)
 .setContentLength(requestHeader.headers
 .get(HeaderNames.CONTENT_LENGTH).get.toInt)
 .setBody(bodyGenerator)
 .build()
 (request, bodyGenerator)
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

320

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

This method creates the request and the body generator and returns them.
Now we have all the ingredients to build our body parser:

Listing 10.14 Amazon S3 body parser

create iteratee
function that is called for each chunk
feed chunk into request to Amazon
return generator
map result
feed empty chunk

def S3Upload(bucket: String, objectId: String) = BodyParser {
 requestHeader =>
 val awsSecret = Play.configuration.getString("aws.secret").get
 val awsKey = Play.configuration.getString("aws.key").get
 val (request, bodyGenerator) =
 buildRequest(bucket, objectId, awsKey, awsSecret, requestHeader)
 S3Writer(objectId, request, bodyGenerator)
}

def S3Writer(objectId: String, request: Request,
 bodyGenerator: FeedableBodyGenerator):
 Iteratee[Array[Byte], Either[Result, String]] = {

 // We execute the request, but we can send body chunks afterwards.
 val responseFuture = client.executeRequest(request)

 Iteratee.fold[Array[Byte], FeedableBodyGenerator]

 (bodyGenerator) {

 (generator, bytes) =>
 val isLast = false
 generator.feed(new ByteBufferWrapper(ByteBuffer.wrap(bytes)),

 isLast)

 generator

 } mapDone { generator =>
 val isLast = true
 val emptyBuffer =
 new ByteBufferWrapper(ByteBuffer.wrap(Array[Byte]()))

 generator.feed(emptyBuffer, isLast)

 val response = responseFuture.get
 response.getStatusCode match {

 case 200 => Right(objectId)

 case _ => Left(Forbidden(response.getResponseBody))
 }
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

321

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

get response
return success
return failure

The method creates a that calls S3Upload BodyParser buildRequest

to obtain a and a com.ning.http.client.Request

 and uses those to invoke , whichFeedableBodyGenerator S3Writer

creates the body generator iteratee. uses the S3Writer Iteratee.fold

method to create the iteratee . In general, the method takesIteratee.fold

an initial state and a function that consumes the chunk to calculate a new state. In
our case, the initial state is the bodyGenerator . We wrap the bytes we received
from our user into a , which we can then feed to the ByteBufferWrapper

 . We don’t really calculate a new state, so weFeedableBodyGenerator

just return the same bodyGenerator as the ‘new state’ . We use tomapDone

be able to do something when the iteratee completes (which happens when all the
chunks of the HTTP request from our user to our Play application are processed).
We feed an empty chunk into the body generator , and a boolean indicating that
this is the last chunk. Then we request the response . If the response status code
is 200, the request was successful and we return a , with the object ID inRight

it. If the request failed, we pass on the response body that we received from
Amazon .

Note that even though we like immutable iteratees, this one is not. It holds a
reference to the HTTP request to Amazon, and that request is mutable (after all, we
keep pushing new chunks into it).

So far we’ve seen that we can see iteratees as consumer and enumerators as
producers of data. We know how to construct them, and how we can use them.
What we have conveniently ignored is how they actually work. That is not a
problem, we have been able to do many interesting things with iteratees: process
large results with the WS library, use WebSockets for bidirectional communication
and create custom body parsers. This is an important point to make: Play’s APIs
that use iteratees and enumerators are easy to use and intuitive, and no further
knowledge is needed to build powerful applications with this library.

There is another way to look at iteratees. They are finite state machines, with
three distinct states: ‘continue’, ‘done’ and ‘error’. An iteratee usually starts in the
‘continue’ state, which means that it will accept another chunk of data. Upon

10.5 Another way to look at iteratees

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

322

Licensed to Jeff Crilly <jlc@sbcglobal.net>

http://www.manning-sandbox.com/forum.jspa?forumID=810

processing this data, it will produce a new iteratee, that is either in the ‘continue’
state or in the ‘error’ or ‘done’ state. If the iteratee is in the ‘error’ or ‘done’ state,
it will not accept any more chunks of data.

The enumerator can not only feed chunks of data into the iteratee, but also a
special element that indicates the end of the stream: EOF (‘end of file’). If an EOF
element is received by the iteratee, it knows that the new iteratee it will produce
must be in the ‘done’ or ‘error’ state, so that the produced value (or the error) can
be extracted.

There is more to explore. Enumerators, the producers of streams, and iteratees,
the consumers of streams, have a cousin. This is the enumeratee, which can be
considered as an adapter of streams. Enumeratees can sit between enumerators and
iteratees, and modify the stream. Elements of the stream can be removed, changed
or grouped.

In this book, we will not explain how iteratees, enumerators and enumeratees
actually work under the hood. Because of their purely functional implementation,
they are not intuitive for programmers without a functional programming
background. But again, no knowledge of their internals is needed to use them.
Their abstraction is not very complex, and they can be created using accessible
methods on the , and objects. They canIteratee Enumerator Enumeratee

also be transformed by familiar methods like . Finally, Play’s APIs that usemap

them are clear.

Play bundles some libraries that make it easier to deal with common tasks in web
application programming. The web service API allows your application to talk to
third party web services, and can help you with authentication. There is a Cache
API that allows you to cache arbitrary values, and complete Action results.

Iteratees have an implementation that is hard to understand. But knowledge
about their internals is not required to create, compose and use them productively
in a Play application. They can be used in the web service API, when dealing with
WebSockets and to create body parsers.

WebSockets offer bidirectional communication between servers and clients,
and allow for building highly interactive web applications. Body parsers help you
deal with HTTP request bodies thrown at your application. Many are available, and
they can be composed to your liking.

10.6 Summary

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
 http://www.manning-sandbox.com/forum.jspa?forumID=810

323

http://www.manning-sandbox.com/forum.jspa?forumID=810

	Play for Scala MEAP v6
	Copyright
	Table of Contents
	Part I: Getting started
	Chapter 1: Introduction to Play 2
	1.1 What Play is
	1.1.1 Key features
	1.1.2 Java and Scala
	1.1.3 Play is not Java EE

	1.2 High-productivity web development
	1.2.1 Working with HTTP
	1.2.2 Simplicity, productivity and usability

	1.3 Why Scala needs Play
	1.4 Type-safe web development — why Play needs Scala
	1.5 Hello Play!
	1.5.1 Getting Play and setting-up the Play environment
	1.5.2 Creating and running an empty application
	1.5.3 Play application structure
	1.5.4 Accessing the running application
	1.5.5 Add a controller class
	1.5.6 Add a compilation error
	1.5.7 Use an HTTP request parameter
	1.5.8 Add an HTML page template

	1.6 The console
	1.7 Summary

	Chapter 2: Your first Play application
	2.1 The product list page
	2.1.1 Getting started
	2.1.2 Style sheets
	2.1.3 Language localization configuration
	2.1.4 Adding the model
	2.1.5 Product list page
	2.1.6 Layout template
	2.1.7 Controller action method
	2.1.8 Adding a routes configuration
	2.1.9 Replacing the welcome page with a redirect
	2.1.10 Checking the language localizations

	2.2 Details page
	2.2.1 Model finder method
	2.2.2 Details page template
	2.2.3 Additional message localizations
	2.2.4 Adding a parameter to a controller action
	2.2.5 Adding a parameter to a route

	2.3 Barcode image generation
	2.4 Adding a new product
	2.4.1 Additional message localizations
	2.4.2 Form object
	2.4.3 Form template
	2.4.4 Saving the new product
	2.4.5 Validating the user input
	2.4.6 The routes

	2.5 Summary

	Part II: Core functionality
	Chapter 3: Deconstructing Play application architecture
	3.1 Drawing the architectural big picture
	3.1.1 The Play server
	3.1.2 HTTP
	3.1.3 MVC
	3.1.4 REST

	3.2 Application configuration—enabling features and changing defaults
	3.2.1 Creating the default configuration
	3.2.2 Configuration file format
	3.2.3 Configuration file overrides
	3.2.4 Configuration API—programmatic access
	3.2.5 Custom application configuration

	3.3 The model—adding data structures and business logic
	3.3.1 Database-centric design
	3.3.2 Model class design
	3.3.3 Defining case classes
	3.3.4 Persistence API integration
	3.3.5 Using Slick for database access

	3.4 Controllers—handling HTTP requests and responses
	3.4.1 URL-centric design
	3.4.2 Routing HTTP requests to controller action methods
	3.4.3 Binding HTTP data to Scala objects
	3.4.4 Generating different types of HTTP response

	3.5 View templates—formatting output
	3.5.1 UI-centric design
	3.5.2 HTML-first templates
	3.5.3 Type-safe Scala templates
	3.5.4 Rendering templates—Scala template functions

	3.6 Static and compiled assets
	3.6.1 Serving assets
	3.6.2 Compiling assets

	3.7 Jobs—starting processes
	3.7.1 Asynchronous jobs
	3.7.2 Scheduled jobs
	3.7.3 Asynchronous results and suspended requests

	3.8 Modules—structuring your application
	3.8.1 Third-party modules
	3.8.2 Extracting custom modules
	3.8.3 Module-first application architecture
	3.8.4 Deciding whether to write a custom module
	3.8.5 Module architecture

	3.9 Summary

	Chapter 4: Defining the application’s HTTP interface
	4.1 Designing your application’s URL scheme
	4.1.1 Implementation-specific URLs
	4.1.2 Stable URLs
	4.1.3 Java Servlet API — limited URL configuration
	4.1.4 Benefits of good URL-design

	4.2 Controllers—the interface between HTTP and Scala
	4.2.1 Controller classes and action methods
	4.2.2 HTTP and the controller layer’s Scala API
	4.2.3 Action composition

	4.3 Routing HTTP requests to controller actions
	4.3.1 Router configuration
	4.3.2 Matching URL path parameters that contain forward slashes
	4.3.3 Constraining URL path parameters with regular expressions

	4.4 Binding HTTP data to Scala objects
	4.5 Generating HTTP calls for actions with reverse routing
	4.5.1 Hard-coded URLs
	4.5.2 Reverse routing

	4.6 Generating a response
	4.6.1 Debugging HTTP responses
	4.6.2 Response body
	4.6.3 HTTP status codes
	4.6.4 Response headers
	4.6.5 Serving static content

	4.7 Summary

	Chapter 5: Storing data — the persistence layer
	5.1 Talking to a database
	5.1.1 What are Anorm and Squeryl
	5.1.2 Saving model objects in a database
	5.1.3 Configuring your database

	5.2 Using Anorm
	5.2.1 Defining your model
	5.2.2 Using Anorm’s stream API
	5.2.3 Pattern matching results
	5.2.4 Parsing results
	5.2.5 Inserting, updating and deleting data

	5.3 Using Squeryl
	5.3.1 Plugging Squeryl in
	5.3.2 Defining your model
	5.3.3 Extracting data — queries
	5.3.4 Saving records
	5.3.5 Handling transactions
	5.3.6 Entity relations

	5.4 Creating the schema
	5.5 Caching data
	5.6 Summary

	Chapter 6: Building a user-interface with view templates
	6.1 The why of a template engine
	6.2 Type-safety of a template engine
	6.2.1 A non type-safe template engine
	6.2.2 A type-safe template engine
	6.2.3 Type-safe and non type-safe compared

	6.3 Template basics and common structures
	6.3.1 @, the special character
	6.3.2 Expressions
	6.3.3 Displaying collections
	6.3.4 Security and escaping
	6.3.5 Using plain Scala

	6.4 Structuring pages: template composition
	6.4.1 Includes
	6.4.2 Layouts
	6.4.3 Tags

	6.5 Reducing repetition with implicit parameters
	6.6 Using LESS and CoffeeScript: the asset pipeline
	6.6.1 LESS
	6.6.2 CoffeeScript
	6.6.3 The asset pipeline

	6.7 Internationalization
	6.7.1 Configuration and message files
	6.7.2 Using messages in your application

	6.8 Summary

	Chapter 7: Validating and processing input with the forms API
	7.1 Forms - the concept
	7.1.1 Play 1.x forms reviewed
	7.1.2 The Play 2 approach to forms

	7.2 Forms basics
	7.2.1 Mappings
	7.2.2 Creating a Form
	7.2.3 Processing data with a form
	7.2.4 Object mappings
	7.2.5 Mapping HTTP request data

	7.3 Creating and processing HTML forms
	7.3.1 Writing HTML forms manually
	7.3.2 Generating HTML forms
	7.3.3 Input helpers
	7.3.4 Customizing generated HTML

	7.4 Validation and advanced mappings
	7.4.1 Basic validation
	7.4.2 Custom Validation
	7.4.3 Validating multiple fields
	7.4.4 Optional mappings
	7.4.5 Repeated mappings
	7.4.6 Nested mappings
	7.4.7 Custom mappings
	7.4.8 Dealing with file uploads

	7.5 Summary

	Part III: Advanced Concepts
	Chapter 8: Building a single-page JavaScript application with JSON
	8.1 Creating the single-page Play application
	8.1.1 Getting started
	8.1.2 Adding style sheets
	8.1.3 Adding a simple model
	8.1.4 Page template
	8.1.5 Client-side script

	8.2 Serving data to a JavaScript client
	8.2.1 Constructing JSON data value objects
	8.2.2 Converting model objects to JSON objects

	8.3 Sending JSON data to the server
	8.3.1 Editing and sending client data
	8.3.2 Consuming JSON
	8.3.3 Different approaches to consuming JSON
	8.3.4 Reusable consumers

	8.4 Validating JSON
	8.4.1 Validating using the Play forms API
	8.4.2 Implementing the forms API for JSON

	8.5 Authenticating JSON web service requests
	8.5.1 Adding authentication to action methods
	8.5.2 Using basic authentication
	8.5.3 Other authentication methods

	8.6 Summary

	Chapter 10: Web services, iteratees and WebSockets
	10.1 Accessing web services
	10.1.1 Basic requests
	10.1.2 Handling responses asynchronously
	10.1.3 Using the Cache
	10.1.4 Other request methods and headers
	10.1.5 Authentication mechanisms

	10.2 Dealing with streams using the iteratee library
	10.2.1 Processing large web services responses with an iteratee
	10.2.2 Creating other iteratees and feeding them data
	10.2.3 Iteratees and immutability

	10.3 WebSockets: Bidirectional communication with the browser
	10.3.1 A real-time status page using WebSockets
	10.3.2 A simple chat application

	10.4 Using body parsers to deal with HTTP request bodies
	10.4.1 Structure of a body parser
	10.4.2 Using built-in body parsers
	10.4.3 Composing body parsers
	10.4.4 Building a new body parser

	10.5 Another way to look at iteratees
	10.6 Summary

